Birla Institute of Technology
Department of Computer Science and Engineering

Project Write-up — Intensive Summer Research Experience (ISRE)
(Summer Research Internship)

Advisor: Dr. Abhinav Bhushan

Submitted By:

Name: Saad Aziz Zaidi

Roll No: BTECH/10012/18 Semester: NA

Branch: CSE Section: B

Submission Date: 30th Oct 2021 Session: Summer of 2021

Project Write-up — Point of Care Test for Diagnosing Periodontitis

Project Title

Title: Point of Care Tests for diagnosing periodontitis

Program Theme: Medical Devices and Sensors

Professor name: Dr. Abhinav Bhushan — [Department of Biomedical engineering,

Armour college of Engineering, Illinois Institute of Technology, Chicago]
Overview

I, under my advisor from Illinois Institute of Technology, came up with concepts
and possible solutions to the problem of point of care testing for diagnosing
periodontitis, | then presented the proof of concepts every week in the sessions
with Dr.Abhinav Bhushan. We then proceeded to draft an application for our
method to get approved by the FDA.

My Advisor

Dr.Abhinav Bhushan was my advisor during my time at Illinois Institute of
Technology. To say he was supportive and encouraging of my efforts would be an
understatement, the kind of environment he created during his sessions was
fabulous and I shall remember it all my life. His constant encouragement and
positive attitude were extremely helpful in pushing me past my limits and go
beyond.

| was heartbroken, when it dawned on me that the Intensive Summer
Research Experience this year wouldn’t be offline, but the fact that I do not feel I
could have extracted more from the Intensive Summer Research Experience tells
you how successful it was, despite being online.

Truly and sincerely, ISRE has changed me for the better and | feel selfish
knowing many of my peers did not get to experience this.

Goals of the Summer Research

e Research about periodontitis and current testing for diagnosing it

e Suggest point of care tests for periodontitis

e Show proof of concepts for it

e Draft FDA applications to get them FDA approved

e Learn about BIOMEDICAL MICROELECTROMECHANICAL
SYSTEMS

e Learn about the different manufacturing and working of medical devices
and sensors

2|Page

ENGR 498-07 Research in Artificial Intelligence and Deep Learning

FINAL PROJECT REPORT

Machine Vision Covid-19 Norms Surveillance System based on
Artificial Intelligence
(MaViSS Al)

By: Ritika Nigam (A20498268)

Advisor: Dr. Jafar Saniie

Summer 2021

Abstract

In March 2020, World Health Organization (WHO) had declared pandemic due to COVID-19 since then
the coronavirus outbreak has caused a global disaster with its deadly spreading. The economic and social
disruption caused by the pandemic is devastating. Though vaccines have been developed by various nations,
but as stated by the World Health Organization (WHO), vaccines rarely protect 100% of the recipients and
vaccinated individuals still run the risk of contracting the disease. And also with the increase in mutation of
the virus, the new variants of coronavirus are being emerged which is eventually decreasing the effectiveness
of vaccines against the coronavirus. In order to curb this pandemic it is important to monitor whether people
are abiding by all the necessary precautions i.e. maintaining social distancing norms, wearing face masks
and crowd management.

Manual monitoring of these norms is difficult and tends to be quit inefficient and inaccurate. This necessitates
the urge of an automated machine vision system for monitoring the covid norms in real time. This encouraged
us to to design an Artificial Intelligence based machine vision surveillance system (MaViSS Al) for real-time
monitoring of COVID-19 norms which would be cost effective, accurate, feasible and secure and would
overcome the real time challenges faced during manual monitoring of norms.

Introduction

MaViSS Al is a Machine Vision Surveillance System based on Atrtificial Intelligence which would be used
for real-time monitoring of COVID-19 norms and thus would help in alleviating the COVID-19 surge. This
system would replace many physical eyes with computer visions and thereby providing an accurate and
efficient monitoring system. The system will be used for monitoring three different tasks.

e Detecting and tracking humans for monitoring social distancing norms and counting the total
humans for crowd management.

e Detecting face mask and keeping the track of face mask usage by the detected people.

e Raising real-time alerts using a telegram bot whenever any of the following norms are breached.

Thus, the aim of our project is to develop a framework that tracks and counts humans for monitoring social
distancing and detects face mask. To accomplish this objective, we developed an algorithm using object
detection method. For object detection method, we used YOLO(You Only Look Once) neural network to
detect person and count them. And for social distancing monitoring we used the concept of centroid i.e.
calculating the distance between pairs of centroids, and thus checking whether there is any violations of
threshold or not. This approach of social distancing algorithm will red mark the persons who are getting closer
than a permissible limit. In order to detect the face mask, a YOLO V4 deep learning used as the mask detection
algorithm. The system also raises alerts when any suspicious event occurs. In view of this alert, security
personnel can take relevant actions. Therefore, the automated surveillance system will surpass several
limitations of the manual monitoring systems.

This research aims to limit the impact of the coronavirus epidemic with minimal harm to economical artifacts.
Monitoring social distancing in real-time scenarios is a challenging task. It can be possible in two ways:
manually and automatically. The manual method requires many physical eyes to watch whether every
individual is following social distancing norms strictly. This is an arduous process as one can’t keep their eyes
for monitoring continuously. However, automated machine vision surveillance system replaces many physical
eyes with computer vision.

The primary application of our system MaViSS Al is that it could be used as covid-19 norms machine
surveillance system for monitoring both indoor and outdoor surveillance scenarios. It can be used
significantly in various busy places like railway stations, airports, megastores, malls, streets, etc. where
manual monitoring is very difficult. Apart from COVID-19 norms monitoring, MaViSS Al can be used for
broader applications as generic human detection and tracking system in various real-world applications.
It can be significantly used as human action and anomaly detection in security systems such as in banks, ATM
and also in residential areas, pedestrians detection and tracking in autonomous vehicles, crowd management
in shops, lifts, public transports, etc.

Description

System Modules

The system MaViSS Al is the integration of three different modules. Each module perform a different
monitoring task with the help of real-time object detection method (YOLO) and OpenCYV library of python.

System Module

Human
Fggtee'gfizsnk Detection(Social Alerts
Distancing)

Fig 1: Flowchart representing different system modules

The three different modules are used for monitoring three different norms:

I. Face Mask Detection - Face mask detection module uses mask-YOLOv4-tiny model to detect the
face mask usage and classifies it into three classes using different shades of bounding box:

e Good - The green bounding box is annotated with good remark which represents that the
person is well masked with nose and mouth fully covered.

o - The orange bounding box is annotated with bad remark which represents that the person
is not well masked i.e. his/her nose or mouth is not fully covered.

e None - The red bounding box is annotated with none remark which represents that the person
is not wearing a mask and is violating the norms.

Human Detection (For Social Distancing) - Human detection uses YOLOv3-608 model to detect and
track humans in the scene and calculate the distance between each pair of humans. This information is
then calibrated with the safe distance set by the user and each person is classified into three classes
using different colors of bounding box:

e Green- The person enclosed within green bounding box denotes that person is at safe distance
(i.e. 2m) from others (No Violation).

o - The person enclosed within yellow bounding box denotes that person is at minimum
safe distance (i.e. 1m) but not at safe distance (i.e. 2m) from others (Abnormal Violation).

e Red - The person enclosed within red bounding box denotes that person is not at minimum
safe distance (i.e. 1m) from others (Serious Violation).

Alerts - The alerts module of our system uses urlib and requests packages and is connected to a
Telegram bot using its chat id and authenticated with the token id. Alert messages can be delivered
through this bot both to individual users and groups.Whenever there are any serious violations in
COVID19 norms, either social distancing or face mask usage, the same is communicated to the user’s
smartphone in realtime through this bot.

Workflow

The basic workflow of our system comprises of six different phases:

Video === Preprocessing

Model

Inference == Calibration

Alerts J Output

Fig 2: Flowchart representing the workflow of the system

In the diagram above the basic overflow of the system is shown. According to the flowchart six phases are
involved in the process:

Video — The first phase is the video phase in which the frames are extracted from the video sources
obtained from CCTV or IP cameras.

Preprocessing- After extracting the frames, these frames are sent to the second phase which is the
preprocessing phase. In this phase resizing of the frames are done for the model inference.

Model Inference- Resized frames are then sent to the third phase which is the model inference phase.
The model inference is done by using the YOLO architecture (trained on COCO dataset) for state-of-
the-art, real-time humans and face mask detection.

Calibration- This is the fourth phase which involves computing parameters like social distancing &
face mask metrics, validating it with the norms and identifying violations.

Output- After calibrating the frames, these frames are sent to the fifth phase which is the output phase.
In the output phase, output is generated in real-time to the monitoring user, displaying the social
distancing metrics, color coded bounding boxes for persons detection & tracking, and information
regarding any violations.

Alerts- This the last phase of the workflow. This phase generates real-time alerts messages using a
telegram bot which is directly sent to the user’s smartphone whenever any of the norms are breached.

Hardware and Software Tools

Hardware Components

)

NVIDIA Jetson Nano — The major hardware component utilized in our project is NVIDIA
Jetson Nano for computation of our system. NVIDIA Jetson Nano Developer Kit is a small,
powerful computer that runs multiple neural networks in parallel for applications like image
classification, object detection, segmentation, and speech processing. It is an easy-to-use platform
that runs in as little as 5 watts. It is booted by inserting a microSD card with system image. It is
used for building practical Al applications.

The Jetson Nano is specifically powered by a powerful NVIDIA Maxwell GPU comprised of 128
CUDA cores along with quad-core Arm Cortex-A57 CPU MPCore processor. It has lots of 10
options including one USB 3.0 Type-A, 2 USB 2.0 Type-A, 1 USB 2.0 Micro-B, a 40 GPIO header,
12-pin power/UART header, 4-pin fan header, a Gigabit Ethernet RJ45 jack, full-size HDMI port,
and an included 802.11ac wireless USB dongle. Also on board is a microSD card slot for storage
(card not included) and a MIPI CSI-2 connector to attach a camera, to give the Nano a set of eyes.
The kit is setup in a mezzanine-style 10 board and SODIMM slot configuration, where the
processing engine clips into the 10 board with an integrated heat sink. The operating system used
in Jetson Nano is Linux Ubuntu 18.04.

=3 3 ITRW)
e b e, LT LA VST SRR g

t‘;
uf

bl

N

-’
=
=
=
= .
=i
Y
= -
= .
=
=
i’

Fig 3: Image of Nvidia Jetson Nano

Technical Specification of Jetson Nano:

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43 GHz
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage microSD (not included)

Video Encode

4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30
(H.264/H.265)

Video Decode

4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 |18x 720p
@ 30 (H.264/H.265)

Camera

2x MIPI CSI-2 DPHY lanes

Connectivity

Gigabit Ethernet, M.2 Key E

Display HDMI and display port
USB 4x USB 3.0, USB 2.0 Micro-B
Others GPIO, I?C, I°S, SPI, UART
Mechanical 69 mm x 45 mm, 260-pin edge connector

1)

Camera- The second hardware component used in our project is an IMX 219-77 camera or a
webcam for capturing videos. An IMX 219-77 camera is a high-quality camera with an 8 megapixel
Sony IMX219 image sensor. It is capable of viewing images at a high resolution of 3280x2464. It has
a high FOV (field of view) to capture more area. It is suitable to use with the NVIDIA Jetson

Nano and NVIDIA Jetson Xavier NX Development Kits.

Sy

Fig 4: IMX 219-77 Camera

https://www.seeedstudio.com/NVIDIA-Jetson-Nano-Development-Kit-B01-p-4437.html
https://www.seeedstudio.com/NVIDIA-Jetson-Nano-Development-Kit-B01-p-4437.html
https://www.seeedstudio.com/NVIDIA-Jetson-Xavier-NX-Developer-Kit-p-4573.html

Technical Specification of IMX 219-77 camera

Specification Description
Megapixels 8 Megapixels
Photosensitive chip Sony IMX219
Assembly Technique SMT (ROSH)
Resolution 3280 x 2464
Pixel Size 1.12pm x1.12pum
CMOS size 1/4 inch
Aperture (F) 2.0

Focus fixed

Focal Length 2.96mm
Lens Construction 4P

Diagonal field of view (FOV) 77 degrees

I11) External monitor- The third hardware component used in our project is an external monitor used
for visualizing the output of our system and also for monitoring the norms. This external monitor
is connected to Jetson Nano using the HDMI cable. Along with the external monitor, a USB mouse
and a keyboard is also connected to the Jetson nano through USB cables.

Fig 5: An External Monitor

Thus all of the above components integrate together to form the hardware of our system MaViSS Al which
provides a computional unit, monitoring unit and the visualization unit. The figure below represents all
the different components of hardware connected to the Jetson Nano.

Fig 6: Hardware Components of the system MaViSS Al

Circuit Design

x Wu |POE (Power
0. |
498 1B —over Etemet
Camera o M.2 Key E Slot
&
‘ Expansion Header
Camera Connector—4 12 [
Power Jack/USB A
L* Power Select Jumper W, |* 2 O
— Jadae ’-\
5v,4A Power Adapter A [\ I
Vv, Wi 2 x2 stacked =
(2 %2 stacked) ¥ ¥ ———— Ethemel Jack ‘ bad '
HOMI Type A o S S /| oss
80P Stacked [T I°, . \ { Power LED (oee =]
5 J6° [q 932 pq I3 D| 43 3]]
AT AR
IR TR W Micro B USB WiFi Router
.
External monitor
0000000088
(1111 111T]
(I 1 T T X XI]]
0 S O
Mouse Keyboard

Fig 7. Schematic of Circuit design

Software Components

1)

.

11.)

Python- The programming language used in our project is Python. Python is an interpreted high-
level general-purpose programming language. Python's design philosophy emphasizes code
readability with its notable use of significant indentation. Its language constructs as well as
its object-oriented approach aim to help programmers write clear, logical code for small and large-
scale projects.[®

Python is dynamically-typed and garbage-collected. It supports multiple programming paradigms,
including structured (particularly, procedural), object-oriented and functional programming.
Python is often described as a "batteries included” language due to its comprehensive standard
library.

In our project we have utilised various python libraries available for building different parts of the
system. For video and frames capturing and processing, we have used OpenCV and imutils
packages.Various calculations and calibrations are facilitated by packages like scipy and numpy.

OpenCV- The major python library used in our project is OpenCV for image processing.OpenCV
(Open Source Computer Vision Library) is an open source computer vision and machine learning
software library. OpenCV was built to provide a common infrastructure for computer vision
applications and to accelerate the use of machine perception in the commercial products. Being a
BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms. These algorithms
can be used to detect and recognize faces, identify objects, classify human actions in videos, track
camera movements, track moving objects, extract 3D models of objects, produce 3D point clouds
from stereo cameras, stitch images together to produce a high resolution image of an entire scene,
find similar images from an image database, remove red eyes from images taken using flash, follow
eye movements, recognize scenery and establish markers to overlay it with augmented reality, etc.
OpenCV has more than 47 thousand people of user community and estimated number of
downloads exceeding 18 million. The library is used extensively in companies, research groups
and by governmental bodies.

YOLO- The main object detection algorithm used in our project is YOLO (You Only Look
Once).YOLO is an abbreviation for the term “You Only Look Once’. This is an algorithm that
detects and recognizes various objects in a picture (in real-time). Object detection in YOLO is done
as a regression problem and provides the class probabilities of the detected images. YOLO
algorithm employs convolutional neural networks (CNN) to detect objects in real-time. As the
name suggests, the algorithm requires only a single forward propagation through a neural network
to detect objects.This means that prediction in the entire image is done in a single algorithm run.
The CNN is used to predict various class probabilities and bounding boxes simultaneously.

448
\
112

3 56
3 28
, - XX
448 1z 56 2 14 7 7

8
7
192 512 1024 1024 1024 4096 30

EE | BE B

w

Fig 8. YOLO Architecture

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Language_construct
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programmers
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-AutoNT-7-31
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Programming_paradigms
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Standard_library
https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-09-20+to+2019-01-30

Software Implementation

Coded the system module
using python programming

\Ia nguage J

4 N

OpenCV
Processed the video using

Kthe OpenCV library J

A
YOLO- Real-time object
detection method used for

model inference

B WIESS AL COVID 1D Norrms Sunvediance Symaem - n

10

Calibrating and Integrating together the two module into the final output

https://lucid.app/documents/edit/7229409d-248c-488a-b7d4-4ea7eed8be67/0?callback=close&name=slides&callback_type=back&v=2356&s=537.029536690299
https://lucid.app/documents/edit/7229409d-248c-488a-b7d4-4ea7eed8be67/0?callback=close&name=slides&callback_type=back&v=2356&s=537.029536690299
https://lucid.app/documents/edit/7229409d-248c-488a-b7d4-4ea7eed8be67/0?callback=close&name=slides&callback_type=back&v=2356&s=537.029536690299

Challenges Overcome

Real-Time Constraints

While building up the project we faced real-time constraints based on the performance of our system. When
we tested our system utilizing the CPU of Jetson Nano, we got a very low rate of frames per second because

of which the performance of our system was tremendously dropped.

However this constraint was overcomed by installing OpenCV with CUDA support as this enabled us to use
the GPU of Jetson Nano which increased our performance nearly 4 times. Modern GPU accelerators has
become powerful and featured enough to be capable to perform general purpose computations (GPGPU).
OpenCV includes GPU module that contains all GPU accelerated stuff. Supported by NVIDIA the work on
the module, started in 2010 prior to the first release in Spring of 2011. It includes accelerated code for
siginifcant part of the library, still keeps growing and is being adapted for the new computing technologies

and GPU architectures.

'
jtop Nano (Developer Kit Version) - JC: Inactive - MAXN
NVIDIA Jetson Nano (Developer Kit Version) - Jetpack 4.5.1 [L4T 32.5.1]

- Up Time: @ days ©:25:23 Version: 3.1.0
- Jetpack: 4.5.1 [L4T 32.5.1] Author:
- Board: e-mail: raffa
* Nano (Developer Kit Version)
tegra2io ID: 33
P3448-0000 Board: P3449-0000

- Hostname: ritika-desktop

192.168.29.228

1ALL 2GPU 3CPU 4MEM SCTRL JUIJel Quit Raffaello Bonghi]

o J_ o

After enabling CUDA for OpenCV we did performance and accuracy analysis of our system for the two

given modules:

Module 1: Face Mask Detection Module:

Fig 9: Jtop indicating OpenCV complied with CUDA on Jetson Nano

Frames per second (FPS)

Model CPU

GPU

mask-YOLOv4-tiny 1.37-1.77

3-6

Module 2: Human Detection and Tracking (Social Distancing)

Frames per second (FPS)

Model CPU

GPU

YOLOvV3-608 0.21 0.71-0.79

11

Perfomance Analysis on Jetson Nano

6

«
a
=
(a]
2
(]
O
7]
7]
o
7]
a
(7]
w
=
<
o
L

0.8

0.21.

Face Mask detection Social Distancing

CPU mGPU mnone

Thus the chart above shows the analysis of system modules on CPU and GPU respectively. These models of
YOLO are selected on the parameter of performance and accuracy.

Security

Security and privacy issue is one of the major issues faced but with the help of NVIDIA’s Trusty Execution
Environment(TEE) available for Jetson products we can overcome this challenge.

Trusty resides in a separate storage partition and boots as part of a chain of trust or a secure boot sequence. It
creates two environments in a device with different security modes:

*Non-Secure Environment (NSE): An environment for running software components in non-secure mode.
This mode is known as the “normal world.” A rich OS, such as Linux, typically runs in this environment.
*Trusted Execution Environment (TEE): A separate environment, that provides trusted operations and runs
in secure mode enforced by hardware. This mode is known as the “secure world.” Trusty runs in this
environment.

The normal world OS and Trusty software operate in a client-server relationship, with Trusty as the server.
The bootloader allocates a dedicated carveout, TZ-DRAM, to run a secure OS. All secure operations are

initiated by a client application running in the non-secure environment. A trusted application, in the secure
world, never initiates contact with the non-secure environment.

Normal World Secure World
Client Applications Trusted Applications
(CAs) (TAs)

I e

Trusty CA Library

Trusty Kernel

, I

Trusty Linux Driver ‘ Monitor (ATF)

12

NVIDIA Jetson SoC

Results and Discussions

On combining all the modules together the final performance of the system on Jetson Nano are as follows

System Frames per second (FPS)
CPU GPU
MaViSS Al (YOLOv3- 0.15-0.2 0.65-0.83
608 + mask-YOLOv4-
tiny)

Thus the final inference is that MaViSS Al (mask-YOLOv4-tiny + YOLOv3-608) utilizes the powerful GPU
of Jetson Nano with CUDA backend to improve its performance by approximately 4 times better than that
achieved on CPU and runs at frame rate of 0.65-0.83 FPS.

Final System Performance Analysis on
Jetson Nano

)
o

w)
Q.
<
(a]
2
(@]
o
pre
(7]
o
w
(-
(7]
v}
S
<
o
w

MaViSS Al

CPU mGPU mnone

The above chart shows the comparative analysis of our system MaViSS Al vs its performance in CPU and
GPU of the Jetson Nano. The bar graph clearly indicates that the the fps obtained on GPU is much higher than
that achieved on the CPU. Thus, with the help of the NVIDIA Maxwell 128 cores GPU of Jetson Nano we
improved the overall performance of our system.

Therefore, with the help of MaViSS Al the user is able to monitor social distancing norms and face mask
usage in the scene captured by the surveillance camera and any norm breach is reported directly to the user as
an alert message.

The results obtained can be found in the demonstration video,the link for which has been attached below

Demonstration Video

13

https://drive.google.com/file/d/150r-uJa36L-DX1osjriPW1XhM8xbsukI/view?usp=sharing

MaVISS Al-Covid-19 Norms Surveillance system.avi

Human Courit: 10

Abnormal Violations: 0

LB AL g
" 0]

14

B
.

t | ’

Fig 10: Monitoring window of our system MaViSS Al

The figure shown above is the monitoring window of our system MaViSS Al with all the metrics displayed
on the screen. The metric at the right hand corner represents the human counter which counts the total number
of humans present in the scene at any particular moment. It also represents the counter for masked, improperly
masked and unmasked parameter which shows number of humans wearing mask, not wearing a mask or is
improperly masked. On the other hand, at the left corner there is a metric for social distancing parameter. It
represents the counter for serious and abnormal violations present in the scene. Whenever these counters
exceed the threshold value an Alert message is displayed on the monitoring screen and as well as an alert
message through the telegram bot is directly sent to the user on their smartphones.

20:04 O

v MaViSSs Al - Alerts
bot

[start 1954
Switch ON Alerts o4,
Social distancing violations exceeded!
Serious Violations : 7
Face Mask violations exceeded!
Masked : 2
Improperly Masked : 1
Unmasked " 0
Social distancing violations exceeded!
Serious Violations : 7
Face Mask violations exceeded!
Masked : 2

Improperly Masked : 1
Unmasked " 0

Social distancing violations exceeded!

Serious Violations : 7
Social distancing violations exceeded!

Serious Violations : 7

©M

14
Fig 11: Telegram bot sending alerts to the smartphone of the user

Conclusion

Taking into account the importance of social distancing and face mask usage in managing and reducing the
probability of COVID-19 disease from continuously spreading which can cause the healthcare system to
collapse due to high number of patient, MaViSS Al provides an integrated system for monitoring all the
necessary norms that are needed to be followed. It monitors the face mask usage, social distancing parameters
and also counts the total number of humans present in the scene. The system raises real-time alerts through
telegram bot whenever any of the following norms are breached. Thus MaViSS Al surpasses several
limitations of the manual monitoring systems and provides an efficient and accurate way of monitoring and
reporting breaches in COVID19 norms.

Future Work

In future, additional backend process will be included that allow advanced statistical analysis to be done which
can be used by the authority, facilities or building owner to monitor the level of compliance among the people or
visitors. The data received from the monitoring system can be collected and based on this data a live dashboard
can be built which provides visualizations of the norms that would be dynamic in nature and keeps on updating
based on the data received. Moreover, system performance can be improved by using higher end hardware and
more optimized detection algorithms. Also, distance calculation can be made more accurate by using depth and
aspect information. In addition to this a more advanced camera with zooming and adjusting capabilities can be
used to detect the distant faces for face mask usage.

References

o Neuralet’s smart social distancing

e YOLO v3 (for human detection) - https://pjreddie.com/darknet/yolo/

e mask YOLO v4 tiny (for mask detection) - https://github.com/AlexeyAB/darknet

e Jetson Nano - https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

e M. M. Rahman, M. M. H. Manik, M. M. Islam, S. Mahmud and J. -H. Kim, "An Automated System
to Limit COVID-19 Using Facial Mask Detection in Smart City Network," 2020 IEEE International
IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2020, pp. 1-5, doi:
10.1109/IEMTRONICS51293.2020.9216386. (https://ieeexplore.ieee.org/document/9216386)

e J.Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object
Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVVPR), 2016, pp.
779-788, doi: 10.1109/CVPR.2016.91.

e https://abhatikar.medium.com/make-your-nvidia-jetson-nano-deep-learning-ready-a8f5fcd7b25c¢

e Opencv with CUDA and dnn modules- https://www.pyimagesearch.com/2020/02/03/how-to-use-
opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/

e Configuring Jetson Nano- https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-
nvidia-jetson-nano-for-computer-vision-and-deep-learning/

15

https://neuralet.com/article/smart-social-distancing/
https://pjreddie.com/darknet/yolo/
https://github.com/AlexeyAB/darknet
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
https://ieeexplore.ieee.org/document/9216386
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://abhatikar.medium.com/make-your-nvidia-jetson-nano-deep-learning-ready-a8f5fcd7b25c
https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/
https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/

Appendix
Alerts Script:

importing required libraries
import urllib, requests
from lib.config import chat id, token

This script initiaties the telegram alert function.

def trigger (arr, typ):

messagel = 'Social distancing violations exceeded!\n\nSerious
Violations : {}'.format (arr[0])
message?2 = 'Face Mask violations exceeded!\n\nMasked : {} \nImproperly
Masked : {} \nUnmasked " {}'.format (arr[l], arr[2], arr[3])
if typ ==
url=

[

'https://api.telegram.org/bot%s/sendMessage?chat id=%s&text=%s' % (token,
chat id, urllib.parse.quote plus (messagel))

= requests.get(url, timeout=10)

if typ ==

url=
'https://api.telegram.org/bot%s/sendMessage?chat id=%s&text=%s' % (token,
chat id, urllib.parse.quote plus (message2))

= requests.get(url, timeout=10)

base path to YOLO directory
YOLO PATH = "yolo"

minimum object detection probability
Min Prob = 0.3

minimum threshold for non-maxima suppression
NMS Threshold = 0.3

16

to count number of people in frame (True/False)
Human Counter = True

set the threshold value for wviolations
Violations Threshold = 10

set the ip camera url (e.g. url = 'http://192.168.43.39:4747/video")
set url = 0 for webcam

url = 0

R | TELEGRAM ALERTS |-—-—-—-—-——=—————————

toggle telegram alert feature (True/False)
Alert = False

telegram bot's chat ID and token
chat id = "'
token = "'

toggle GPU usage for computations (True/False)
CPU used by default
Use GPU = False

set minimum safe distance between 2 people (in cm.)
MAX DISTANCE = 200 # (i.e. safe distance)
MIN DISTANCE = 100 # (l.e. minimum safe distance)

set average height of a person (in cm.)
avg height = 170

importing necessary libraries

from lib.config import NMS Threshold, Min Prob, Human Counter
import numpy as np

import cv2

defining the detect humans function
def detect humans(frame, net, layer names, human idx = 0):
extracting the dimensions of the frame and
initializing the results list
(H, W) = frame.shape[:2]

17

results = []

constructing a blob from the input frame and performing a forward

pass of the YOLO object detector
gives us the bounding boxes and associated probabilities
blob = cv2.dnn.blobFromImage (frame, 1 / 255.0, (416, 416),

swapRB = True, crop = False)
net.setlInput (blob)
layerOutputs = net.forward(layer names)

initializing the lists of detected bounding boxes,
centroids and confidences

boxes = []

centroids = []

probabilities = []

iterating through the layer outputs

for output in layerOutputs:
iterating through each of the detections
for detection in output:

extracting the class ID and object detection probability

scores = detection[5:]
classID = np.argmax (scores)
probability = scores|[classID]

filtering detections by:-
(1) ensuring that a human was detected and

#
(2) that the minimum probability criteria was satisfied
if classID == human idx and probability > Min Prob:

scaling the bounding box coordinates back relativeto

the size of the image, as YOLO returns

the center (x, y) coordinates of the bounding box

followed by the width and height

box = detection[0:4] * np.array([W, H, W, H])

(centerX, centerY, width, height) = box.astype("int")

using the center (x, y) coordinates to find the

top-left corner coordinates
x = int (centerX - (width / 2))
v int (centerY - (height / 2))

updating the list of bounding box coordinates,

centroids and confidences

boxes.append([x, vy, int(width), int (height)])

centroids.append ((centerX, centerY))
probabilities.append(float (probability))

applying non-maxima suppression (NMS) to suppress weaker,

overlapping bounding boxes

18

idxs = cv2.dnn.NMSBoxes (boxes, probabilities, Min Prob,
NMS Threshold)

calculating the total humans in frame
if Human Counter:

human count = "Human Count: {}".format (len (idxs))
cv2.rectangle (frame, (520, 0), (700, 30), (0, 0, 0), -1)
cv2.putText (frame, human count, (530, 20),

cv2.FONT HERSHEY DUPLEX, 0.50, (255, 255, 255), 1, cvZ2.LINE AA)

ensuring at least one detection exists
if len(idxs) > O0:
iterating through the indexes
for i in idxs.flatten():
extracting the bounding box coordinates
(x, y) = (boxes[i1][0], boxes[i][1l])
(w, h) (boxes[1][2], boxes[i][3])

updating the results list to contain

detection probability, bounding box coordinates and
centroid

res = (probabilities[i], (x, v, x + w, y + h), centroids[i])

results.append(res)

returning the list of results
return results

importing necessary libraries
import time

import cv2

import numpy as np

from lib.config import Use GPU

class DETECT FACEMASK:

def init (self, config, model, labels, size=416, confidence=0.5,
threshold=0.3):
self.confidence = confidence
self.threshold = threshold
self.size = size

self.labels = labels
self.net = cv2.dnn.readNetFromDarknet (config, model)

19

def

def

self.siz

of

the

bounding

checking if there's GPU usage

if Use GPU:
set CUDA as the preferable backend and target
print ("")
print ("[INFO] Looking for GPU")
self.net.setPreferableBackend (cv2.dnn.DNN BACKEND CUDA)
self.net.setPreferableTarget (cv2.dnn.DNN TARGET CUDA)

inference from file(self, file):
mat = cv2.imread(file)

return self.inference (mat)

inference(self, image):

ih, iw = image.shapel[:2]

ln = self.net.getlLayerNames ()

In = [In[i[0] - 1] for i in self.net.getUnconnectedOutLayers ()]
blob = <c¢v2.dnn.blobFromImage (image, 1 / 255.0, (self.size,
e), swapRB=True, crop=False)

self.net.setInput (blob)

start = time.time ()

layerOutputs = self.net.forward(ln)

end = time.time ()

inference time = end - start

boxes = []

confidences = []

classIDs = []

for output in layerOutputs:
loop over each of the detections
for detection in output:
extract the class ID and confidence (i.e., probability)

the current object detection

scores = detection[5:]
classID = np.argmax (scores)
confidence = scores[classID]

filter out weak predictions by ensuring the detected
probability is greater than the minimum probability
if confidence > self.confidence:
scale the bounding box coordinates back relative to

size of the image, keeping in mind that YOLO actually
returns the center (x, vy)-coordinates of the

box followed by the boxes' width and height
box = detection[0:4] * np.array([iw, ih, iw, ih])
(centerX, centerY, width, height) = box.astype("int")

20

use the center (x, y)-coordinates to derive the top

and
and left corner of the bounding box
X = int (centerX - (width / 2))
y = int (centerY - (height / 2))
#

confidences,
and class IDs

update our list of Dbounding box coordinates,

boxes.append([x, y, int(width), int (height)])

confidences.append (float (confidence))

classIDs.append(classID)

idxs = c¢v2.dnn.NMSBoxes (boxes, confidences,
self.threshold)

results = []
if len(idxs) > O:
for 1 in idxs.flatten():
extract the bounding box coordinates

X, y = (boxes[i][0], boxes[i][1])
w, h = (boxes[i][2], boxes[i][3])
id = classIDs[1i]

confidence = confidences[i]

self.confidence,

results.append((id, self.labels[id], confidence, x, vy, w,

h))

return iw, ih, inference time, results
Main Sript:
f===============cccc—c——c—— /MAIN EXECUTION
FILE\==================cccccccccoooo

importing necessary libraries

from lib import config

from lib.detect facemask import DETECT FACEMASK
from lib.alerts import Alerts

from lib.detect import detect humans

from imutils.video import FPS

from scipy.spatial import distance as dist
import numpy as np

import argparse, imutils, cv2, os, time

e et | ARGUMENTS PARSING|--------

argument parser to parse command line arguments
ap = argparse.ArgumentParser ()

ap.add_argument ("-i", "--input", type=str, default="",

21

help="path to (optional) input video file")

ap.add argument ("-o", "--output", type=str, default="",
help="path to (optional) output video file")

ap.add argument ("-d", "--display", type=int, default=l,
help="whether or not output frame should be displayed")

loading YOLO facemask detector classes & object

classes = ["good", "bad", "none"]

detect facemask = DETECT FACEMASK ("yolo/mask-yolov4-tiny.cfg",
"yolo/mask-yolov4d-tiny.weights", classes)

initializing facemask detector size & confidence
detect facemask.size = 416
detect facemask.confidence = 0.5

facemask detector component colors
colors = [(0, 255, 0), (0, 165, 255), (0, 0, 255)]

loading the COCO class labels
labelsPath = os.path.sep.join([config.YOLO PATH, "coco.names"])
LABELS = open (labelsPath) .read().strip() .split ("\n")

deriving the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.YOLO PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.YOLO PATH, "yolov3.cfg"])

#weightsPath = os.path.sep.join([config.YOLO PATH, "yolov3-
tiny.weights"])
#configPath = os.path.sep.join([config.YOLO PATH, "yolov3-tiny.cfg"])

loading the YOLO object detector trained on COCO dataset (80 classes)
net = cv2.dnn.readNetFromDarknet (configPath, weightsPath)

checking if there's GPU usage

if config.Use GPU:
set CUDA as the preferable backend and target
print ("")
print (" [INFO] Looking for GPU")
net.setPreferableBackend (cv2.dnn.DNN BACKEND CUDA)
net.setPreferableTarget (cv2.dnn.DNN TARGET CUDA)

determining only the *output* layer names that we need from YOLO
ln = net.getlLayerNames ()
In = [In[i[0] - 1] for i in net.getUnconnectedOutlLayers ()]

22

if a video path was not supplied
creating a reference with source as the camera
if not args.get ("input", False):

print ("[INFO] Starting the live stream..")

vs = cv2.VideoCapture (config.url)

#vs = cv2.VideoCapture ()

#vs.open ('https://r6---sn-ci5gup-
25us.googlevideo.com/videoplayback?expire=1624996766&ei=PifbYKTwIu6HjuMP
1gi98AQ&1p=2401%3A4900%3A3b36%3Afb6a%3A38fa%3Ac081%3A771b%3Aff51&id=0-
AK-hbuevb3-
NYfF8tnV3J6y5fgUroHPKowviMbQ4pzZho&itag=22&source=youtube&requiressl=yesé&
mh=82&mm=31%2C29&mn=sn-cibgup-25us%2Csn-cibSgup-
h55e&ms=au%2Crdusmv=m&mvi=6&pcm2cms=yes&pl=48&initcwndbps=191250&vprv=1&
mime=video%$2Fmp4&ns=gqsoYgVHBUDFsTRZPfjEhcCwG&cnr=14&ratebypass=yes&dur=1
76.262&1mt=15801879474925206mt=1624974769&fvip=9&fexp=24001373%2C2400724
6&beids=94665886&c=WEB&txp=5535432&n=2y79%0kbryw8kCkR7XE5JS&sparams=expire
%2Cei%2Cip%2Cid%2Citag%2Csource%2Crequiressl%$2Cvprvs2Cmimes$2Cns%$2Ccnrs2C
ratebypass$2Cdurs2Clmt&sig=A0gq0QJI8wRQIgZSKYkkl YyhliCaLwHA4LHJLLicJghla
ITUl1Er488CIQCUaHppAydb-EpZtEOB7kGGITVUFCOa-
gcUeRGIx5eTfws3D%3D&lsparams=mh%2Cmm%2Cmn%2Cms%$2Cmv$2Cmvi%$2Cpcm2cms$2Cpl
$2Cinitcwndbps&lsig=AG3C xAwWRQIgYOGLCvdD5Cg-
mFrx7dNYHHOaAtoubMtyC7Rz2m mO1ECIQDMo870MGA-5sgkeFozpg-0V-
kY QUrg7KoEZzxuC5479g%3D%3D")

time.sleep(1.0)

else, creating a reference with source as the video file
else:

print ("[INFO] Starting the video..")
cv2.VideoCapture (args["input"])

VS

writer = None

starting the FPS counter
fps = FPS() .start()

iterating through the frames from the video stream
while True:

reading the next frame from the file

(grabbed, frame) = vs.read()

1f the frame was not grabbed, then we have reached the end of the
Stream

if not grabbed:

break

resizing the frame
frame = imutils.resize (frame, width=700)

calling detect facemask function to detect face & masks usage in
frames

23

width, height, inference time, fm results =
detect facemask.inference (frame)

counter for mask usage
masked = 0

improper masked = 0
unmasked = 0

looping through facemask detector results

for detection in fm results:
id, name, confidence, x, y, w, h = detection
cx = x + (w / 2)
cy y + (h / 2)

updating counters

if id ==

masked = masked + 1
if id ==

improper masked = improper masked + 1
if id ==

unmasked = unmasked + 1

drawing a bounding box rectangle and label on the image
color fm = colors([id]
cv2.rectangle (frame, (x, y), (x + w, y + h), color fm, 2)
text fm = "%s (%s)" % (name, round(confidence, 2))
cv2.putText (frame, text fm, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, color fm, 2)

formatting counters text

masked text = "Masked: {}".format (masked)

improper masked text = "Improperly Masked:
{}".format (improper masked)

unmasked text = "Unmasked: {}".format (unmasked)

displaying counters on screen
cv2.rectangle (frame, (520, 30), (700, 90), (0, 0, 0), -1)
cvZ2.putText (frame, masked text, (530, 40), cvZ2.FONT HERSHEY SIMPLEX,
0.40, (0, 255, 0), 1)
cv2.putText (frame, improper masked text, (530, 60),
cv2.FONT HERSHEY SIMPLEX, 0.40, (0, 165, 255), 1)
cv2.putText (frame, unmasked text, (530, 80),
cv2.FONT HERSHEY SIMPLEX, 0.40, (0, 0, 255), 1)

calling detect humans function to detect only humans in the frames

results = detect humans (frame, net, 1n,
human 1dx=LABELS.index ("person"))

24

initializing the set of indexes that violate the max/min social
distance limits

serious = set ()

abnormal = set ()

ensuring there are *at least* two people detections (required in
order to compute our pairwise distance maps)
if len(results) >= 2:
extracting all centroids from the results and computing the
Euclidean distances between all pairs of centroids
centroids = np.array([r[2] for r in results])
extracting heights of all detected bounding boxes
pixel heights = np.array([r[1][3]-r[1][1] for r in results])
D = dist.cdist (centroids, centroids, metric="euclidean")

loop over the upper triangular of the distance matrix
for i in range (0, D.shape[0]):
for j in range(i + 1, D.shape[l]):
calibrating the pixel distance to centimeters

calib factor = (1/pixel heights[i] + 1/pixel heights[j])
/ 2 * config.avg height
D[i, j] = D[i, J] * calib factor

check to see if the distance between any two
centroid pairs is less than the configured number of
pixels
if D[i, j] < config.MIN DISTANCE:
update our violation set with the indexes of the
centroid pairs
serious.add (i)
serious.add (7)
update our abnormal set if the centroid distance is
below max distance limit
if (D[i1i, J] < config.MAX DISTANCE) and not serious:
abnormal.add (i)
abnormal.add (j)

iterating through the results

for (i, (prob, bbox, centroid)) in enumerate (results):
extracting the bounding box and centroid coordinates, and
initializing the color of the annotation

(startX, startY, endX, end¥) = bbox
(cX, cY) = centroid
color = (0, 255, 0)

if the index pair exists within the violation/abnormal sets,
then update the color
if i in serious:

color = (0, 0, 255)
elif i in abnormal:
color = (0, 255, 255) #orange = (0, 165, 255)

25

{}H.

drawing:-

(1) a bounding box around the person and

(2) the centroid coordinates of the person

cv2.rectangle (frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, c¥Y), 5, color, 2)

drawing some of the parameters

Safe Distance = "Safe distance: > {}

.format (config.MIN DISTANCE/100)

cv2.putText (frame, Safe Distance, (505, frame.shape[0] - 15),
cv2.FONT HERSHEY SIMPLEX, 0.45, (255, 0, 0), 2)

Violations Threshold = "Threshold limit:

format (config.Violations Threshold)

cv2.putText (frame, Violations Threshold, (505, frame.shape[0] - 37)

cv2.FONT HERSHEY SIMPLEX, 0.45, (255, 0, 0), 2)

drawing the total number of social distancing violations on the

output frame

cv2.rectangle (frame, (0, 0), (215, 50), (0, 0, 0), -1)

text = "Serious Violations: {}".format (len(serious))
cv2.putText (frame, text, (15, 20), cv2.FONT HERSHEY SIMPLEX, 0.50,

14

(0, 0, 255), 2)
textl = "Abnormal Violations: {}".format (len (abnormal))
cv2.putText (frame, textl, (15, 40), cvZ2.FONT HERSHEY DUPLEX, 0.50,
(0, 255, 255), 2)
- |Alert function|----———————-——"—-"---————
if len(serious) >= config.Violations Threshold:
cv2.putText (frame, "ALERT: Violations exceeded limit!", (15,
frame.shape[0] - 20),
cv2.FONT HERSHEY COMPLEX, 0.60, (0, 0, 255), 2)
if config.Alert:
print ("")
print (' [ALERT] Sending alert...')
Alerts () .trigger ()
print (' [ALERT] Alert sent')

——————— #
checking to see if the output frame should be displayed
if args["display"] > O:
displaying the output frame
cv2.imshow ("MaViSS AI - COVID19 Norms Surveillance System",
frame)

key = cv2.waitKey(l) & OxFF

breaking loop if 'ESC' key is pressed

26

if key == 27:
break
updating the FPS counter
fprs.update ()

if an output video file path has been supplied and the video
writer has not been initialized, doing so now
if args["output"] !'= "" and writer is None:
initializing the video writer
fourcc = cv2.VideoWriter fourcc (*"MJPG")
writer = cv2.VideoWriter (args["output"], fourcc, 25,
(frame.shape([l], frame.shape[0]), True)

if the video writer is not None, writing the frame to the output
video file
if writer is not None:
writer.write (frame)

stoping the timer and displaying FPS information
frs.stop()

print ("=================s========== ")

print ("[INFO] Elasped time: {:.2f}".format (fps.elapsed()))
print (" [INFO] Approx. FPS: {:.2f}".format (fps.fps()))

closing any open windows
cv2.destroyAllWindows ()

27

Artificial Intelligence System to Analyse
Human Facial Emotions and Text
Sentiments

Final Report

Meghna Narwade
ENGR-498-07

ABSTRACT

The aim of this project is to build a Response Sentiment Analyser using Artificial
Intelligence and Deep learning. Its main functions are detecting facial expression in real
time video and using the audio to measure the polarity of their response. The proposed
standalone system detects the facial expressions in real time video with an accuracy of about
86.75%. This system can be used to help users analyze the facial expressions and the content
of their responses within the text using text sentiment analysis during debate competition,
interview, meeting or conversation. This report presents the common techniques of analyzing
sentiment from machine learning and deep learning perspective.

Keywords: Artificial Intelligence, Deep Learning, Facial expression, Text sentiment
analysis.

INTRODUCTION

Humans share a universal set of fundamental emotions. These emotions are significantly
expressed through facial expressions. Facial emotion recognition is a task that can also be
accomplished by computers. For a detection approach, it is important to have a taxonomic
reference for classifying the eight basic emotions which consist of anger, contempt, disgust,
fear, happiness, sadness, surprise as well as neutral. The proposed system uses python
libraries to detect the face in real time video and extracts 68 facial landmarks and classifies
the facial expression using deep neural network(DNN). In addition, the audio is extracted by
the system and converted to text which uses Textblob sentiment analyzer library to estimate
the polarity of their answer/response as positive, negative or neutral. In light of this, the
literature review explores and discusses the concept of facial emotion recognition and text
sentiment analysis by undertaking a systematic review of scientific research papers, journals,
and articles.

OVERVIEW

Switch Orr:]i(samera &} Recording starts

Video only no audi(iﬂudio only in wav format

: l

THREAD -1 THREAD - 2
Facial emotion Text sentiment
module module

L)
P

Output which can be
used by the user for
assessment

Figure: Flowchart showing working of the project

LITERATURE REVIEW

Techniques for facial emotion detection using landmark extraction.

Research Paper | Number of | Method Dataset used Classifier Accuracy
landmarks | of used

landmark

detection
Real time emotion| 10 Manually Own database CNN 93.02%
recognition placed (for facial
system using through emotion
facial expression optical flow detection)
and EEG algorithm
Real time facial | 22 Manually CK+ database SVM 86.0%
expression placed using
recognition in feature
Video displacement

approach
Real-time Mobile | 77 Extracted CK+ database SVM 85.8%
Facial Expression using

STASM
Recognition library

System

A fuzzy logic 68 Extracted CK+ FURIA 83.2%
approach for real using DLIB [database
time facial library

recognition of
facial emotions

Our approach: 68 Extracted CK+ database DNN 86.75%
Response using DLIB | JAFFE database

sentiment library TFEID database

analyser Additional images via

manual web scraping

TECHNICAL DESCRIPTION WITH FLOWCHARTS
Facial emotion detection

The facial emotion recognition consists of two parts (i) Image processing that extract facial
landmarks. (ii) Neural network for emotion recognition.

The proposed system uses Dlib library which is one of the most utilized packages for face
recognition. The Dlib python library is used to detect faces from images and extract 68 facial
landmarks from the detected face. The detected facial landmarks is an array of 68 points. The
order of these points is consistent, point 1 is the right chin, 34 is the tip of the nose,etc.

“24 #25 g
~27

rpig *A A2, £23

*18

18439 i #444 45
$37, o 4140 #43, g9 47+ 46

*
wi 28 7
*230

=2 *3

* 3% 3344 36 15

#51 452 53

Figure: Facial landmarks

The Dlib library uses the Histogram of Oriented gradients (HOG) function to detect the
face. The predictor function in Dlib then places 68 landmarks on the detected face. The Dlib
library accurately detects the facial landmarks at the angle of -30 to +30 degrees in any
direction. These landmarks are normalized and saved in a .csv file. This file is then used to
train and test the deep neural network. The normalized coordinates of the facial landmarks
are then passed to the deep neural network which classifies the emotion from the image.

Extract frames from video

A

Face detection

\J

Feature extraction using DLib

A

Emotion classification

Y

Output

Flowchart showing workflow of real time facial emotion detection

Output stages:

Training the Neural network

Vectorized facial landmarkers are used to train a DNN. The vectorization of facial landmarkers is
achieved by putting tensors of 2-dimensional coordinates into a vector. Since these coordinates are
normalized, when the vectorized facial landmarkers being fed into the DNN, the network can be
trained properly.

[(x1,y1), (x2,y2), ..., (x68, y68)] -> [x1, y1, X2, y2, ..., X68, y68]

Neural network perform the best when the data is concentrated within small radius like [0,1]. The
detected landmarks are then scaled to [-1,1] and aligned using the tip of nose.

05 ®

e e 00 o
e o o0
%

-05

Figure: Normalize

The result data is stored in a CSV file with an integer indicating the emotion.

Combined images from different datasets

v

Detect face from images in dataset using Dlib

v

Detect 68 landmarks from detected faces using Dlib

Y

Normalize the feature array

Y

Create csv files for train and test dataset

v

Train the 3 layered DNN netwark using the
train.csv file

v

Evaluate the accuracy on test.csv file

Flowchart of training the neural network

The dataset used is a combination of CK+, JAFFE, TFEID and RaFD (3000 images, eight
classes).The model used in building the deep neural network is a sequential model with three
hidden layers. The type of layers used is dense which implies that every neuron in the dense

layer receives input from all neurons of the previous layer. The activation function used is
sigmoid. Adam optimizer allows the framework to adjust the step size depending on the loss.
The accuracy attained after testing the neural network was about 86.75%.

: angry
: contempt

: disgust

&
W N =D

: fear

o]
=
F SN

: happiness

7

: neutral

L 30 : sadness

~ N

: surprise

- 10

Figure: Confusion matrix

Neural network Summary

Model: "sequential”

Layer (type) OQutput Shape Param #
e foancay 0 nnas damale L
dense_1 (Dense) {None, 544) 148512
dense_2 (Dense}) {None, 272) 148248
dense_3 (Dense) {None, 8) 2184

Total params: 336,288
Trainable params: 335,208
Mon-trainable params: @

Improving accuracy for Real time processing

To improve the accuracy while performing real time processing, a threshold was set for the
level of confidence for each of the eight emotions. The emotion is only displayed if the
confidence level of that emotion is greater than its threshold value. If the emotion detected
does not cross the threshold value then the emotion rendered in the previous frame is
displayed.

e Without threshold:

Without threshold plot

emotion index
Lu s
—

C

Without threshold plot

emation

fearful sad happy neutral contempt surprised
frame

e With threshold:

With threshold plot

0 4

55 4

5:0 4 —

45 4

emotion index

4.0 4

35 4

3.0 4

With threshold plot

emation

happy fearful neutral sad
frame

« Frame per second rate:

o

On Laptop:

fps start
fps stop

[INFO] elapsed time: 12.74
[INFO] approx. FPS: B.95

Raspberry pi camera:

GST_ARGUS: Running with following settings:
Camera index = 0
Camera mode = 5

Output Stream W = 1280 H =

seconds to Run = @

Frame Rate = 120.000005
GS5T_ARGUS: Setup Complete, Starting captures for @ seconds
GST_ARGUS: Starting repeat capture requests.

e Fps recorded:

fps stop

fps recorded on Jetson nano

[INFO] elapsed time: 27.20
[INFO] approx. FPS5: 4.19

Text Sentiment Analysis
LITERATURE REVIEW

Text sentiment analyzer is a tool that is used to predict the polarity of a sentence/passage with
the help of various techniques present. There are 3 approaches to do text sentiment analysis

By building your own model

1. Using Machine learning techniques like: Linear regression, SVM, Naive
Bayes

2. Using BERT (Bidirectional Encoder Representations from Transformers)

By using a SaaS tool
1. Like: Monkeylearn & others

By using pre-trained models

1. textblob, vader, spacy, gensim

content textblob textblob_bayes nitk_vader

0 I've enjoyed and grown in my current role 25 65 51
1 | am an ambitious and driven individual. | thrive in a goal-oriented environment 12 92 48
2 What makes me unique is my ability to meet and exceed deadlines 38 59 32
3 While | highly valued my time at my previous company, there are ne longer opportunities for growth that align with my career goals 0 3 73
4 | hated the job and the company. They were awful to work for -95 -60 -80
5 | do good work 70 4 44
6 | tend to lose my patience with incompetent people -35 -33 -70

F 2 | missed too much work 20 -10 -30

Figure: Comparison among textblob default analyzer, vader, and textblob bayes

Mentioned above are some negative and positive interviewee responses to check how well
these libraries can classify them as positive or negative and overall we find textblob bayes
yield more satisfying results. The numbers shown in the table are the polarity of each
sentence where -100 means negative and +100 means positive.

Vader Vs Textblob

B Accuracy
W= F1 Score

v

v
3
b3
B
z

Extblob

Libraries

Figure: Bar graph displaying difference between Vader and Textblob

Given below are some of the most widely known speech recognition tools:

Link

Result

A Benchmarking of IBM, Google and Wit
Automatic Speech Recognition Systems

This research paper differentiates among
IBM, Google cloud speech, & Wit.
Result: Google Cloud Speech dominates

Which Automatic Transcription Service is
the Most Accurate?

Differentiating among various speech to
text APIs available

Result: 1st Google cloud speech & 2nd
Temi by Rev.ai

How Reliable is Speech-to-Text in 2021?

An article that differentiates among
different speech to text APIs.
Result: 1st Temi by Rev.ai & 2nd
Google cloud speech

TECHNICAL DESCRIPTION AND FLOWCHARTS

The text sentiment analysis algorithm with the help of textblob library allows us to
determine whether the response of the speaker is positive, negative or neutral by calculating
the average polarity over each word in a given text using a dictionary of adjectives and their
hand-tagged scores. It uses a pattern library (a web mining module for Python) for that,
which takes the individual word scores from sentiwordnet (lexical resource for opinion
mining). Polarity lies between [-1,1], -1 indicates negative answer and +1 indicates positive
answer. We have used this polarity scale to set a threshold which allows us to classify
answers as either positive, negative & neutral i.e.

Polarity above 60% is classified as positive

Between 40-60% is classified as neutral
And below 40% is classified as negative

Working:

THREAD - 2
Text sentiment
module

Extract text from
audio file

Preprocessing H US:a}\?:tE:);;mh H OUTPUT }

o Pre-processing
o The text is extracted from the audio file using the speech recognition library
in python but the audio file being large (more than 1 min) can be an issue. So,
the audio file is broken down into chunks and then bit by bit the text is
extracted and then combined.

o The extracted text will then be split/broken down into several sentences using
the split() function. The delimiter considered is period(.)

o After breaking into sentences a punctuator model is run on the sentences and
if there are any new punctuations introduced by the PM then we further break
it down into sentences.

o Textblob
o Textblob calculates the average polarity over each word in a given text using a
dictionary of adjectives and their hand-tagged scores. It uses a pattern library
(a web mining module for Python) for this and takes the individual word
scores from sentiwordnet (lexical resource for opinion mining).

o Polarity of each sentence is calculated using textblob with naive bayes
analyzer and the output will be shown like this:

Number of positive sentences in the passage: n
Number of negative sentences in the passage: m
Number of neutral sentences in the passage: 1

Total number of sentences in a passage: n+m+]
Overall positivity of the passage: Sum of polarities above 60% / Total
number of sentences in a passage

o Overall neutrality of the passage: Sum of polarities between 40% - 60% /
Total number of sentences in a passage

o Overall negativity of the passage: Sum of polarities below 40% / Total
number of sentences in a passage

Integration of the two models:

The integration process is basically combining the two modules explained above i.e. Facial
emotion & text sentiment detection. The integration part is being done using multi-threading
which helps us to run multiple function calls simultaneously i.e. one thread records the video
using opencv & the other thread records the audio using pyaudio & the output of each of
these threads will then be served as an input to the two modules implemented which will then
predict emotions & analyze the polarity of the content obtained from the audio.

We calculated the fps rate for the multithreading process by: dividing the total number of
frames with the elapsed time of the program & the fps recorded was about 4-5fps.

Real time
video

I
1

Extract visual Extract audio
cues cues

Detect facial Convert
landmarks speech to text

l l

Perform text
sentiment
analysis

Classify facial
emotions

Figure: Flowchart of the process

Program output:

total frames 58
elapsed time 18.123185817584883
recorded fps 5.729464565068277

HARDWARE COMPONENT

NVIDIA Jetson Nano B01 & its components:

Jetson nano provides Maxwell 128 core GPU, emphasizing Deep Learning in its hardware
design and software libraries. It is capable of running multiple neural networks in parallel for
applications like image classification, object detection, segmentation, and speech processing.

Figure: Jetson Nano setup

Header—— POE (Power
Sena o over Ethernet)
Button Header——
M2 Key E Siot
'v-—-—Expansaon Header
Camera Connector—
Power Jack/USB
Power Select Jumper| __| m
USB3.0Type A Fan Header
(2 x2 stacked) £t L
HOMI Type A |
& DP Stacked ‘ Power LED
Micro B USB

Figure: Jetson Nano hardware Schematic diagram

SOFTWARE COMPONENTS

All the software libraries that have been used in this project are mentioned below in the table:

Facial emotion recognition Text sentiment analysis
> OpenCV > Textblob
> matplotlib > Speech_recognition
> Tensorflow > Punctuator
> Dlib > Pydub
SYSTEM CONSTRAINTS

Power requirement: Jetson Nano (Input: 5V 4 Amp)

Efficiency: The Jetson nano for real-time processing on Raspberry pi runs at the rate of about
20 fps

Feasibility: Currently the facial emotion recognition algorithm is constrained to detect frames
that are showing relatively extreme emotions & the dlib library accurately detects the facial
landmarks at the angle of -30 to +30 degrees in any direction. This helped us in deciding
which images to select for the training dataset.

VALIDATION

In order to test the functioning of the overall system, we performed real time testing and gave
a review on the movie Avengers: Age of Ultron. Video link is given below:

Demonstration video.mp4

CONCLUSION

The presented project is research on FER and analysing text for the sentiment , which allows
us to know a way of sensing emotions that can be considered as mostly used Al and pattern
analysis applications. The presented model can detect facial expressions of a person and
analyse the sentiment of the text that is extracted from his audio. The proposed integrated
system extracts video and audio simultaneously with a frame rate of 4-5 fps.The facial
emotion detection system successfully detects facial expression of faces detected in real time
video with an accuracy of about 86.75%. The audio from the video is successfully
extracted, converted to text, cleaned and processed to determine if the attitude of the
speaker in a given situation is positive, negative or neutral.

FUTURE PROSPECTS

This model can further be trained to improve its accuracy. And also the extracted audio from
video can be used to perform speech emotion detection to recognise and improve the
emotional aspects of speech.

REFERENCES

[1] Development of a Real-Time Emotion Recognition System Using Facial
Expressions and EEG based on machine learning and deep neural network methods

[2] Real time facial expression recognition in video using support
vector machines

[3] Real-time Mobile Facial Expression Recognition System

[4] A fuzzy logic approach for real time facial recognition of facial emotions

[5] https://learnopencv.com/facial-landmark-detection/

[6] https://www.analyticsvidhya.com/blog/2019/08/how-to-remove-stopwords-text-
normalization-nltk-spacy-gensim-python/

[7] https://cloud.google.com/blog/products/gcp/toward-better-phone-call-and-video-
transcription-with-new-cloud-speech-to-text

[8] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/

[9] https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-
in-python-from-a-camera-or-webcam

[10] https://www.codeproject.com/Articles/5269453/Improving-NLTK-Sentiment-
Analysis-with-Data-Annota

[11] https://www.alphabold.com/sentiment-analysis-the-lexicon-based-approach/

[12] Lab manual 6

[13] https://www.programmersought.com/article/27703847966/

[14] https://stackoverflow.com/questions/53945501/real-time-video-processing-using-
multithreading-in-python

Appendix A

#AudioVideo recording code

import cv2

import pyaudio
import wave
import threading
import time
import subprocess
import os

class VideoRecorder () :

Video class based on openCV
def init (self):

self.fourcc = "MJPG" # capture images (with no decrease i
n speed over time; testing is required)

self.dim = (640,480) # video formats and sizes also depen
d and vary according to the camera used

self.video filename = "Fer.avi"

self.fps = 6

self.cap = cv2.VideoCapture (0)

self.open = True

self.write = cv2.VideoWriter fourcc(*self.fourcc)

self.vid = cv2.VideoWriter (self.video filename, self.write, sel
f.fps, self.dim)

self.frame counts = 1
fps should be the minimum constant rate at which

the camera can

self.start time = time.time ()

Video starts being recorded
def record(self):

counter = 1
timer start = time.time ()
timer current = 0

while (self.open==True) :
ret, frame = self.cap.read()

if ret:
self.vid.write (frame)
print (str (counter) + " " + str(self.count) + " fr
ames written " + str(timer current))
self.frame counts += 1
counter += 1
timer current = time.time() - timer start
time.sleep(0.16)
gray = cv2.cvtColor (frame, cv2.COLOR BGR2GRAY)
cv?2.imshow ('frame', frame)
cv2.waitKey (1)

Finishes the video recording therefore the thread too
def stop(self):

if self.open==True:
self.open=False

self.vid.release()

self.cap.release()

cv2.destroyAllWindows ()
else:

pass

Launches the video recording function using a thread
def start (self):
tl = threading.Thread (target=self.record)
tl.start ()

class AudioRecorder() :

Audio class based on pyAudio and Wave
def init (self):

True
44100
self.frames per buffer = 1024

self.open

self.rate

self.channels = 2

self.format = pyaudio.palIntl6

self.audio filename = "video 1.wav"

self.audio = pyaudio.PyAudio ()

self.stream = self.audio.open (format=self.format,
channels=self.channels,
rate=self.rate,
input=True,
frames per buffer = self.frames p

er buffer)
self.audio frames = []

Audio starts being recorded
def record(self):

self.stream.start stream()
while (self.open == True):
data = self.stream.read(self.frames per buffer)
self.audio frames.append(data)
if self.open==False:
break

Finishes the audio recording therefore the thread too
def stop(self):

if self.open==True:
self.open = False
self.stream.stop stream()
self.stream.close ()
self.audio.terminate ()

aud = wave.open(self.audio filename, 'wb')
aud.setnchannels (self.channels)

aud.setsampwidth (self.audio.get sample size(self.format))
aud.setframerate(self.rate)
aud.writeframes(b''.Jjoin(self.audio frames))

aud.close ()

pass
Launches the audio recording function using a thread
def start (self):

t2 = threading.Thread (target=self.record)
t2.start ()

def start AVrecording(filename) :

global tl
global t2

tl = VideoRecorder ()
t2

AudioRecorder ()

t2.start ()
tl.start ()

return filename

def start video recording(filename) :

global tl

tl = VideoRecorder ()
tl.start ()

return filename

def start audio recording(filename) :
global t2

t2 = AudioRecorder ()
t2.start ()

return filename

def stop AVrecording(filename) :

t2.stop ()
frame counts

tl.frame counts

elapsed time time.time() - tl.start time

recorded fps frame_counts / elapsed_time

print ("total frames " + str(frame counts))
print ("elapsed time " + str(elapsed time))
print ("recorded fps " + str(recorded fps))
tl.stop()

Makes sure the threads have finished
while threading.active count() > 1:
time.sleep (1)

Required and wanted processing of final files
def file manager (filename) :

local path = os.getcwd()

if os.path.exists(str(local path) + "/temp audio.wav"):
os.remove (str(local path) + "/temp audio.wav")

if os.path.exists(str(local path) + "/temp video.avi"):
os.remove (str(local path) + "/temp video.avi")

if os.path.exists(str(local path) + "/temp video2.avi"):
os.remove (str(local path) + "/temp video2.avi")

if os.path.exists(str(local path) + "/" + filename + ".avi"):
os.remove (str (local path) + "/" + filename + ".avi")

filename = "Default user"
file manager (filename)

start AVrecording(filename)
time.sleep (20)
stop AVrecording (filename)

print ("Done")

Appendix B

#Face emotion detection:

import dlib

import cv2

import numpy as np

import matplotlib.pyplot as plt
import tensorflow as tf

initialize face and facial landmark detector
detector = dlib.get frontal face detector()

predictor = dlib.shape predictor ("shape predictor 68 face landmarks.dat

")

#loading DNN

path_save ="./testsaved"

model restore = tf.keras.models.load model (
path save)

model restore.summary ()

#text characterstics

window name = 'Image'

font = cv2.FONT HERSHEY SIMPLEX
fontScale = 1

color = (0, 0, 255)

thickness = 2

#emotion detected dictionary

emotions = { O:"angry" ,1l:"contempt" ,2:"disgusted",3:"fearful",
py", S5:"neutral",6:"sad",7:"surprised"}

print (emotions)

#fnormalize and add to array function
def normalize(detected face,shape,new arr):
i=1

4:"hap

arr = |

x scale =-1*(shape.parts() [0].x - shape.parts() [33].x)
y_scale = shape.parts() [8].y —-shape.parts() [33].y
for p in shape.parts():
detected face = cv2.circle(detected face, (p.x,p.Vy),
55), -1)
p=p-shape.parts () [33]
X new = p.x / x scale
y new = p.y / y scale
arr = np.append(arr,x new)
arr = np.append(arr,y new)
i+=1
return arr

]

#finding emotion from output

def result (test result,emotion result,index result):

for r 1
C:
if

if

if

if

if

if

n test result:

r[0]>99:

3=0

index result.append(3J)

emotion result.append(emotions[]])
c = c + emotions[j] + " "
r[(1]>0.99:

J=1

index result.append(3J)

emotion result.append(emotions[]])
c = c + emotions[j] + " "
r[2]>0.99:

J=2

index result.append(J)

emotion result.append(emotions[]])
c = c + emotions[j] + " "
r[(3]>0.99:

J=3

index result.append(J)

emotion result.append(emotions[]])
c = c + emotions[j] + " "
r[4]>0.85:

j=4

index result.append(J)

emotion result.append(emotions[]])
c = ¢ + emotions[j] + " "
r[5]>0.90:

j=5

index result.append(J)

emotion result.append(emotions[]])
c = ¢ + emotions[j] + " "

2,

(0,0,2

if r[6]1>0.99:
j=6
index result.append(3J)
emotion result.append(emotions[]j])
c = ¢ + emotions[j] + " "
if r[71>0.90:
J=1
index result.append(J)
emotion result.append(emotions[]j])

won

c = c + emotions[j] +

return emotion result, index result,c

from imutils.video import FPS
vid = cv2.VideoCapture (0)

vid cv2.VideoCapture ('fer video.mp4')

fps = FPS().start ()

x =0
analysis arr = []
[]

prev_c = "unknown"

analysis_ind

c:" "
out = cv2.VideoWriter ('output.mpd4', -1, 20.0, (640,480))

while True:
ret, frame = vid.read()

print (x)
if ret:
print (frame.shape)
gray = cv2.cvtColor (frame, cvz2.COLOR RGB2GRAY)
faces = detector(gray, 0)
detected face = frame
new arr = []
print (faces)
fps.update ()

for £ in faces:
shape = predictor (gray, f)
pred = normalize (detected face, shape,new arr)
new_arr.append (pred)

ag=0

for £ in faces:
arr x = np. reshape(new arr[q], (1,136))
index result=[]

emotion result=[]
test result = model restore.predict(arr x)
print (test result)
emotion result, index result, ¢ = result(test result,emotio
n result,index result)
if c=="":
c=prev_c
if len(index result) !=0:
analysis arr.append (emotion result[0])
analysis ind.append (index result[0])

detected face = cv2.rectangle(detected face, (f.tl corner()
.x, f.tl corner().y),
(f.br corner() .x, f.br corner().y), (
0,255,0), 3)
frame = cv2.putText (frame, c, (f.tl corner().x, f.tl corne

r().y), font,
fontScale, color, thickness, cvZ2.LINE AA)
g+=1

cv2.imwrite (f"Frames/Frame{x}.jpg", frame)
out.write (frame)
cv2.imshow ('frame', frame)
prev _c = C
X += 1
if cv2.waitKey(l) & OxFF == ord('gq'):
break

out.release ()
vid.release ()

fps.stop ()

print (x)

print ("fps start")

print ("fps stop\n")

print ("[INFO] elapsed time: {:.2f}".format (fps.elapsed()))
print ("[INFO] approx. FPS: {:.2f}".format (fps.fps()))
print ("\n")

cv2.destroyAllWindows ()
print (analysis ind)

print (analysis arr)

Appendix C

#text sentiment analysis

from textblob import TextBlob

from textblob.classifiers import NaiveBayesClassifier
from textblob.sentiments import NaiveBayesAnalyzer
import nltk

from pydub import AudioSegment

import speech recognition as sr

from os import path

from nltk import tokenize

nltk.download('movie reviews')
nltk.download ('punkt")
nltk.download('stopwords")

#Converting mp4 to wav format with 128k bitrate
src="debatel .mp4"

AudioSegment.converter = "C:/ffmpeg-4.4-full build/bin/ffmpeg.exe"
AudioSegment.ffmpeg = "C:/ffmpeg-4.4-full build/bin/ffmpeg.exe"
AudioSegment.ffprobe ="C:/ffmpeg-4.4-full build/bin/ffprobe.exe"

sound = AudioSegment.from file(file=src, format="mp4")
sound.export ("recording.mp3", format="mp3", bitrate="128k")

convert mp3 file to wav

sound = AudioSegment.from mp3 ("recording.mp3")
sound.export ("transcript.wav", format="wav")

importing libraries

import speech recognition as sr

import os

from pydub import AudioSegment

from pydub.silence import split on silence

create a speech recognition object
r = sr.Recognizer ()

a function that splits the audio file into chunks
and applies speech recognition
def get large audio transcription (path):
Splitting the large audio file into chunks
and apply speech recognition on each of these chunks

LARAR AL

open the audio file using pydub
sound = AudioSegment.from wav (path)
split audio sound where silence is 700 miliseconds or more and ge
t chunks
chunks = split on silence (sound,
experiment with this value for your target audio file
min silence len = 500,
adjust this per requirement
silence thresh = sound.dBFS-14,
keep the silence for 1 second, adjustable as well
keep silence=500,
)
folder name = "audio-chunks"
create a directory to store the audio chunks
if not os.path.isdir(folder name):
os.mkdir (folder name)
whole text = ""
process each chunk
for i, audio chunk in enumerate (chunks, start=1):
export audio chunk and save it in
the “folder name’ directory.
chunk filename = os.path.join(folder name, f"chunk{i}.wav")
audio chunk.export (chunk filename, format="wav")
recognize the chunk
with sr.AudioFile (chunk filename) as source:
audio listened = r.record(source)
try converting it to text
try:
text = r.recognize google(audio listened)
except sr.UnknownValueError as e:
print ("Error:", str(e))
else:
text = f"{text.capitalize()}. "
#print (chunk filename, ":", text)
whole text += text
return the text for all chunks detected
return whole text

path = "transcript.wav"

#print ("\nFull text:", get large audio transcription (path))
t=get large audio transcription (path)

print (t)

sentence break=[]
sentence break=t.split('.")
print (sentence break)

from punctuator import Punctuator

p = Punctuator ('punctuator model/Demo-Europarl-EN.pcl')
semi final=[]
final=[]
for ele in sentence break:
if len(ele)>1:
test=p.punctuate (ele)
semi final=test.split('.")
for i in semi final:
if if="":
final.append (i)
#fpre-trained model 1
#pl=Punctuator ('punctuator model/INTERSPEECH-T-
BRNN.pcl") # pre-trained model 2
t=p.punctuate (text)
print (t)
print (final)

1=[]
b=T]
for i in range (0, len(final)) :
blob=TextBlob (final[i],analyzer=NaiveBayesAnalyzer ())
#print (blob.sentiment)
1l.append (blob.sentiment.p pos)
b.append (blob.sentiment.p neg)

pos=0
neg=0
neu=0
pos_per=0
neg per=0
neu per=0
for i in 1:
if i>0.6:
pos=pos+1
pos_per=pos_per+i
elif i>0.4 and i<0.6:
neu=neu+l
neu per=neu_per+i
elif i<0.4:
neg=neg+1
neg per=neg per+i
print (1)
print(len(final))

print ("Number of positive sentences in the passage:",pos)
print ("Number of negative sentences in the passage:",neqg)
print ("Number of neutral sentences in the passage:",neu)

print ("Overall positivity of the passage:",round(pos per/sum(l),2))
print ("Overall negativity of the passage:",round(neg per/sum(l),2))
print ("Overall neutrality of the passage:",round(neu per/sum(l),2))

chart=[]

chart.append(round(pos_per/sum(l),2))
chart.append(round(neu_per/sum(l),2))
chart.append(round(neg_per/sum(l),2))

plt.pie(chart)

mylabels = ["Positive", "Neutral", "Negative'"]
mycolors = ["green" ,"yellow","red"]

plt.pie(chart, labels = mylabels, colors = mycolors)
my circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf ()

p.gca() .add artist(my circle)

plt.show ()

Appendix D
#Dataset to csv
import dlib
import cv2
import numpy as np
print ("Dlib version: {}".format (dlib. version))
print ("OpenCV version: {}".format (cv2. version))

initialize face and facial landmark detector
detector = dlib.get frontal face detector()

predictor = dlib.shape predictor ("shape predictor 68 face landmarks.dat
")

import os

import csv

import glob

Classes=["'"anger', 'contempt', 'disgust', 'fear', "happy', 'neutral', 'sad', 's
urprise’']

x=0

for category in Classes:
path = glob.glob (f"train/{category}/*.Jjpg")

for img in path:

img array=cvz.imread (img)

img gray = cv2.cvtColor (img array,
plt.imshow (img gray)
plt.show ()

#detect faces in image

faces = detector (img gray, 0)
#print (len (faces), faces)
if len(faces) !=0:

detected face = img array

for £ in faces:
draw bounding box

cv2.COLOR _RGB2GRAY)

detected face = cvZ.rectangle (detected face,
(f.tl corner().x, f£.tl corner().y),

#top left corner of the d

(f.br corner().x, f.br corner().y),

#bottom right corner of t
(0,255,0),3)

landmark arr = np.array([])

detect facial landmarks in a box

shape = predictor(img gray, f)
i=1
X _scale = max (shape.parts() [33].x - shape.parts() [0].x,
shape.parts () [16] .x - shape.parts() [33].x)
y _scale = shape.parts() [8].y —-shape.parts() [33].y
for p in shape.parts():
detected face = cv2.circle(detected face, (p.x,p.Y),

2, (0,0,255), -1)
p=p-shape.parts () [33]
X new = p.x / x_scale
y new = p.y / y scale

landmark arr = np.append(landmark arr,x new)

landmark arr = np.append(landmark arr,y new)

it+=1

print (x)
x+=1

landmark arr=np.append(arr,Classes.index (category))

print (landmark arr)

with open('traind.csv', 'a+' ,

newline="")

as write obj:

csv_writer = csv.writer (write obj)
csv_writer.writerow (landmark arr)

Appendix E
#Train DNN
import tensorflow as tf
featureDim = 136
classes = 8
model = tf.keras.Sequential (layers = (tf.keras.layers.Dense (272, input

shape=(featureDim,), activation='sigmoid'),
tf.keras.layers.Dense (544, activation='sigmoid'),
tf.keras.layers.Dense (272, activation='sigmoid'),
tf.keras.layers.Dense (classes, activation='sigmoid'))

model.compile (loss=tf.keras.losses.SparseCategoricalCrossentropy (from 1
ogits=True),
optimizer="adam',

metrics=['accuracy'])
model.summary ()
def createData (pathToData, featureDim = 136, classes = 8):
f = open (pathToData, "r")
x = []
y = [
for line in f:
parse = line.split(',")
item x = [float(d) for d in parse[:featureDim]]
x.append (item x)
label = parse[-1]
label = label[:3]

y.append (int (float (label)))
print (x)
#return tf.convert to tensor(x, dtype=tf.float32), tf.convert to te
nsor (y, dtype=tf.float32)
return x, y

train x, train y = createData("C:/Users/Dell/Downloads/Lab 6/Emotion Re
cognition Using DNN/trainé.csv",

featureDim = featureDim,

classes = classes

)

print (len(train x))

import pandas as pd
data = pd.read csv("trainl.csv")
print (data.head())

#fit dataset
model.fit(x = train x, y = train y, batch size = 64, shuffle = True, ep
ochs = 1000)

#save model
path save ="./testsave4"

tf.keras.models.save model (
model, path save, overwrite=True, include optimizer=True, save format=No
ne , signatures=None, options=None)

#restore saved model
model restore = tf.keras.models.load model (
path save)

model restore.summary ()

load train dataset
test x, test y = createData("C:/Users/Dell/Downloads/Lab 6/Emotion Reco
gnition Using DNN/test4.csv",

featureDim = featureDim,

classes = classes

)
#evaluate test accuracy

model.evaluate (test x, test y)

#plot confusion matrix
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt

confusion matrix = confusion matrix(test y , result)
plt.figure ()

plt.imshow (confusion matrix, interpolation='nearest',6 cmap=plt.cm.Blues

)

thresh = confusion matrix.max() / 2.

for 1 in range(confusion matrix.shape[0]) :
for j in range(confusion matrix.shape[l]):
plt.text(j, i, format(confusion matrix[i, J]),
ha="center", va="center",
color="white" if confusion matrix[i, j] == 0 or confus
ion matrix[i, J] > thresh else "black")
plt.tight layout ()
plt.colorbar ()

Appendix F

#Detect angle code:

import cv2

import numpy as np
import dlib

import time

import math

detector = dlib.get frontal face detector()

predictor = dlib.shape predictor ("shape predictor 68 face landmarks.dat
")

POINTS NUM LANDMARK = 68

Get the biggest face
def largest face(dets):
if len(dets) ==
return O

face areas = [(det.right()-det.left())* (det.bottom()-
det.top()) for det in dets]

largest area = face areas|[0]

largest index = 0

for index in range(l, len(dets)):
if face areas[index] > largest area
largest index = index
largest area = face areas[index]

print ("largest face index is {} in {} faces".format (largest index,
len (dets)))

return largest index

Extract the point coordinates needed for pose estimation from the de
tection results of dlib
def get image points from landmark shape (landmark shape) :
if landmark shape.num parts != POINTS NUM LANDMARK:

print ("ERROR:landmark shape.num parts-
{}".format (landmark shape.num parts))
return -1, None

#2D image points. If you change the image,

image points = np.array ([
(landmark shape
ape.part (30).y), # Nose tip
(landmark shape
pe.part(8).y), # Chin
(landmark shape
ape.part (36) .y), # Left eye left corner
(landmark shape
ape.part (45).y), # Right eye right corne
(landmark shape
Left Mouth corner

(landmark shape

ape.part (48) .y),

Right mouth corner
], dtype="double")

ape.part (54) .y)

return 0, image points

Use dlib to detect key points and return the
points needed for pose estimation
def get image points (img) :
#gray = cv2.cvtColor (img,
s adjusted to gray
dets = detector(img, 0)
for £ in dets:
shape = f)
a=0
for £ in dets:

predictor (img,

img = cv2.rectangle (img,

(
.br corner().x, f.br corner().y), (0,255,0), 3)

g+=1

if 0 == len(dets):
"ERROR:

None

print(found no face")
return -1,

largest index = largest face (dets)

face rectangle dets[largest index]

landmark shape = predictor (img,

.part (30) .x,
.part (8) .x,

.part (36) .x,
.part (45) .x,
.part (48) .x,

.part (54) .x,

cv2.COLOR BGR2GRAY)

(f.tl corner().

you need to change vecto

landmark sh
landmark sha
landmark sh
landmark sh
landmark sh

landmark sh

coordinates of several

The picture 1

x, f£.tl corner().y), (f

face rectangle)

return get image points from landmark shape (landmark shape)

Get rotation vector and translation vector
def get pose estimation(img size, image points):
3D model points.

model points = np.array ([

(0.0, 0.0, 0.0), # Nose tip
(0.0, =-330.0, -65.0), # Chin
(-225.0, 170.0, -

135.0), # Left eye left corner
(225.0, 170.0, -

135.0), # Right eye right corne
(-150.0, -150.0,

125.0), # Left Mouth corner
(150.0, -150.0, -

125.0) # Right mouth corner

1)
Camera internals
focal length = img size[1l]
center = (img size[l]/2, img size[0]1/2)
camera matrix = np.array(

focal length, 0, center[0]],

[l

[0, focal length, center[1l]],
[0, 0, 1]], dtype = "double"
)

print ("Camera Matrix :{}".format (camera matrix))

dist coeffs = np.zeros((4,1)) # Assuming no lens distortion

(success, rotation vector, translation vector) = cv2.solvePnP (model

_points, image points, camera matrix, dist coeffs, flags=cv2.SOLVEPNP I

TERATIVE)

print ("Rotation Vector:\n {}".format (rotation vector))
print ("Translation Vector:\n {}".format (translation vector))

return success, rotation vector, translation vector, camera matrix,

dist coeffs

Convert from rotation vector to Euler angle
def get euler angle(rotation vector):
calculate rotation angles
theta = cv2.norm(rotation vector, cv2.NORM L2)

transformed to quaterniond

w = math.cos (theta / 2)

x = math.sin(theta / 2)*rotation vector[0][0] / theta
y = math.sin(theta / 2)*rotation vector[1][0] / theta
z = math.sin(theta / 2)*rotation vector[2][0] / theta

ysqr =y * vy

pitch (x-axis rotation)

t0 = 2.0 * (w * x + y * z)

tl = 1.0 - 2.0 * (x * x + ysqr)
print ('t0:{}, tl:{}'.format (t0, tl))
pitch = math.atan2 (t0, t1)

yaw (y-axis rotation)
t2 =2.0* (w*y - z * x)
if t2 > 1.0:

t2 = 1.0
if t2 < -1.0:
t2 = -1.0

yaw = math.asin(t2)

roll (z-axis rotation)
t3=2.0* (w* z + x * vy)

td = 1.0 - 2.0 * (ysgr + z * z)
roll = math.atan2 (t3, t4)

print ('pitch:{}, yaw:{}, roll:{}'.format (pitch, yaw, roll))

Unit conversion: convert radians to degrees
Y int ((pitch/math.pi) *180)

X = int ((yaw/math.pi)*180)

int ((roll/math.pi)*180)

N
Il

return 0, Y, X, Z

def get pose estimation in euler angle(landmark shape, im szie):
try:
ret, image points = get image points from landmark shape (landma
rk shape)
if ret != 0:
print ('get image points failed')
return -1, None, None, None

ret, rotation vector, translation vector, camera matrix, dist c
oeffs = get pose estimation(im szie, image points)
if ret != True:
print ('get pose estimation failed')
return -1, None, None, None

ret, pitch, yaw, roll = get euler angle(rotation vector)
if ret = 0:

print ('get euler angle failed')

return -1, None, None, None

euler angle str = 'Y:{}, X:{}, Z:{}'.format(pitch, yaw, roll)
print (euler angle str)
return 0, pitch, yaw, roll

except Exception as e:
print ('get pose estimation in euler angle exception:{}'.format (

return -1, None, None, None

cap = cv2.VideoCapture (0)
cap.set (cv2.CAP PROP FPS, 10)
fourcc = cv2.VideoWriter fourcc(*'XVID')
output video = cv2.VideoWriter ('output.mp4', fourcc, 10.0, (640, 480))
while (cap.isOpened()):
start time = time.time ()

Read Image

ret, im = cap.read()

if ret != True:
print ('read frame failed')
continue

size = im.shape

if size[0] > 700:
h = size[0] / 3

w = size[l] / 3
im = cv2.resize(im, (int(w), int(h)), interpolation=cv2.IN
TER CUBIC)
size = im.shape
ret, image points = get image points (im)
if ret = 0:

print ('get image points failed')
continue

ret, rotation vector, translation vector, camera matrix, dist coeff
s = get pose estimation(size, image points)
if ret != True:
print ('get pose estimation failed')
continue
used time = time.time() - start time
print ("used time:{} sec".format (round(used time, 3)))

ret, pitch, yaw, roll = get euler angle(rotation vector)

euler angle str =

'Y:o{}, X:{}, Z:{}'".format (pitch, yaw, roll)

print (euler angle str)

Project a 3D point (0, 0, 1000.0) onto the image plane.
We use this to draw a line sticking out of the nose

(nose_end point2D,

0, 1000.0)]), rotation

coeffs)

jacobian) = cv2.projectPoints (np.array ([(0.0, O.
vector, translation vector, camera matrix, dist

for p in image points:

cv2.circle (im,

pl = (int(image points[0] [0
p2 = (int(nose end point2D]

(int(p[0]), int(p[1])), 3, (0,0,255), -1)

1), int(image points[0][1]))
01[01[0]1), int(nose end point2D[0][0] [1

cv2.line(im, pl, p2, (255,0,0), 2)

Display image

#cv2.putText (im, str(rotation vector), (0, 100), cv2.FONT HERSHEY

PLAIN, 1, (O, 0, 255),

1)

cvZ2.putText(im, euler angle str, (0, 120), cv2.FONT HERSHEY PLAIN,

1, (0, 0, 255), 1)

cv2.imshow ("Output", im)

output video.write (im)
if cv2.waitKey(l) & OxFF == ord('s'):

break

output video.release()
cap.release()
cv2.waitKey (0)
cv2.destroyAllWindows ()

ENGR 498-07 Research in Artificial Intelligence and Deep Learning

Artificial Intelligence System for Emotion
Recognition and Text Analytics

Team Members:

Reshu Agarwal
Namrata Chaudhari
Meghna Narwade

Advisor: Dr. Jafar Saniie

Summer 2021

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Artificial Intelligence System for Emotion Recognition
and Text Analytics

ABSTRACT :

Companies around the world are trying to harness the power of emotional
intelligence to improve their business processes. Emotional analysis can help to gain an
accurate understanding of customer response which can be used to improve an existing
process, seize new opportunities, and reduce costs in any business facing customers.
In this project, we propose an artificial intelligence based stand alone system which will
allow us to classify and analyse facial expression in real time and perform sentiment
analysis by examining the body of the text (extracted from audio) to understand the
opinion expressed by it. This helps us provide a deeper understanding of how
customers really feel at a given time. The proposed system uses a deep neural network
(DNN) for classifying 8 basic emotions based on features extracted from facial
expression and uses pretrained sentiment analysis tools to quantify text (extracted from
audio) based on polarity.

INTRODUCTION :

The aim of this project is to build a stand alone system capable of classifying
emotions from real time video and categorizing the text extracted from audio as positive,
negative or neutral. This can be used by users to analyze and improve their behavioral
skills and maintain a good conversation tone. It can be used by companies in the
market research industry by employing behavioral methods that observe user’s reaction
while interacting with a brand or product along with the traditionally used review
analysis. The proposed system extracts the audio and visual cues from real time audio
and video respectively, and uses these extracted cues to perform facial expression
recognition and text sentiment analysis. The facial expression recognition pipeline
classifies emotions from the detected faces in the frame (of the video) using a deep
neural network by extracting vectorized landmarks features from the detected faces.
The text sentiment analysis pipeline uses pretrained sentiment analysis tools provided
in various Pythonic NLP libraries.

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

RELATED WORKS:

Effective communication involves two components: Verbal cues and Non verbal
cues. The proposed system covers the verbal aspect of communication by performing
text sentiment analysis and non-verbal aspect of communication by analysing facial
expressions.

Facial emotion detection system:

In recent years, advances in facial expression detection have accelerated, and more
and more experts have been involved in the development of emotion recognition. The
research of expression recognition in computer vision focuses on the feature extraction
and feature classification. Feature extraction refers to extracting landmarks from faces

that can be used for classification from input pictures or video streams. There are
multiple methods for feature extraction from detected faces. The facial expression
classification refers to the use of specific algorithms to identify the categories of facial
expressions according to the extracted features. Commonly used methods of facial
expression classification are Hidden Markov Model (HMM), Support Vector Machine
(SVM), AdaBoost, and Artificial Neural Networks (ANN).

Techniques for facial emotion detection using landmark extraction :

Number of | Method of Dataset used Classifier | Accuracy

Research Paper landmarks | landmark used

detection
Real time emotion 10 Manually Own database CNN 93.02%
recognition system placed through
using facial optical flow
expression and algorithm
EEG
Real time facial 22 Manually CK+ database SVM 86.0%
expression placed using
recognition in Video feature

displacement

approach
Real-time Mobile 77 Extracted CK+ database SVM 85.8%
Eacial Expression using STASM
Recognition System library

https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study

A fuzzy logic 68 Extracted CK+ database FURIA 83.2%
approach for real using DLIB
time facial library
recognition of facial
emotions
Our approach: 68 Extracted Images from CK+ | DNN 86.75%
Response using DLIB database,
sentiment analysis library JAFFE database,
system. TFEID database,
RaFD database

Text Sentiment Analysis:

In the proposed system, text sentiment analysis is performed on the extracted real time
audio which is converted to text. Speech to text conversion can be done using various
available API’s and python libraries.

The most popular speech to text conversion APls include Google Cloud Speech, IBM
and Rev.ai

Link Result
A Benchmarking of IBM le an This research paper differentiates among 1BM,
Wit Automatic Speech Recognition Google cloud speech, & Wit.
Systems Result: Google Cloud Speech dominates
Which Automatic Transcription Differentiating among various speech to text
Service is the Most Accurate? APIs available
Result: 1st Google cloud speech & 2nd Temi by
Rev.ai
How Reliable is Speech-to-Text in An article that differentiates among different
20217 speech to text APIs.
Result: 1st Temi by Rev.ai & 2nd Google cloud
speech

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://medium.com/descript/which-automatic-transcription-service-is-the-most-accurate-2018-2e859b23ed19
https://medium.com/descript/which-automatic-transcription-service-is-the-most-accurate-2018-2e859b23ed19
https://www.cxtoday.com/speech-analytics/how-reliable-is-speech-to-text-in-2021/
https://www.cxtoday.com/speech-analytics/how-reliable-is-speech-to-text-in-2021/

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Sentiment analysis (opinion mining) is a text mining technique that uses machine
learning and natural language processing (nlp) to automatically analyze text for the
sentiment of the speaker (positive, negative, neutral). Text Sentiment analysis is
normally implemented using 2 approaches:

1. Constructing supervised machine learning and deep learning models. Text
sentiment can be classified using machine learning models like Support Vector
Machine (SVM), Naive Bayes and Decision Tree.

2. Using unsupervised lexicon based approaches. Determining polarity of text using
pretrained sentiment analysis tools from various Python NLP libraries (TextBlob,
Vader)

We have used an unsupervised lexicon based approach to implement text sentiment
analysis.

SYSTEM COMPONENTS:

The proposed system can be implemented using a laptop PC. In addition we
have used Nvidia’s Jetson nano as a hardware component. Jetson nano is a compact,
low voltage System on Chip (SoC) designed to carry out programmed instructions. It
provides Maxwell 128 core GPU emphasized on Deep Learning in its hardware design
and software libraries. It is capable of running multiple neural networks in parallel for
applications like image classification, object detection, segmentation, and speech
processing. The Jeston nano is powered using a SW 4A power supply. The camera
used is Raspberry Pi MIPI CSI which has a frame rate of about 90 fps.

The programming language used to code the system is python. Python is an

open source language and has extensive support libraries which allow us to perform
video processing, speech recognition and natural language processing (NLP) tasks.

Jetson Nano Specifications

ENGR-498 - Research in Al and DL

Namrata Chaudhari — A20498270

Eront View Rear View
oF = —
‘i i J —_— "' &
Vo maaw ., U Wik
1 e
Power USB Type Micro-USB microSD Heatsink
jack A Card Slot
HOMI Type A Gigabit
and DisplayPort Ethemet
Top View
Serial Port Header — — =~ POE (Power over
© © .| Ethernet)
J40 —
e 1 — M.2 Key E Slot
Button Header _ . i1 ==
i 'I £
- = A
JJ13) §].Ha.é)
TiE A7 i1 | __— Expansion Header
| IE & 11 E \DP s
Camera Connector {|E = -
| g Inl-
ﬁ ~]= ' T
L i 1= SODIMM Connector
oo a2)
- -~ — Fan Header
NSlaawe
i N 3 Po LED
y 8 rq 4 wer
:| 1 J& | i 132 J33 343 =
Power Jack iri} L1 ol " 1 ,ﬁ.\ Micro B USB
N e It S ———
o Ty;ﬁ[:j::l‘: Ethernet Jack
USB 3.0 Type A
(2 x2 stacked)
GPU 128-core Maxwell
CPU Quad-core ARM AS7 @ 1.43 GHz
Memory 4 GB 44-bit LPDDRS 25.6 GB/s
Storage microSD Inot included)

Video Encode
Video Decode
Camera
Connectivity
Display

use

Others

Mechanical

4K [@ 30 | 4x 1080p 1@ 30 | 9x 720p @ 30 [H.264/H.265)

4K 1@ 60| 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 [H.264/H.265]

1x MIPI C5I-2 DPHY lanes
Gigabit Ethernet, M.2 Key E
HDMI 2.0 and eDP 1.4

4x USB 3.0, USB 2.0 Micre-B
GPIO, I12C, 175, SPI, UART

100 mm x 80 mm x 29 mm

ENGR-498 - Research in Al and DL

Namrata Chaudhari — A20498270

Python libraries used

Library Use

OpenCV Video Processing

Dlib Face detection and landmark extraction
Tensorflow Build and train Deep Neural Network
Pyaudio To record audio

Speech Recognition

Speech to text conversion

Punctuator

Add punctuations to text

TextBlob

Simple API to perform basic NLP tasks

SYSTEM OVERVIEW :

The proposed system uses the camera to extract visual cues which are used to

perform facial expression recognition and uses the mic to extract audio cues which are
converted to text and used to perform text sentiment analysis.

System Components

O

Camera
visual cues

Extract facial
landmarks

Facial emotion
detection

4

mic
audio cues

Speech to text
conversion

Text Sentiment
analysis

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

We need to extract the generated audio and visual cues simultaneously from a real time
scenario. This is being done using multi-threading which helps us to run multiple
function calls simultaneously i.e. one thread records the video using opencv and the
other thread records the audio using pyaudio and the output of each of these threads
will then be served as an input to the two modules implemented which will then predict
emotions and analyze the polarity of the content obtained from the audio.

The frame rate for the multithreading process is calculated by: dividing the total number
of frames with the elapsed time of the program & the fps recorded was about 4-5fps.

FACIAL EMOTION DETECTION SYSTEM :

The facial emotion detection module is built from scratch to detect one of eight
emotions: happiness, sadness, anger, surprise, fear, disgust and contempt, The visual
cues are used to detect faces and extract 68 landmarks (features) which are then fed to
the deep neural network (DNN) to classify emotion from the given frame.

Facial landmark Extraction :

Convolutional neural networks can be used to classify raw input images but
performing feature landmark extraction allows us to achieve comparable results with a
simpler neural network.

Facial landmark extraction is performed using the Dlib library in python. The
extracted features are then fed as an input to the neural network. The Dlib library
detects faces from the input image and uses the predictor function to place 68
landmarks on the detected faces. It uses Histogram of Oriented Gradients (HOG) for
Object Detection with a linear classifier, an image pyramid, and sliding window detection
scheme to detect faces in an image. Once the region of face is determined, facial
landmarks will be detected using One Millisecond Face Alignment with an Ensemble of
Regression Trees. The Dlib library accurately detects landmarks from the detected
faces at an angle of -25 to +25 degrees in any direction. (Code for checking angle:
Appendix F)

The coordinates of the 68 landmarks have a fixed orientation (shown in the figure
below). The resultant landmarks are given in the form of an array.
Resultantant array : = [(x0,y0) , (x1,y1), , (x67,y67)]

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

& 3 & @5
o’ * o ! o’ ¢ e
43 44
o 135':1 ':: o & .4?:4?:4@45 ¢
o
. &2 ¢
¢ : v
ol §3.3m35
.’ 2 5 o’
4@_—,3 .(:ﬁ;ﬁ?
o &° .55 o’
.SB .5;.56
o o'
o o0
o o -

Extracting features from faces allows us to construct a simple neural network with less
training data which will converge faster as compared to traditional CNNs.

Neural Networks perform best when the feature vector in scaled to a small range of
values [-1, 1]. Inorder to optimize the gradient descent process normalize the facial
landmarks and align them at the tip of the nose (x33,y33). Vectorization of facial
landmarks is achieved by putting tensors of 2-dimensional coordinates into a vector
which is fed into the neural network.

Shifting the origin to the tip of the nose (x33,y33):
For (x,y) in resultant array:
X =X -Xx33
y=y-y33

Normalizing the coordinates in range [-1, 1]:
scale height =y8 // coordinate (x8,y8) :=(*, -1)
scale width =max (| x0 |, | x16|)
For (x,y) in resultant array:
x = x / scale width
y =y / scale height

The normalized coordinates are stored in the form of a feature vector.
[(x0, y0), (x1, y1), ..., (x67, y67)] -> [X0, YO, X1, y1, , X67, y67]

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

The result data can be stored in a CSV file with an integer indicating the emotion in the
last column (label L) which can be used to train and test the neural network.

Building a Deep Neural Network (DNN):

The dataset was created using images from CK+ (Extended Cohn-Kanade
dataset), JAFFE dataset, TFEID (Taiwanese Facial Expression Image Database), and
RaFD(Radboud Faces Database) . The created dataset is composed of eight classes
with a total of 3000 images divided into training and test sets. The vectorized facial
landmarks of images from the dataset are stored in a CSV file along with an integer
indicating the emotion. The test and train csv files are then used to train and evaluate
the DNN.

The model used in building the deep neural network is a sequential model with three
hidden layers. The type of layers used is dense which implies that every neuron in the
dense layer receives input from all neurons of the previous layer. The activation function
used was a sigmoid. Adam optimizer allows the framework to adjust the step size
depending on the loss. Accuracy obtained after testing the model: 86.75%

Implementation Flowchart

Dataset

Detect face for images in
dataset using dlib

Detect landmarks for
detected faces (68
landmarks) using dlib

normalize the feature array

Create csv files for train and
test datset

Train DNN network using
csv file

Evaluate test accuracy

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Model Summary:

Model: "sequential”

Layer (type) Output Shape Param #
dense (dense) (wne, 272) mss
dense_1 (Dense) (None, 544) 148512
dense_2 (Dense) (None, 272) 148248
dense_3 (Dense) (None, 8) 2184

Total params: 336,280
Trainable params: 336,288
Neon-trainable params: @

Confusion Matrix for the test set classification:

:angry
. contempt
: disgust

: fear

: happiness
: neutral

: sadness

. surprise

~NOoO OB WN -0

Real time facial emotion Detection

The system uses OpenCV, to read video frames either by using the feed from a
camera connected to a computer or by reading a video file. We then perform face

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

detection and facial landmark extraction on the frame and feed the normalized landmark
coordinates into the DNN which classifies the emotion of the faces in the frame.

Since we use the sigmoid activation function in the neural network, the output of the
DNN is an array in which each element represents the probability of (indexed) emotion
occurring independent of other emotions. The sum of the array elements may not
necessarily be 1 as sigmoid function doesn't treat emotions to be mutually exclusive.
This allows us to improve the accuracy of our system while performing real time
processing by setting a threshold for the level of confidence for each of the eight
emotions. We only display the emotion if the confidence level of that emotion is greater
than its threshold value. If the emotion detected does not cross the threshold value we
display the emotion rendered in the previous frame.

The facial emotion detection of a video performed with and without threshold is shown
below.

Without threshold:

Without threshold plot

emation index

0 40 &0 B0 100
frame

=

With Threshold:

With threshold plot

L

0 10 20 30 40 50 &0
frame

6.0

emotion index
o= wn wn
L%,) [} [V,]

F
L=

L
L

[
=}

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

The frame rate achieved for real time face emotion detection is about 8.9 fps for laptOp
PC and 4.1 on Jetson Nano.

On Laptop :

fps start
fps stop

[INFO] elapsed time: 12.74
[INFO] approx. FP5: 8.9%

On Jetson Nano :
fps stop

fps recorded on Jetson nano

[INFO] elapsed time: 27.20
[INFO] approx. FPS: 4.19

TEXT SENTIMENT ANALYSIS SYSTEM :

The system converts real time audio to text using the Speech Recognition library
in python. We use the Pyaudio library to record audio from a mic. The recorded audio is
broken down into chunks and processed bit by bit using the Recognizer function in the
Speech recognition library which transcribes the audio. The transcribed audio is split
into sentences before using the Punctuation Model adding the required punctuation to
the text.This text is then used to perform text sentiment analysis .

The proposed system determines the polarity of text using pretrained sentiment
analysis tools from various Python NLP libraries (TextBlob, Vader).The most widely
used pretrained libraries for estimating polarity of text are TextBlob and Vader.

The following are some negative and positive interviewee responses to check how well
these libraries can classify their polarity and overall we find TextBlob with Naive Bayes
yields more satisfying results. The numbers shown in the table are the polarity of each
sentence where -100 means negative and +100 means positive.

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

content textblob textblob_bayes nitk_vader

0 I've enjoyed and grown in my current role 25 65 51
1 | am an ambitious and driven individual. | thrive in a goal-oriented environment 12 _ 48
2 What makes me unigue is my ability to meet and exceed deadlines 38 59 32
3 While | highly valued my time at my previous company, there are no longer opportunities for growth that align with my career goals 0 3 73
4 | hated the job and the company. They were awful to work for. - -60 -80
5 | do good work 70 4 44
6 | tend to lose my patience with incompetent people. -35 -33 70
7 I missed too much work. 20 -10 30

The accuracy of Textblob vs Vader was compared by testing these models on the IMDB
dataset and the product review dataset. It can be seen that TextBlob has higher
precision and F1 score for these datasets

Vader Vs Textblob

. Accuracy
= Fl Score

=
[}
o
g|
B
z

Libraries

The proposed system uses the TextBlob library with Naive Bayes Classifier to estimate
the polarity of the text. TextBlob is a python library of Natural Language Processing
(NLP) that uses the Natural Language ToolKit (NLTK) to perform its functions. NLTK is a
library that provides easy access to many lexical resources and allows users to work
with categorization, classification and many other tasks.It calculates average polarity
and subjectivity over each word in a given text using a dictionary of adjectives and their
hand-tagged scores. It actually uses a pattern library for that, which takes the individual
word scores from sentiwordnet. The TextBlob with Naive Bayes calculates the sentiment
score by NaiveBayesAnalyzer trained on a dataset of movie reviews. We use the
polarity calculated by TextBlob to classify text as either positive, negative or neutral by

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

setting a threshold value. The polarity value lies in the range of [-1, 1], where -1
indicates negativity and +1 indicates positivity.

Threshold values set to classify text into three classes:
Polarity above 60% is classified as Positive
Polarity between 40% and 60% is classified as Neutral
Polarity below 40% is classified as Negative

Analysis of a transcribed text passage is done as follows:
Number of positive sentences in the passage: x

Number of negative sentences in the passage: y
Number of neutral sentences in the passage: z
Total number of sentences in a passage: x+y+z

Overall positivity of the passage: Sum of polarities above 60% / Total number of
sentences in a passage

Overall neutrality of the passage: Sum of polarities between 40% - 60% / Total number
of sentences in a passage

Overall negativity of the passage: Sum of polarities below 40% / Total number of
sentences in a passage

Speech to text conversion

Preprocessing dala (check
| grammar and punctuations) |

Tex(Blob library with Naive
Bayes Classifier

Output polarity and check
threshold

Calculating positive,negative
and neutral percentages

Text Sentiment Analysis Workflow

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

RESULTS AND DISCUSSION :

The integrated system extracts video and audio simultaneously with a frame rate
of 4-5 fps. The facial emotion detection system successfully detects facial expression of
faces detected in real time video with an accuracy of about 86.75%. The audio from the
video is successfully extracted, converted to text, cleaned and processed to determine if
the attitude of the speaker in a given situation is positive, negative or neutral.

The proposed system can be used in a wide sale of applications. It can be used
to make the interview process bias free by analyzing the emotional expressions and
answers of prospective candidates for its entry-level jobs. Candidates can also use this
system analysing their own responses during a mock interview.It can be used to
perform market research by analysing customers' response to a particular advertising
scheme. If customized this system can be used for the interrogation process.

The results and applications are used in the video attached.

https://drive.qgooaqale.com/file/d/1wnGr-dlYQGUQgiDZS2CVY2-WS850fUCvO/view?usp=sh

aring

CONCLUSION :

The project is research on face expression recognition and analysing text for the
sentiment , which allows us to know a way of sensing emotions that can be considered
as mostly used Al and pattern analysis applications. To summarize, we have developed
a system that can perform emotion detection and text sentiment analysis in real time.

FUTURE WORK:

The system can be further improved by covering more aspects of communication
skills like using the extracted audio from video to perform speech emotion detection to
recognize the emotional aspects of speech irrespective of the semantic contents. The
accuracy of the facial emotion detection and text sentiment analysis system can be
further improved to make the system more feasible and accurate.

https://drive.google.com/file/d/1wnGr-dIYQGUqjDZS2CVY2-WS850fUCvO/view?usp=sharing
https://drive.google.com/file/d/1wnGr-dIYQGUqjDZS2CVY2-WS850fUCvO/view?usp=sharing

REFERENCES :

[1] Dlib Library python:
https://pypi.org/project/dlib/

[2] Textblob Library python:
h : i.org/project/textblob

[3] OpenCV:
https://pypi.org/project/opencv-python/

[4]Speech Recognition library python:
https://pypi.org/project/SpeechRecognition/

[5] Recording Audio and Video together code:

https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-
in-python-from-a-camera-or-webcam

[6] Facial emotion recognition dataset images:
https://github.com/spenceryee/CS229

[7] Angle detection for landmarks:
https://www.programmersought.com/article/27703847966/

[8] Related works in facial emotion detection:

e Development of a Real-Time Emotion Recognition System Using Facial

Expressions and EEG based on machine learning and deep neural network
methods

e Real time facial expression recognition in video using support
vector machines

e Real-time Mobile Facial Expression Recognition System
e A fuzzy logic approach for real time facial recognition of facial emotions

https://pypi.org/project/dlib/
https://pypi.org/project/textblob/
https://pypi.org/project/opencv-python/
https://pypi.org/project/SpeechRecognition/
https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-in-python-from-a-camera-or-webcam
https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-in-python-from-a-camera-or-webcam
https://github.com/spenceryee/CS229
https://www.programmersought.com/article/27703847966/
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://dl.acm.org/doi/abs/10.1145/958432.958479
https://dl.acm.org/doi/abs/10.1145/958432.958479
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://link.springer.com/article/10.1007/s11042-019-7250-z

CODE:

Appendix A: Extracting audio and visual cues

#AudioVideo recording code

import cv2

import pyaudio
import wave
import threading
import time
import subprocess
import os

class VideoRecorder () :

Video class based on openCVv
def init (self):

self.fourcc = "MJIPG" # capture images (with no dec
rease 1in speed over time; testing is required)

self.dim = (640,480) # video formats and sizes als
o depend and vary according to the camera used

self.video filename = "Fer.avi"

self.fps = 6

self.cap = cv2.VideoCapture (0)

self.open = True

self.write = cv2.VideoWriter fourcc(*self.fourcc)

self.vid = cv2.VideoWriter (self.video filename, self.wri
te, self.fps, self.dim)

self.frame counts = 1
fps should be the minimum constant rate at
which the camera can

self.start time = time.time ()

Video starts being recorded
def record(self):
counter = 1
timer start = time.time ()
timer current = 0

while (self.open==True) :
ret, frame = self.cap.read()

if ret:
self.vid.write (frame)
print (str (counter) + " " + str(self.count)
+ " frames written " + str(timer current))
self.frame counts += 1
counter += 1

timer current = time.time() - timer start
time.sleep(0.16)
gray = cv2.cvtColor (frame, cv2.COLOR BGR2G

RAY)
cv2.imshow ('frame', frame)
cv2.waitKey (1)

Finishes the video recording therefore the thread too
def stop(self):

if self.open==True:
self.open=False
self.vid.release ()
self.cap.release()
cv2.destroyAllWindows ()
else:
pass

Launches the video recording function using a thread

def start (self):
tl = threading.Thread(target=self.record)
tl.start ()

class AudioRecorder () :

Audio class based on pyAudio and Wave
def init (self):

self.open = True
self.rate 44100
self.frames per buffer = 1024
self.channels = 2

self.format = pyaudio.palntl6

self.audio filename = "video 1.wav"

self.audio = pyaudio.PyAudio ()

self.stream = self.audio.open(format=self.format,
channels=self.channels,
rate=self.rate,
input=True,

frames per buffer = self.f
rames per buffer)

self.audio frames = []
Audio starts being recorded
def record(self):

self.stream.start stream()

while (self.open == True):

data = self.stream.read(self.frames per buffer)

self.audio frames.append (data)
if self.open==False:
break

Finishes the audio recording therefore the thread too
def stop(self):

if self.open==True:
self.open = False
self.stream.stop stream()
self.stream.close ()
self.audio.terminate ()

aud = wave.open (self.audio filename, 'wb')

aud.setnchannels (self.channels)

aud.setsampwidth (self.audio.get sample size(self.for
mat))

aud.setframerate(self.rate)

aud.writeframes (b''.Jjoin(self.audio frames))

aud.close ()

pass

Launches the audio recording function using a thread
def start(self):
t2 = threading.Thread(target=self.record)
t2.start ()

def

def

def

def

start AVrecording (filename) :

global t1l
global t2

tl
t2

VideoRecorder ()
AudioRecorder ()

t2.start ()
tl.start ()

return filename

start video recording(filename) :
global t1l

tl = VideoRecorder ()
tl.start ()

return filename

start audio recording(filename) :
global t2

t2 = AudioRecorder ()
t2.start ()

return filename

stop AVrecording (filename) :

t2.stop ()
frame counts

tl.frame counts

elapsed time
recorded fps
print ("total

time.time () - tl.start time
frame counts / elapsed time

frames " + str(frame counts))
print ("elapsed time " + str(elapsed time))

print ("recorded fps " + str(recorded fps))
tl.stop ()

Makes sure the threads have finished

while threading.active count () > 1:
time.sleep (1)

Required and wanted processing of final files
def file manager (filename) :

local path = os.getcwd()

if os.path.exists (str(local path) + "/temp audio.wav"):
os.remove (str(local path) + "/temp_audio.wav")

if os.path.exists(str(local path) + "/temp video.avi"):
os.remove (str (local path) + "/temp video.avi")

if os.path.exists (str(local path) + "/temp video2.avi"):
os.remove (str (local path) + "/temp video2.avi")

if os.path.exists (str(local path) + "/" + filename + ".avi")
os.remove (str (local path) + "/" + filename + ".avi")
filename = "Default user"

file manager (filename)
start AVrecording (filename)
time.sleep (20)

stop AVrecording (filename)
print ("Done™)

Appendix B: Real time face emotion detection

#Face emotion detection:

import dlib

import cv2

import numpy as np

import matplotlib.pyplot as plt
import tensorflow as tf

initialize face and facial landmark detector
detector = dlib.get frontal face detector ()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

#loading DNN

path save ="./testsave4"

model restore = tf.keras.models.load model (
path save)

model restore.summary ()

#text characterstics

window name = 'Image'

font = CV2.FONT_HERSHEY_SIMPLEX
fontScale = 1

color = (0, 0, 255)

thickness = 2

#femotion detected dictionary

emotions = { O:"angry" ,l:"contempt" ,2:"disgusted",3:"fearful",
4:"happy", 5:"neutral",6:"sad",7:"surprised"}

print (emotions)

#fnormalize and add to array function
def normalize (detected face,shape,new arr):
i=1
arr = []
x scale =-1*(shape.parts() [0].x - shape.parts () [33].x)
y _scale = shape.parts() [8] .y -shape.parts() [33].y
for p in shape.parts():
detected face = cv2.circle (detected face, (p.x,p.vy), 2,
(0,0,255), -1)
p=p-shape.parts () [33]

x new = p.x / x scale
y new = p.y / y scale

arr = np.append(arr,x new)
arr = np.append(arr,y new)
i+=1

return arr

#finding emotion from output
def result (test result,emotion result,index result):
for r in test result:

c o= nn

if r[0]>99:
3=0
index result.append(J)
emotion result.append(emotions[j])
c = c + emotions[]j] + " "

if r[1]>0.99:
J=1
index result.append(J)
emotion result.append(emotions[]])
c = c + emotions[j] + " "

if r[(2]>0.99:
J=2
index result.append(]j)
emotion result.append(emotions[j])
c = c + emotions[j] + " "

if r[(3]1>0.99:
J=3
index result.append(J)
emotion result.append(emotions([]])
c = c + emotions[j] + " "

if r[4]>0.85:
j=4
index result.append(]j)
emotion result.append(emotions[]])
c = ¢ + emotions[j] + " "

if r[5]>0.90:
J=5
index result.append(J)
emotion result.append(emotions[j])
c = c + emotions[j] + " "

if r[6]>0.99:
J=0
index result.append(J)
emotion result.append(emotions[]])

c = c + emotions[]] +
if r[7]1>0.90:

J=7

index result.append(J)

emotion result.append(emotions[]])

c = c + emotions[j] + " "

return emotion result, index result,c

from imutils.video import FPS
vid = cv2.VideoCapture (0)
vid = cv2.VideoCapture ('fer video.mp4d'")

frs FPS () .start ()

x =0

analysis arr = []

analysis ind = []

prev_c = "unknown"

c="m

out = cv2.VideoWriter ('output.mp4', -1, 20.0, (640,480))

while True:
ret, frame = vid.read()

print (x)
if ret:
print (frame.shape)
gray = cvZ2.cvtColor (frame, cvZ2.COLOR RGBZGRAY)
faces = detector(gray, 0)
detected face = frame
new arr = []
print (faces)
fprs.update ()

for £ in faces:
shape = predictor(gray, f)
pred = normalize (detected face, shape,new arr)
new arr.append (pred)

g=0

for £ in faces:
arr x = np. reshape(new arr[qg], (1,136))
index result=[]
emotion result=[]

test result = model restore.predict (arr x)

print (test result)
emotion result, index result, ¢ = result(test result
,emotion result, index result)
if ¢c=="":
c=prev_c
if len(index result) !=0:

analysis arr.append(emotion result[0])
analysis ind.append(index result[0])
detected face = cv2.rectangle(detected face, (f.tl c

orner () .x, f.tl corner().y),
(f.br corner().x, f.br corner
).y), (0,255,0), 3)
frame = cv2.putText (frame, c, (f.tl corner().x, f.t
1 corner().y), font,
fontScale, color, thickness, cv2.LINE AA)
g+=1
cv2.imwrite (f"Frames/Frame{x}.Jjpg", frame)

out.write (frame)

cv2.imshow ('frame', frame)

prev c = C

x += 1

if cv2.waitKey(l) & OxFF == ord('qg'):
break

out.release ()
vid.release ()

fprs.stop()

print (x)

print ("fps start")

print ("fps stop\n")

print ("[INFO] elapsed time: {:.2f}".format (fps.elapsed()))
("[INFO] approx. FPS: {:.2f}".format (fps.fps()))
("\n")

print
print

cv2.destroyAllWindows ()

print(analysis ind)
print(analysis arr)

Appendix C: Text Sentiment Analysis

#text sentiment analysis

from textblob import TextBlob

from textblob.classifiers import NaiveBayesClassifier
from textblob.sentiments import NaiveBayesAnalyzer
import nltk

from pydub import AudioSegment

import speech recognition as sr

from os import path

from nltk import tokenize

nltk.download('movie reviews')
nltk.download ('punkt')
nltk.download('stopwords')

#Converting mp4 to wav format with 128k bitrate
src="debatel .mp4"

AudioSegment.converter = "C:/ffmpeg-4.4-full build/bin/ffmpeg.ex
e"
AudioSegment.ffmpeg = "C:/ffmpeg-4.4-full build/bin/ffmpeg.exe"

AudioSegment.ffprobe ="C:/ffmpeg-4.4-full build/bin/ffprobe.exe"

sound = AudioSegment.from file(file=src, format="mp4")
sound.export ("recording.mp3", format="mp3", bitrate="128k")

convert mp3 file to wav

sound = AudioSegment.from mp3 ("recording.mp3")
sound.export ("transcript.wav", format="wav")

##Code-—————-—-

importing libraries

import speech recognition as sr

import os

from pydub import AudioSegment

from pydub.silence import split on silence

create a speech recognition object
r = sr.Recognizer ()

a function that splits the audio file into chunks
and applies speech recognition
def get large audio transcription(path):
Splitting the large audio file into chunks
and apply speech recognition on each of these chunks
open the audio file using pydub
sound = AudioSegment.from wav (path)
split audio sound where silence is 700 miliseconds or more
and get chunks

chunks = split on silence (sound,
experiment with this value for your target audio file
min silence len = 500,

adjust this per requirement
silence thresh = sound.dBFS-14,
keep the silence for 1 second, adjustable as well
keep silence=500,
)
folder name = "audio-chunks"
create a directory to store the audio chunks
if not os.path.isdir (folder name) :
os.mkdir (folder name)
whole text = ""
process each chunk
for i, audio_chunk in enumerate (chunks, start=1):
export audio chunk and save it in
the “folder name’ directory.
chunk filename = os.path.join(folder name, f'"chunk{i}.wa

audio chunk.export (chunk filename, format="wav'")
recognize the chunk
with sr.AudioFile (chunk filename) as source:
audio listened = r.record(source)
try converting it to text
try:
text = r.recognize google(audio listened)
except sr.UnknownValueError as e:
print ("Error:", str(e))
else:
text = f"{text.capitalize()}. "
#print (chunk filename, ":", text)
whole text += text
return the text for all chunks detected
return whole text

path = "transcript.wav"

#print ("\nFull text:", get large audio transcription(path))
t=get large audio transcription (path)

print (t)

sentence break=[]
sentence break=t.split('."')
print (sentence break)

from punctuator import Punctuator
p = Punctuator ('punctuator model/Demo-Europarl-EN.pcl')
semi final=[]
final=1[]
for ele in sentence break:
if len(ele)>1:
test=p.punctuate (ele)
semi final=test.split('.")
for 1 in semi final:
if il="":
final.append (i)
#pre-trained model 1
#pl=Punctuator ('punctuator model/INTERSPEECH-T-BRNN.pcl')
pre-trained model 2
t=p.punctuate (text)
print (t)
print (final)

1=1]
b=[]
for 1 in range (0,len(final)):
blob=TextBlob (final[i],analyzer=NaiveBayesAnalyzer())
#print (blob.sentiment)
1l.append(blob.sentiment.p pos)
b.append (blob.sentiment.p neq)

pos=0

neg=0

neu=0

pos per=0
neg per=0
neu per=0

for i in 1:

if i>0.6:

pos=pos+tl
pos_per=pos per+i
elif 1i>0.4 and 1<0.6:
neu=neu+1l
neu per=neu per+i
elif 1<0.4:
neg=neg+1
neg per=neg per+i
print (1)
print (len(final))

print ("Number of positive sentences in the passage:",pos)
print ("Number of negative sentences in the passage:",neq)
print ("Number of neutral sentences in the passage:",neu)

print ("Overall positivity of the passage:",round(pos per/sum(l),

2))

print ("Overall negativity of the passage:",round(neg per/sum(l),

2))

print ("Overall neutrality of the passage:",round(neu per/sum(l),

2))

chart=1]

chart.append (round(pos per/sum(l),2))
chart.append (round(neu per/sum(l),2))
chart.append (round(neg per/sum(l),2))

plt.pie(chart)

mylabels = ["Positive", "Neutral", "Negative"]
mycolors = ["green" ,"yellow","red"]

plt.pie(chart, labels = mylabels, colors = mycolors)
my circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf ()

p.gca() .add artist(my circle)

plt.show ()

Appendix D: Training and Test csv files

#Dataset to csv

import dlib
import cv2
import numpy as np

print ("Dlib version: {}".format (dlib. version))
print ("OpenCV version: {}".format (cv2. version))

initialize face and facial landmark detector

detector = dlib.get frontal face detector ()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

import os

import csv

import glob

Classes=["'anger', 'contempt', 'disgqust', 'fear', "happy', 'neutral',’
sad', 'surprise']

x=0

for category in Classes:
path = glob.glob (f"train/{category}/*.Jjpg")

for img in path:
img array=cvz.imread (img)
img gray = cv2.cvtColor (img array, cv2.COLOR RGBZGRAY)
plt.imshow (img gray)
plt.show()

f#detect faces in image

faces = detector(img gray, 0)
#print (len (faces), faces)
if len(faces) !=0:

detected face = img array

for £ in faces:
draw bounding box

detected face = cv2.rectangle (detected face,

(f.tl corner().x, f.tl corner().y),

#top left corner of the d

#bottom right corner of t

) [0] .x%,
Y
X,0.Y),
ob]

2y

(f.br corner().x, f.br corner().y),
(0,255,0),3)
landmark arr = np.array([])

detect facial landmarks in a box
shape = predictor (img gray, f)

i=1

x _scale = max(shape.parts() [33].x - shape.parts/
shape.parts () [16] .x - shape.parts() [33].x)

y scale

for p in shape.parts():

shape.parts () [8] .y —-shape.parts () [33].

detected face = cv2.circle(detected face, (p.

(0,0,255), -1)
p=p-shape.parts () [33]
X new = p.x / x scale
y new = p.y / y scale

landmark arr = np.append(landmark arr,x new)
landmark arr = np.append(landmark arr,y new)
i+=1

print (x)

x+=1

landmark arr=np.append(arr,Classes.index (category))

print (landmark arr)
with open('traind.csv', 'at' , newline='")

csv_writer = csv.writer (write obj)
csv_writer.writerow(landmark arr)

as write

Appendix E: training the Deep Neural Network

#Train DNN
import tensorflow as tf

featureDim = 136
classes = 8

model = tf.keras.Sequential (layers = (tf.keras.layers.Dense (272,
input shape=(featureDim,), activation='sigmoid'),
tf.keras.layers.Dense (544, activation='sigmoid'),
tf.keras.layers.Dense (272, activation='sigmoid'),
tf.keras.layers.Dense(classes, activation='sigmoid'))

model.compile (loss=tf.keras.losses.SparseCategoricalCrossentropy
(from logits=True),

optimizer="'adam',

metrics=['accuracy'])
model . summary ()

def createData (pathToData, featureDim = 136, classes = 8):
f = open(pathToData, "r")
x = []
y = [1]
for line in f:
parse = line.split(',")
item x = [float(d) for d in parse[:featureDim]]

x.append (item x)
label = parse[-1]
label = label[:3]
y.append (int (float (label)))
print (x)
#return tf.convert to tensor(x, dtype=tf.float32), tf.conver
t to tensor(y, dtype=tf.float32)
return x, Vv

train x, train y = createData("C:/Users/Namrata
Chaudhari/Downloads/Lab 6/Emotion Recognition Using DNN/trainéd.c
sv",

featureDim = featureDim,

classes = classes

print (len(train x))

import pandas as pd
data = pd.read csv("trainl.csv")
print (data.head())

#fit dataset
model.fit(x = train x, y = train y, batch size = 64, shuffle =T

rue, epochs = 1000)
#save model
path save ="./testsave4"

tf.keras.models.save model (
model, path save, overwrite=True, include optimizer=True, save fo
rmat=None , signatures=None, options=None)

#restore saved model
model restore = tf.keras.models.load model (
path save)

model restore.summary ()

load train dataset
test x, test y = createData("C:/Users/Namrata
Chaudhari/Downloads/Lab 6/Emotion Recognition Using DNN/test4.cs
v",

featureDim = featureDim,

classes = classes

)

fevaluate test accuracy
model.evaluate (test x,test y)

#plot confusion matrix
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt

confusion matrix = confusion matrix(test y , result)

plt.figure ()

plt.imshow(confusion matrix, interpolation='nearest',6 cmap=plt.c
m.Blues)

thresh = confusion matrix.max() / 2.
for 1 in range (confusion matrix.shape[0]) :
for j in range (confusion matrix.shape[l]):
plt.text(j, 1, format (confusion matrix([i, J]),
ha="center", va="center",
color="white" if confusion matrix([i, J] == 0 or
confusion matrix[i, J] > thresh else "black")
plt.tight layout ()
plt.colorbar ()

Appendix F: Checking angles for landmark detection

#Detect angle code:

import cv2

import numpy as np
import dlib

import time

import math

detector = dlib.get frontal face detector()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

POINTS NUM LANDMARK = 68

Get the biggest face
def largest face (dets):
if len(dets) ==
return 0

face areas = [(det.right()-det.left())*(det.bottom()-det.to
p()) for det in dets]

largest area = face areas|[0]

largest index = 0

for index in range(l, len(dets)):
if face areas[index] > largest area
largest index = index
largest area = face areas[index]

print ("largest face index is {} in {} faces".format (largest
index, len(dets)))

return largest index

Extract the point coordinates needed for pose estimation from
the detection results of dlib
def get image points from landmark shape (landmark shape) :
if landmark shape.num parts != POINTS NUM LANDMARK:
print ("ERROR:landmark shape.num parts-{}".format (landmar
k shape.num parts))
return -1, None

#2D image points. If you change the image, you need to chang
e vector

image points = np.array ([
(landmark shape.part(30) .x, landmark shape.part (30).y),
Nose tip
(landmark shape.part(8).x, landmark shape.part(8).y),
Chin
(landmark shape.part(36).x, landmark shape.part(36).y),
Left eye left corner
(landmark shape.part(45) .x, landmark shape.part(45).y),
Right eye right corner
(landmark shape.part(48) .x, landmark shape.part (48).y),
Left Mouth corner
(landmark shape.part (54) .x, landmark shape.part (54).y)
Right mouth corner

], dtype="double™)

return 0, image points

Use dlib to detect key points and return the coordinates of s
everal points needed for pose estimation
def get image points (img) :

#gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY) # The pi
cture is adjusted to gray
dets = detector(img, 0)

for £ in dets:
shape = predictor (img, f£f)

a=0
for £ in dets:
img = cv2.rectangle (img, (f.tl corner().x, f.tl corner()
.y), (f.br corner().x, f.br corner().y), (0,255,0), 3)
gt+=1
if 0 == len(dets):

print ("ERROR: found no face")
return -1, None
largest index = largest face (dets)
face rectangle = dets[largest index]

landmark shape = predictor (img, face rectangle)

return get image points from landmark shape (landmark shape)

Get rotation vector and translation vector

def get pose estimation(img size, image points):
3D model points.

model points = np.array ([
(0 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(- 225 0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corner
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner

1)

Camera internals

focal length = img size[l]

center = (img size[l1l]/2, img size[0]/2)

camera matrix = np.array(

[[focal length, 0, center[0O]],
[0, focal length, center[1l]],

[0, O, 111, dtype = "double"

)

print ("Camera Matrix :{}".format (camera matrix))

dist coeffs = np.zeros((4,1)) # Assuming no lens distortion
(success, rotation vector, translation vector) = cvZ2.solvePn

P (model points, image points, camera matrix, dist coeffs,

cv2.SOLVEPNP ITERATIVE)

flags=

print ("Rotation Vector:\n {}".format (rotation vector))
print ("Translation Vector:\n {}".format (translation vector))

return success, rotation_vector, translation_vector,
matrix, dist coeffs

Convert from rotation vector to Euler angle
def get euler angle(rotation vector):
calculate rotation angles
theta = cv2Z.norm(rotation vector, cvZ.NORM L2)

transformed to quaterniond
w = math.cos (theta / 2)

camera

def

b
|

= math.sin(theta / 2)*rotation vector[0][0] / theta
math.sin(theta / 2)*rotation vector[1][0] / theta
= math.sin(theta / 2)*rotation vector([2][0] / theta

N K
o

ysqr =y * vy

pitch (x-axis rotation)

t0 = 2.0 * (w * x + vy * z)

tl = 1.0 - 2.0 * (x * x + ysqr)
print ("tO0:{}, tl:{}'.format (t0, tl))
pitch = math.atan2 (t0, t1)

yaw (y-axis rotation)
t2 =2.0* (w*y -z *¥ x)
if t2 > 1.0:

t2 = 1.0
if t2 < -1.0:
t2 = -1.0

yaw = math.asin (t2)

roll (z-axils rotation)

t3 =2.0 * (w * z + x * vy)

td = 1.0 - 2.0 * (ysgqr + z * z)
roll = math.atan2 (t3, t4)

print ('pitch:{}, vaw:{}, roll:{}'.format (pitch, yaw, roll))

Unit conversion: convert radians to degrees

Y = int ((pitch/math.pi)*180)
X = int ((yaw/math.pi) *180)
Z = int((roll/math.pi) *180)

return 0, Y, X, 2
get pose estimation in euler angle (landmark shape, im szie):

try:
ret, image points = get image points from landmark shape

(landmark shape)

if ret !'= 0:
print ('get image points failed')
return -1, None, None, None

ret, rotation vector, translation vector, camera matrix,

dist coeffs = get pose estimation(im szie, image points)

if ret != True:
print ('get pose estimation failed')
return -1, None, None, None

ret, pitch, yaw, roll = get euler angle(rotation vector)
if ret !'= 0:

print ('get euler angle failed')

return -1, None, None, None

euler angle str = 'Y:{}, X:{}, Z:{}'.format(pitch, yaw,
roll)

print (euler angle str)

return 0, pitch, yaw, roll

except Exception as e:
print ('get pose estimation in euler angle exception:{}'.
format (e))
return -1, None, None, None

cap = cv2.VideoCapture (0)
cap.set(cv2.CAP_PROP_FPS, 10)
fourcc = cv2.VideoWriter fourcc(*'XVID'")
output video = cv2.VideoWriter ('output.mp4', fourcc, 10.0, (640,
480))
while (cap.isOpened()):
start time = time.time ()

Read Image
ret, im = cap.read()
if ret != True:
print ('read frame failed')
continue
size = im.shape
if size[0] > 700:
h = size[0] / 3
w = sizel[l] / 3

im = cv2.resize(im, (int(w), int(h)), interpolation
=cv2.INTER CUBIC)
size = im.shape
ret, image points = get image points (im)
if ret '= 0:

print ('get image points failed')
continue

ret, rotation vector, translation vector, camera matrix, dis
t coeffs = get pose estimation(size, image points)
if ret != True:

print ('get pose estimation failed')
continue
used time = time.time() - start time
print ("used time:{} sec".format (round(used time, 3)))

ret, pitch, yaw, roll = get euler angle(rotation vector)
euler angle str = 'Y:{}, X:{}, Z:{}'.format (pitch, yaw, roll

print (euler angle str)

Project a 3D point (0, 0, 1000.0) onto the image plane.
We use this to draw a line sticking out of the nose

(nose _end point2D, jacobian) = cvZ.projectPoints(np.array ([(
0.0, 0.0, 1000.0)1), rotation vector, translation vector, camera

_matrix, dist coeffs)

for p in image points:

cv2.circle(im, (int(p[0]), int(pl1])), 3, (0,0,255), -1)
pl = (int(image points[0][0]), int(image points[0][1]))
p2 = (int(nose end point2D[0][0][0]), int(nose end point2D]
01[001[11))

cv2.line(im, pl, p2, (255,0,0), 2)

Display image

#cv2.putText (im, str(rotation vector), (0, 100), cv2.FONT H
ERSHEY_PLAIN, 1, (0, 0, 255), 1)

cv2.putText (im, euler angle str, (0, 120), cv2.FONT HERSHEY
_PLAIN, 1, (O, 0, 255), 1)

cv2.imshow ("Output", im)

output video.write (im)

if cv2.waitKey (1) & OxFF == ord('s'):

break

output video.release ()
cap.release ()
cv2.waitKey (0)
cv2.destroyAllWindows ()

Internship
Report

Nermati Shravan Reddy

Internship Report

of
Nermati Shravan Reddy
Btech/10663/18
BACHELOR OF TECHNOLOGY
Civil Engineering
Department of Civil and Environmental Engineering
Birla Institute of Technology

Mesra, Ranchi

2018-2022

On
Big Data Computing
Under the mentorship of
loan Raicu
Immersive Summer Research Experience
lllinois Institute of Technology, Chicago

(Duration 7" of June, 2021 to 31 of July 2021)

ILLINOIS TECH

Offer Letter

8/12/2021 BIT Webmad Mail - You've Been Admitted to your lllincis Tech Research Oppaortunity!

M Gmail NERMATI SHRAVAN REDDY <btech10663.18@bitmesra.ac.in>

You've Been Admitted to your lllinois Tech Research Opportunity!

1 message

Illinois Tech Graduate Admission <grad.admission@iit.edu> Sun, May 9, 2021 at 12:36 AM
Reply-To: lllinois Tech Graduate Admission <grad.admission@iit.edu>

To: btech10663.18@bitmesra.ac.in

ILLINOIS TECH

Dear Nermati Shravan,

Congratulations! You have been admitted to your Research Program

You have been admitted to lllinois Tech to perform research with Professor loan
Raicu for the following opportunity:COMP 495-304 Big Data Computing. This
research session will be occurring online from 6/7/21 to 7/31/21

The price for the 3-credit research course is $4,842; however, as a visiting research
scholar , you will receive a scholarship of $2000. If you indicated you are living on
campus, you will receive an additional email with information about housing and
costs.

To secure your spot in the research opportunity, you must submit your $500 deposit
(select “Summer Research” from the drop-down menu) by using the log in
information below and following these instructions: Submit your deposit.

« Campus Wide ID Number (CWID): A20498221

« Usemame/U-1D: nreddy4

« Password: MMDDXXXX(MMDD is the 2-digit month and day you were born
and XXXX is the last 4 digits of your CWID)

« lllinois Tech Email Address: nreddy4d@hawk.iit.edu

Once you sign in, you will be asked to create a new password, and you will be
required fo create secunty questions. Please remember your iog-on details. **if
your name is misspelied, if your usemame is misspelled, or if you have trouble
logging in to mylIT, please expiain by email to supportdesk@iit.edu.

Remember that spots are filled on a first-come, first-served basis. Therefore,
submitting your deposit as soon as possible will reserve your spot in this
opportunity. If you applied to more than one opportunity, please note that the
opportunity for which you enroll will be the opportunity in which you participate.

Once again, congratulations on your admission for research at lllinois Tech. We
look forward to welcoming you to our community.

Sincerely,
The Elevate Team

Campus Wide ID Number (CWID): A20498221

hitps-imad google. com/maliw2?ik=01a316b0B7 &view=ptisearch=al Spermthid=thread-1%3A 1699218238875 164 1858simple=msg-Pe3A1699218... 172

Certificate

Upon the recommendation of the faculty of
the

College of Computing
of lllinois Institute of Technology

Nermati Shravan Reddy

is recognized as achieving
Summer Undergraduate Computing Research
Immersion Program Certificate of Participation

with all the rights, privileges, and honors thereunto appertaining.
Awarded at Chicago, in the State of lllinois of the United States of America
July 31, 2021

ILLINOIS TECH = =

Lance Fortnow, Dean
College of Computing

College of Computing

Acknowledgement

| am grateful and would like to express my gratitude, and | am fortunate to have had the kind

association and mentorship of Professor loan Raicu.

Their exemplary guidance, constant encouragement, and support were so helpful for me to learn

and made my experience a wonderful one.

| would also like to thank Ms. Mary Dawson for helping me with the process and making it feel

seamless.

| would like to extend my gratefulness to Mr. Vishal H Shah, Associate Dean (Alumni and
International Relations), and Mr. Utpal Baul Dean (Alumni and International Relations), for being

there during the entire application process and helping me through it.
| would like to thank the Institute and BITMAA-NA for helping with the expenses of the program.

| also like to extend my warm gratitude and regards to everyone who helped me during my

internship.

Regards,

Nermati Shravan Reddy

(Btech/10663/18)
Table of Contents
S. No. Particulars Page No.
1 Offer Letter 2
2 Grade Card 3
3 Acknowledgement 4
4 Project Information 6

5 About 7-8

6 Execution Part-1 9-25
7 Execution Part-2 26-48
8 Execution Part-3 49-60

Project Information

Research Topic: Big Data Computing
Mentor: loan Raicu

University: lllinois Institute of Technology
Brief Description of the flow of the project:

The project consisted of three parts. The first part dealt with the machine (setting up of virtual

machine) and varied configurations of it. The second part concentrated on finding the best feasible
approach for sorting large amounts of data using various methods of Java and using multithreading.
The third part of the project focused on finding efficient and agile techniques for sorting possible in

python.

Big Data Computing

The definition of big data is data that contains greater variety, arriving in increasing volumes and
with more velocity. With the digitalization and increase in the usage of the internet abundance of

data is generated every millisecond.

In simple words, big data is larger, more complex data sets, especially from new data sources. These
data sets are so large and will overwhelm the traditional software, but are very important to address

many problems which could not be tackled otherwise.
The three Vs of big data:

Volume: With big data, one has to process high volumes of low-density, unstructured data. This can
be data of unknown value, such as Instagram data feeds, Twitter data, or sensor-enabled
equipment. Depending on the size of organizations, this data might be tens of terabytes of data to
hundreds of petabytes.

Velocity: Velocity is the rate at which data is received and acted on or computed. Generally, the
highest velocity of data streams directly into memory versus being written to disk. Some products

operate in real-time or near real-time and will require real-time evaluation and action.

Variety: Variety refers to the many types of data that are available. Traditional data types were
structured and fit neatly in a database. With the rise of big data, data comes in new unstructured
data types. Unstructured and semi-structured data types, such as text, audio, and video, require

additional pre-processing to derive meaning and support metadata.

The History of Big Data:

Although the concept of big data itself is relatively new, the origins of large data sets go back to the
1960s and ‘70s when the world of data was just getting started with the first data centres and the

development of the relational database.

Around 2005, people began to realize just how much data users generated through Facebook,
YouTube, and other online services. Hadoop (an open-source framework created specifically to store
and analyse big data sets) was developed that same year. NoSQL also began to gain popularity

during this time.

The development of open-source frameworks, such as Hadoop (and more recently, Spark) was
essential for the growth of big data because they make big data easier to work with and cheaper to
store. In the years since then, the volume of big data has skyrocketed. Users are still generating huge

amounts of data—but it’s not just humans who are doing it.

With the advent of the Internet of Things (1oT), more objects and devices are connected to the
internet, gathering data on customer usage patterns and product performance. The emergence of

machine learning has produced still more data.

While big data has come far, its usefulness is only just beginning. Cloud computing has expanded big
data possibilities even further. The cloud offers truly elastic scalability, where developers can simply

spin up ad hoc clusters to test a subset of data.

For understanding and working on Big Data a detailed and thorough understanding of computer
systems is very important and it is also very important to understand parallelism and finding the
perfect algorithm. Hence major part of this project will run around computer systems, parallelism
and finding the best algorithm.

Execution Part-1

The first part of the project deals with setting up a virtual machine and trying different

configurations.

Setting up of Virtual Machine:

The first step of setting up a Virtual Machine is to download and install a VirtualBox Manager, which |

downloaded from https://www.virtualbox.org/wiki/Downloads and choosing the appropriate host

machine operating system, ion my case it is windows host.

About
Screenshots
Downloads
Documentation
End-user docs
Technical docs
Contribute

Community

Downlc!a! iﬂaﬂox

Here you will find links to VirtualBox binaries and its source code.

VirtualBox binaries
By downloading, you agree to the terms and conditions of the respective license.

If you're looking for the latest VirtualBox 6.0 packages, see VirtualBox 6.0 builds. Please also use version 6.0 if you need to run VMs with software virtualization, as this has been
6.1. Version 6.0 will remain supported until July 2020.

If you're looking for the latest VirtualBox 5.2 packages, see VirtualBox 5.2 builds. Please also use version 5.2 If you still need support for 32-bit hosts, as this has been discontinue
5.2 will remain supported until July 2020.

VirtualBox 6.1.22 platform packages
= =Windows hosts
+ =05 X hosts
» Linux distributions
« = Solaris hosts
» =+Solaris 11 IPS hosts
The binaries are released under the terms of the GPL version 2.
See the changelog for what has changed.
You might want to compare the checksums to verify the integrity of downloaded packages. The SHA256 checksums should be favored as the MDS algorithm must be treated as in:
+ SHA256 checksums, MD5 checksums
Note: After upgrading VirtualBex It s recommended te upgrade the guest additions as well,
VirtualBox 6.1.22 Oracle VM VirtualBox Extension Pack

« = All supported platforms

https://www.virtualbox.org/wiki/Downloads

Upon downloading, it can be installed by running it. Once installation is done the following VirtualBox

Manager can be launched.

P Oracle VM VirtualBox Manager

File Machine Help

Preferences Import Bxport New

Welcome to VirtualBox!

e F1 & nt help, or visit
0rg for more information and latest news.

Now for the creation of a new virtual machine, we need to click on the new and a name, folder, type,
version must be selected. In my case | have chosen the name as Ubuntu20, folder as default, type as

Linux and version as Ubuntu 64-bit (as we will be working on a Linux machine for the rest of the project)

Create Virtual Machine
ubuntu20

) Powered Off =
Name and operating system

Please choose a descriptive name and destination folder for the new virtual
machine and select the type of operating system you intend to install on it.
The name you choose will be used throughout VirtualBox to identify this
machine.

Name: |

Machine Folder: ‘ C:\Users\SHRAVAN\VirtualBox VMs

Type: |Microsoft Windows

Version: |Windows 7 (64-bit)

Expert Mode Next

Cunuuner . e

IDE Secondary Device 0: [Optical Drive] Empty

Then the memory size must be chosen in MB.

10

& Create Virtual Machine
ubuntu20
(W) Powered Off

Memory size

Select the amount of memory (RAM) in megabytes to be allocated to the
virtual machine.

The recommended memary size is 1024 MB.

v o 5 ve

8192 MB

Next

Cunuuner . we

IDE Secondary Device 0: [Optical Drive] Empty

And the next few steps are to be followed as in the screenshots attached.

11

Create Virtual Hard Disk

Storage on physical hard disk

Fleasas choose whether the new virtual hard disk file shouid
dynamically allocated) or If it should be created st its maxi
A dynamicaly aocated hard disk file will only use space on your phy
disk o5 it fills up

sutomatically when space on it is freed.

A fixed size hard disk file may take longer to create on some =
faster 1o use.

® Dynamically sllocsted

e

4 grow as & is used

up t0 & maxmum fixed size), aithough it vall not shrink again

stems but is often

alBox VMsubuntu20\Snapshots

B General
Name ubuntu20
Operating System: Ubuntu (64-b
(B System
Jbuntu20 - Settings
W ceneral General
B | system Sesc Adanced Description Disk Encryption
W oisplay Snapshot Folder: | | C:\Users\SHRAVANWL
s Shaced Clgboard: Bidirectional ~
W Storage
Dragn'Drop: Bdirectional
Audio
B Network
§9 Serial Ports
Us!
Shared Folders
] Userlnterface

12

==

Once the setting up and configuring a virtual machine is done we can launch the machine.

Now upon launching the virtual machine we will need to install the Linux machine which is done as

shown in the pictures below.

Jul2 02:12
Install

Updates and other software

What apps would you like to install to start with?
© Normal installation

Other options

2 Download updates while installing Ubuntu

W U@ (&) rgnt an

13

P ubuntu20 [Running] - Oracle VM VirtuaiBox

File Machine View Input Devices Help

Installation type

Right Cirl

4 ubuntu20 [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

» Completely removing libreoffice-help-zh-cn (amd64)

Right Crl

The Virtual Machine is set up, formatted as per the above scrrenshots and then the VM is started.

Now for setting up the public private keys, we need to download the public private keys to our local host
machine and copy the public key into the VM.

Upon copying into the VM proper permissions must be set.

Then the public private keys are set and noe the system can be logged into without actually entering the

password everytime.

14

Command Prompt

C:\Users\SHRAVAN>ssh-keygen -t rsa -b 4896

Generating public/private rsa key pair.

Enter file in which to save the key (C:\Users\SHRAVAN/.ssh/id rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

our identification has been saved in C:\Users\SHRAVAN/.ssh/id_rsa.
our public key has been saved in C:\Users\SHRAVAN/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256: BAdj 7x9N1ekbWRwluseX1xd4oVZ212xLrzNfPibN7eg shravan@LAPTOP-891CQV90
The key's randomart image is:

+---[RSA 4896]----+

\
\
\
\
\
\
\
\
L

----[SHA256]

C:\Users\SHRAVAN>

mber i
C:\Users\SHRAVAN\. ssh

<DIR>
<DIR>

/.sshjuploaded_key.pub

@ ® 26C Mostlydoudy ~ = 7 NG

1718
03-07-2001

B shravan@LinuxVM:; ~/ssh
- [} X

16

17

B Command Prompt

Q
ks

This brings us to the end of setting up a virtual Linux machine.

Now we come to the next section of the first part, where we are required to analyse different

configuratons.

1. Processor Count:
In general, increasing the number of processors increases the speedup of the machine, but it
reaches a plateau and may even decrease upon increasing after a certain number of processors.
Amdahl’s law is often used in parallel computing to predict the theoretical speedup when using

multiple processors. So, in our case we have chosen 2.

2. Acceleration:

None: This explicitly turns off exposing any and all paravirtualization interface.

18

Legacy: The legacy option is chosen for VMs that were created with the older VirtualBox
versions and will pick a paravirtualization interface while starting the VM with VirtualBox 5.0
and newer.

Minimal: Announces the presence of a virtualized environment. Additionally, reports the
TSC and APIC frequency to the guest operating system. This provider is mandatory for
running any Mac OS X guests.

Hyper-V: This presents a Microsoft Hyper-V hypervisor interface which is accepted by
Windows 7 and newer operating systems. VirtualBox's implementation at present supports
Para virtualized clocks, APIC frequency reporting, guest debugging, guest crash reporting and
relaxed timer checks. This provider is recommended for Windows guests.

KVM: This presents a Linux KVM hypervisor interface which is accepted by Linux kernels
starting with version 2.6.25. VirtualBox's implementation currently supports Para virtualized
clocks and SMP spinlocks. This provider is recommended for Linux guests.

Storage Devices:

IDE:

IDE is short for Integrated Drive Electronics.

IDE is an interface standard for connecting storages devices like HDD, SSD, and CD/DVD drives to
the computer.

Adding/removing components while the computer is running is not supported.

IDE's speed of data transfers ranges from 100 MB/s to 133 MB/s.

IDE drives are slower than SATA drives

It is a parallel connection.

SATA:

SATA is short for Serial Advanced Technology Attachment.

SATA is a computer bus interface or standard hardware interface connecting HDD, SSD, and
CD/DVD drives to the computer.

Adding/removing components while the computer is running is supported.

SATA speed of data transfer ranges from 150 MB/s for SATA | and 300 MB/s for SATA Il.
SATA drives are faster than IDE drives.

It is a serial connection.

NVMe:

NVME is short for Non-Volatile Memory Express.
NVMe is an interface protocol built especially for SSD.
IDE's speed of data transfer peaked up to 550MB/s.
NNMe drivers are faster than SATA and IDE.

Network Adaptors:
NAT:
VM can connect to the host.

The host cannot connect to the VM.

19

VM can connect to the internet using the host network.
A VM cannot connect to another VM in the same network as they have the same IP address.

Other computers on the host network cannot connect to the VM.

Bridged Network:

VM can connect to the host.

The host can connect to the VM.

VM can connect to the external network unless it is on a VPN.
A VM can connect to another VM in the same network.

Other computers on the host network can connect to the VM.

Internal Network:

VM cannot connect to the host.

The host cannot connect to the VM.

VM cannot connect to the external network unless it is on a VPN.
A VM can connect to another VM in the same network.

Other computers on the host network cannot connect to the VM.

This is useful in cases where you want to isolate your test environment.

Host-Only:

VM cannot connect to the host.

The host can connect to the VM.

VM cannot connect to the external network unless it is on a VPN.
A VM can connect to another VM in the same network.

Other computers on the host network can connect to the VM.

USB Configuration:

UsB 1.1

Data transfer rates defined in the specification are as Low Speed 1.5 Mbits/sec and Full
Speed 12 Mbits/sec.

The maximum length of each cable section is 5 meters.

Power 500 mA (limited to 100mA during start-up).

USB 2.0:

There are only some minor variations from USB 1.1 to the USB 2.0 specification.

In a way, 2.0 specification is a superset of 1.1 with the major functional difference is the
addition of a High Speed 480 Mbits/sec data transfer mode.

USB 3.0:

It is backward compatible with 2.0.

Power 900mA

It has a SuperSpeed >4.8 Gbits/sec data transfer mode and 400MBytes/sec after protocol
overheads.

20

In the last and final section of the part one we generate data using Linux and compare the time
taken to generate, sort using simplest forms of sorting techniques in Linux and Python.
Generation of Dataset:

#! Jusr/bin/bash

#Taking input arguments i.e., dataset name and number of records

args=("s@")

#checking if user have entered two arguments

if[S#-ne2]

then
echo "You need to enter both the dataset name and num of records"
exit

fi

integer="S{args[0]}.int"

string="S{args[0]}.str"

:>S{args[0]}

#Generation a entered number of random numbers and ascii strings

(shuf -i 0-4294967295 -n S{args[1]})>Sinteger

base64 -i /dev/urandom | fold -w 95 | head -n S{args[1]} > Sstring

#pasting the generated random integers and strings as datasets into the file

paste Sinteger Sstring > S{args[0]}

To run the above code a file must be created with .sh extension say, generate-dataset.sh and to
run the file the file path must be given as the command and the dataset name and size of the

dataset should be given as the program expects you to give them as arguments.

The screenshot below shows how it is run.

shravan@LinuxVM: ~/Desktop
$ cd Desktop

$./generate-dataset.sh datalk 1

21

Sorting Using Bash:

#! Jusr/bin/bash

filename=51

if[S#-nel]

then
echo "You need to enter the dataset name to sort"
exit

fi

sorted_file="Sfilename.sorted"

sort -bk 1,1rn Sfilename > Ssorted_file

To run the above code a file must be created with .sh extension say, sort.sh and to run the file
the file path must be given as the command and the dataset name should be given as the

program expects you to give it as an argument.

The screenshot below shows how it is run.

shravan@LinuxV/M: ~/Desktop
./sort.sh datalk

Sorting using Python:

#! Jusr/bin/bash

import time

import os.path

st=time.time()

fname=input()

sorted_lines=None

with open(fname, 'r') as file_:
lines=file_.readlines()

sorted_lines=sorted(lines, key=lambda x: int(x.split()[0]))

22

with open(fname, 'w') as file_:
for e in sorted_lines:
file_.write(e)
print("Time taken to sort is: ", time.time()-st)

To run the above code a file must be created with .py extension say, python-sort.py and to run
the program we need to type python3 file path as the command.Upon pressing enter the name

of the must be given as input and enter must be pressed.

The screenshot below shows how it is run.

shravan@LinuxVM: ~/Desktop
% python3 python-sort.py

datalk
Time taken to sort is:

Sorting Using C:
#include<stdio.h>
#include<string.h>

#include<time.h>

int main()
{
char fileName[25];
printf("Enter the name of the file to sort:\n");
scanf("%s", fileName);
clock_t startTime = clock();
FILE* f = fopen (fileName, "r");
printf("\n");
long i =0;
long n=0;

char strings[1000][95], tempstr[95];

23

long integer[1000];

while (Ifeof(f))

{
fscanf (f, "%Id %s\n", &integer[i], &strings[i][0]);
i++;

}
n=i+1;

felose(f);

for(int i = n - 2;i >= 0;i--)
{
for(int j = 0;j <= i;j++)
{
if(integerlj] > integer[j+1])
{
long temp = integer]j];
integerlj] = integer[j+1];
integer[j+1] = temp;
//handles swapping
strcpy(tempstr, strings|j]);
strcpy(stringslj], strings[j+1]);

strcpy(strings[j+1], tempstr);

}
FILE* of = fopen("sorted_C.txt", "w+");
for(int i =1;i <n;i++)

forintf(of, "%Id %s\n", integer[i], strings[i]);

24

clock_t endTime = clock();

double totalTime = (double)(endTime - startTime)/CLOCKS PER_SEC;

fclose(of);
printf("Time is %f seconds\n", totalTime);

return O;

}

To run the above code a file must be created with .c extension say, c-sort.c and to compile we
need to type the command gcc filename.c -0 pro, then the prog file can be run using the file path
of the prog file. Upon pressing enter the name of the must be given as input and enter must be

pressed.
The screenshot below shows how it is run.

shravan@Linux\M: ~/Desktop

-0 prog

Enter the name of the
datale

Time is O .0«

Plotting and comparing different methods:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

d={"Data Size":[1000, 100000, 10000000], "Creation":[0.03, 0.217, 20.50], "Sort":[0.01, 0.09, 13.7
5], "Sort-Python":[4.38, 5.51, 58.49]}

df=pd.DataFrame(d)

plt.subplot(3, 1, 1)

plt.plot(df["Data Size"], df{"Creation"], 'o-')

plt.title('Creation’)

plt.xlabel('Size of Data’)

plt.ylabel('Time')

plt.subplot(3, 1, 2)

plt.plot(df["Data Size"], df["Sort"], '.-')
plt.xlabel('Size of Data’)
plt.ylabel('Time')

plt.title('Bash Sort')

plt.subplot(3, 1, 3)
plt.plot(df["Data Size"], df["Sort-Python"], ".-')

25

plt.xlabel('Size of Data')
plt.ylabel('Time')
plt.title('Python Sort')

plt.tight_layout()
plt.show()

To run the above code a file must be created with .py extension say, plots.py and to run the

program we need to type python3 file path as the command.

The screenshot below shows the plots.

Creation
® 20
E]_'///—‘
0 L) T T T L]
0.0 02 0. 06 08 10
Size of Data le7
Bash Sort
[} g
- //
O L 1 1 T T L
0.0 02 04 06 08 10
Size of Data le7
Python Sort
g 50
e 5
00 02 04 06 08 10
Size of Data le7

26

Execution Part-2

The second part of the projects concentrates on generating data using gensort and sort it with

various levels of multithreading.
Version 1:

This is a simple JAVA sorting using the bubble sort algorithm and reading is done by scanning one

line at a time to the memory.
import java.util.*;

import java.io.*;

class first

{

public static void swap(int i1, int i2, String[] array)

{
String temp=array[il];
array[il]=array[i2];
array[i2]=temp;

}

public static boolean compare(String s1, String s2)
{
int i=0;
while(i<10)
{
if(s1.charAt(i)>s2.charAt(i))
{
//System.out.printIn("After compare returning True");
//System.out.printin(sl+ "===" + s2);

return true;

27

i++;

}
//System.out.printin("After compare returning false");
//System.out.printIn(sl+ "===" + s2);

return false;

public static String[] bubbleSort(String[] array, int num_lines)

{
for(int i=0; i<num_lines-1; i++)
{
for(int j=0;j<num_lines-i-1; j++)
{
if(compare(array[j], array[j+1]))
swap(j, j+1, array);
}
}
return array;
}

public static void main(String args[])

{

Scanner sc=new Scanner(System.in);
System.out.printIn("Enter the name of the file");

String fname;

28

int num_lines=0;
List<String> lines_t=new ArrayList<String>();

fname=sc.nextLine();

try
{
File my_file=new File(fname);
Scanner reader= new Scanner(my_file);
while (reader.hasNextLine())
{
String data=reader.nextLine();
lines_t.add(data);
}
}

catch (FileNotFoundException e)

{

System.out.printin("Error has occured");

String[] lines=lines_t.toArray(new String[lines_t.size()]);
num_lines=lines_t.size();
String[] sorted_lines=bubbleSort(lines, num_lines);

String outFileName=fname.substring(0, fname.length()-4)+"sortedv1.txt";

try

{

FileWriter f=new FileWriter(outFileName);

//String newLine= System.getProperty("line.seperator");

29

for(int t=0; t<num_lines; t++)

{
f.write(sorted_lines[t] +" \n");
}
f.close();
}

catch(IOException e)

{
System.out.printIn("Some Error has occured");
}
}
}
Version 2:

This is a simple JAVA sorting using the bubble sort algorithm and reading is done by scanning a chunk
of lines at a time to the memory.

import java.util.*;
import java.io.*;
class second
{
public static void swap(int i1, int i2, String[] array)
{
String temp=array[il];
array[il]=array[i2];

array[i2]=temp;

30

public static boolean compare(String s1, String s2)

{
int i=0;
while(i<10)

{

if(s1.charAt(i)>s2.charAt(i))

{

return true;

i++;
}

return false;

public static String[] bubbleSort(String[] array, int num_lines)

{
for(int i=0; i<num_lines-1; i++)
{
for(int j=0;j<num_lines-i-1; j++)
{
if(compare(array[j], array[j+1]))

swap(j, j+1, array);

}

return array;

31

public static void main(String args[])

{

Scanner sc=new Scanner(System.in);

System.out.printIn("Enter the name of the file");

String fname;

fname=sc.nextLine();

List<String> lines_t=new ArrayList<String>();

try

{

InputStream my_file=new FilelnputStream(fname);

InputStreamReader reader= new InputStreamReader(my_file);

try

{

while (true)

{

int size=1000;

char[] buffer=new char([size];
StringBuffer strbuf=new StringBuffer();
int read= reader.read(buffer, 0, size);
if(read==-1)

{

break;

strbuf.append(buffer,0, read);

inttemp =0;

32

while(temp < 10){
lines_t.add(strbuf.substring(0 + temp*100, 99+ temp*100));

temp++;

}

catch (IOException e)
{
System.out.printIn("Error has occured");
}
}

catch (FileNotFoundException e)

{

System.out.printIn("Error has occured");

String[] lines = lines_t.toArray(new String[lines_t.size()]);
int num_lines;
num_lines=lines_t.size();
String[] sorted_lines=bubbleSort(lines, num_lines);
String outFileName=fname.substring(0, fname.length()-4)+"sorted";
try
{
FileWriter f=new FileWriter(outFileName);
//String newLine= System.getProperty("line.seperator");
for(int t=0; t<num_lines; t++)

{

33

f.write(sorted_lines[t] +"\n");
}
f.close();
}

catch(IOException e)

{

System.out.printIn("Some Error has occured");

}

Version 3:

This version is sorting using merge sort algorithm and reading is done by scanning a chunk of lines at

a time to the memory.
import java.util.*;
import java.io.*;
class third
{
public static void swap(int i1, int i2, String[] array)
{
String temp=array[il];
array[il]=arrayli2];

array[i2]=temp;

public static boolean compare(String s1, String s2)

{

int i=0;

34

while(i<10)

{

if(s1.charAt(i)>s2.charAt(i))

{

return true;

i++;
}

return false;

public static String[] bubbleSort(String[] array, int num_lines)

{
for(int i=0; i<num_lines-1; i++)
{
for(int j=0;j<num_lines-i-1; j++)
{
if(compare(arraylj], array[j+1]))

swap(j, j+1, array);

}

return array;

}

public static void process_chunk(String fname, int i, int chunk_size)

{

try

byte[] b=new byte[1000];

35

char[] buff=new char[1000];

try
{
RandomAccessFile file = new RandomAccessFile(fname, "r");
file.seek(i*chunk_size);
file.read(b,0, 1000);
int tt=0;
for(byte t: b)
{
buff[tt]=(char)t;
tt++;
}
}

catch (IOException e)

{

System.out.printIn("Error");
}
String[] lines =new String[10];
int num_lines=chunk_size/100;
for(int temp=0;temp<num_lines;temp++)

{

String s_temp="";
for(int j=0+temp*100;j<100+(temp*100)-1;j++)

{

s_temp+=buff[j];

}

lines[temp]=s_temp;

36

}

String[] sorted_lines=bubbleSort(lines, num_lines);

String outFileName=fname.substring(0, fname.length()-4)+"sortedv3_"+ i+ ".txt";

try
{
FileWriter f=new FileWriter(outFileName);
try
{
for(int t=0; t<num_lines; t++)
{
f.write(sorted_lines[t] +" \n");
}
f.close();
}
catch(IOException e)
{
System.out.printIn("Some Error has occured");
}
}

catch (FileNotFoundException e)

{

System.out.printin("Some Error" + e);

catch (Exception e)

{

37

System.out.printin(e);

}
public static String smallest(String[] latest_element, int chunk_num, File[] files_array, int n)
{

String current_smallest_element=latest_element[0];

int index=0;

for(int i=0;i<chunk_num;i++)

{
if (compare(current_smallest_element, latest_element[i]))
{
current_smallest_element=latest_element][i];
index=i;
}
}
try
{
Scanner reader= new Scanner(files_array[index]);
if (reader.hasNextLine())
{
latest_element[index]=reader.nextLine();
}
else
{
latest_element[index]=null;
n--;
}
}

38

catch (FileNotFoundException e)

{

System.out.printIn("Error");

return current_smallest_element;

}

public static void merge_chunks(String sorted_fname, int chunk_num)

{
File[] files_array=new File[chunk_num];
for(int i=0; i<chunk_num;i++)

files_array[i]=new File(sorted_fname+"_"+i+".txt");

String[] latest_element=new String[chunk_num];

try
{
for(int i=0;i<chunk_num;i++)
{
Scanner reader= new Scanner(files_array[i]);
if (reader.hasNextLine())
{
latest_element][i]=reader.nextLine();
}
}
}

catch (IOException e)

{

System.out.printin(e);

39

}

int n=chunk_num;
try
{
while(n>0)
{
FileWriter f=new FileWriter(sorted_fname);
f.write(smallest(latest_element, chunk_num, files_array,n) +"\n");

f.close();

catch(IOException e)

{

System.out.printIn("Some Error has occured");

public static void main(String args(])

{
Scanner sc=new Scanner(System.in);
System.out.printIn("Enter the name of the file");
String fname;
fname=sc.nextLine();
int file_length = 0;
File file = new File(fname);

if (file.exists())

{

40

file_length = (int) file.length();

int chunk_num = file_length/1000;
for (int i = 0; i< chunk_num; i++)
{
process_chunk(fname, i, 1000);
}
String sorted_fname=fname.substring(0, fname.length()-4)+"sortedv3";
merge_chunks(sorted_fname, chunk_num);
}
}

Version 4:

This version is sorting using merge sort algorithm and reading is done by scanning a chunk of lines at

a time to the memory and using multithreading.
import java.util.*;

import java.io.*;

class wThreads implements Runnable
{
private int i;
private int chunk_size;
private String fname;
private int n;
public wThreads(String fname, int i, int chunk_size, int chunk_num)
{
this.fname=fname;

this.i=i;

41

this.chunk_size=chunk_size;
this.n=chunk_num;

}

public void run()
{
byte[] b=new byte[chunk_size];

char[] buff=new char[chunk_size];

try
{
RandomAccessFile file = new RandomAccessFile(fname, "r");
try
{
file.seek(i*chunk_size);
file.read(b,0, chunk_size);
int tt=0;
for(byte t: b)
{
buff[tt]=(char)t;
tt++;
}
}
catch (IOException e)
{
System.out.printin(e);
}
}

catch (FileNotFoundException e)

{

42

System.out.printin(e);
}
String[] lines =new String[10];
int num_lines=chunk_size/100;

for(int temp=0;temp<num_lines;temp++)

{
String s_temp="";
for(int j=0+temp*100;j<100+(temp*100)-1;j++)
{
s_temp+=buffj];
}
lines[temp]=s_temp;
}

String[] sorted_lines=bubbleSort(lines, num_lines);

String outFileName=fname.substring(0, fname.length()-4)+"sorted_"+ i+ ".txt";

try

FileWriter f=new FileWriter(outFileName);

try

{
for(int t=0; t<num_lines; t++)
{
f.write(sorted_lines[t] +" \n");
}
f.close();

}

43

catch(IOException e)

{

System.out.printIn("Some Error has occured");

}

catch (IOException e)

{

System.out.printIn("Some Error" + e);

}

String sorted_fname=fname.substring(0, fname.length()-4)+"sortedv4";

merge_chunks(sorted_fname);

public static void swap(int i1, int i2, String[] array)
{
String temp=array[ill;
array[ill=array[i2];

array[i2]=temp;

public static boolean compare(String s1, String s2)

{
int i=0;
while(i<10)

{

if(s1.charAt(i)>s2.charAt(i))

{

44

return true;

i++;

}

return false;

public static String[] bubbleSort(String[] array, int num_lines)

{

for(int i=0; i<num_lines-1; i++)

{
for(int j=0;j<num_lines-i-1; j++)
{
if(compare(array(j], array[j+1]))
swap(j, j+1, array);
}
}

return array;

}

public static String smallest(String[] latest_element, int chunk_num, File[] files_array, int n)

String current_smallest_element=Ilatest_element[0];
int index=0;

for(int i=0;icchunk_num;i++)

{

if (compare(current_smallest_element, latest_element([i]))

{

current_smallest_element=latest_element[i];

45

index=i;

}
}
try
{
Scanner reader= new Scanner(files_array[index]);
if (reader.hasNextLine())
{
latest_element[index]=reader.nextLine();
}
else
{
latest_element[index]=null;
n--;
}
}

catch (FileNotFoundException e)

{

System.out.printin("Error");

return current_smallest_element;

public void merge_chunks(String sorted_fname)

{

int chunk_num=n;

46

File[] files_array=new File[chunk_num];
for(int i=0; i<chunk_num;i++)

files_array[i]=new File(fname.substring(0, fname.length()-4)+"sorted "+ i+
".tXt"),'

String[] latest_element=new String[chunk_num];

try
{
for(int i=0;i<chunk_num;i++)
{
Scanner reader= new Scanner(files_array[i]);
if (reader.hasNextLine())
{
latest_element[i]=reader.nextLine();
}
}
}

catch (IOException e)

{
System.out.printin(e);
}
try
{
while(n>0)
{

FileWriter f=new FileWriter(sorted_fname);
f.write(smallest(latest_element, chunk_num, files_array,n) +"\n");

f.close();

47

System.out.printin(n);

catch(IOException e)

{
System.out.printIn("Some Error has occured");
}
}
}
class v4
{

public static void main(String [] args)
{
Scanner sc=new Scanner(System.in);
System.out.printIn("Enter the name of the file");
String fname;
fname=sc.nextLine();
int file_length = 0;
File file = new File(fname);
if (file.exists())
{
file_length = (int) file.length();
}
int chunk_size=200;
int max_threads=8;
int chunk_num = file_length/(chunk_size);
int cur_chunk=0;

Thread[] myThreads= new Thread[max_threads];

48

while(cur_chunk<chunk_num)

{

for(int ti=0; tixmax_threads && cur_chunk<chunk_num; ti++)

{
myThreads[ti]=new Thread(new wThreads(fname, cur_chunk, chunk_size,
chunk_num));
myThreads][ti].start();
cur_chunk++;
}

for(int ti=0; tikmax_threads && cur_chunk<chunk_num; ti++)

{
try
{
myThreads([ti].join();
}
catch(InterruptedException e)
{
System.out.printin("Error" + e);
}
}

}

String sorted_fname=fname.substring(0, fname.length()-4)+"sortedv4";

}

There is a significant decrease in time for each version starting from version 1 to version 4.

49

Execution Part 3

In the third and final part of the project we work on the various sorting techniques in python
including those in pandas, numpy, tensorflow and spark and plot a graph for various sizes of data
sets.

#! /usr/bin/bash

import numpy as np

import pandas as pd

import numpy.random as r
import time

import os.path

import matplotlib.pyplot as plt
import seaborn as sns

import tensorflow as tf

import torch

mathod=[]

time_data=[]

size=int(input("Enter the size of the data set: "))
a=np.random.randint(low=1, high=size+1, size=(size))

[=a.tolist()

st=time.time()

sorted_|=sorted(l)

t=time.time()-st

print("Time taken to Vanilla Sort copy: ", t)

mathod.append("Vanilla-copy")

50

time_data.append(t)

st=time.time()

l.sort()

t=time.time()-st

print("Time taken to Vanilla Sort in-place: ", t)
mathod.append("Vanilla-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

st=time.time()

sorted_|=np.sort(a)

t=time.time()-st

print("Time taken to Numpy sort copy is: ", t)
mathod.append("Numpy-copy")

time_data.append(t)

st=time.time()
sorted_I|=a.sort()

t=time.time()-st

51

print("Time taken to Numpy sort in-place is: ", t)
mathod.append("Numpy-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

st=time.time()

sorted_|=np.sort(a, kind="quicksort')
t=time.time()-st

print("Time taken to Numpy Quick sort copy is: ", t)
mathod.append("Numpy-Quick-copy")

time_data.append(t)

st=time.time()

sorted_I|=a.sort(kind="quicksort')

t=time.time()-st

print("Time taken to Numpy Quick sort in-place is: ", t)
mathod.append("Vanilla-Quick-In-place")

time_data.append(t)

print("\n")

52

a=np.random.randint(low=1, high=size+1, size=(size))

st=time.time()

sorted_I=np.sort(a, kind="mergesort')
t=time.time()-st

print("Time taken to Numpy Merge sort copy is: ", t)
mathod.append("Numpy-Merge-copy")

time_data.append(t)

st=time.time()

sorted_l|=a.sort(kind="mergesort')

t=time.time()-st

print("Time taken to Numpy Merge sort in-place is: ", t)
mathod.append("Numpy-Merge-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

st=time.time()

53

sorted_I=np.sort(a,kind="heapsort')
t=time.time()-st

print("Time taken to Numpy Heap sort copy is: ", t)
mathod.append("Numpy-Heap-copy")

time_data.append(t)

st=time.time()

sorted_l|=a.sort(kind="heapsort')

t=time.time()-st

print("Time taken to Numpy Heap sort in-place is: ", t)
mathod.append("Numpy-Heap-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

d=pd.DataFrame(a, columns=["Integers"])

st=time.time()
sorted_d=d.sort_values(by="Integers")
t=time.time()-st

print("Time taken to Pandas sort copy is: ", t)
mathod.append("pandas-copy")

time_data.append(t)

54

st=time.time()
sorted_d=d.sort_values(by="Integers", inplace=True)
t=time.time()-st

print("Time taken to Pandas sort in-place is: ", t)
mathod.append("pandas-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

d=pd.DataFrame(a, columns=["Integers"])

st=time.time()

sorted_d=d.sort_values(by="Integers", kind="quicksort')
t=time.time()-st

print("Time taken to Pandas quick sort copy is: ", t)
mathod.append("pandas-Quick-copy")

time_data.append(t)

st=time.time()
sorted_d=d.sort_values(by="Integers", inplace=True, kind="quicksort')

t=time.time()-st

55

print("Time taken to Pandas quick sort in-place is: ", t)
mathod.append("pandas-Quick-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

d=pd.DataFrame(a, columns=["Integers"])

st=time.time()

sorted_d=d.sort_values(by="Integers", kind="heapsort')
t=time.time()-st

print("Time taken to Pandas heap sort copy is: ", t)
mathod.append("pandas-Heap-copy")

time_data.append(t)

st=time.time()

sorted_d=d.sort_values(by="Integers", inplace=True, kind="heapsort')
t=time.time()-st

print("Time taken to Pandas heap sort in-place is: ", t)
mathod.append("pandas-heap-in-place")

time_data.append(t)

56

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

d=pd.DataFrame(a, columns=["Integers"])

st=time.time()

sorted_d=d.sort_values(by="Integers", kind='mergesort')
t=time.time()-st

print("Time taken to Pandas merge sort copy is: ", t)
mathod.append("pandas-merge-copy")

time_data.append(t)

st=time.time()

sorted_d=d.sort_values(by="Integers", inplace=True, kind='mergesort')
t=time.time()-st

print("Time taken to Pandas merge sort in-place is: ", t)
mathod.append("pandas-merge-in-place")

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

57

value_1 = tf.convert_to_tensor(a, dtype=tf.int64)

mathod.append("Tensor flow")

st=time.time()

tf.sort(value_1)

t=time.time()-st

print("Time taken to sort using Tensor: ", t)

time_data.append(t)

print("\n")

a=np.random.randint(low=1, high=size+1, size=(size))

value_1 = tf.convert_to_tensor(a, dtype=tf.int64)
with tf.device('/GPU:0'):
st=time.time()
tf.sort(value_1)
t=time.time()-st
print("TF with GPU", t)
mathod.append("Tensor_flow GPU")

time_data.append(t)

with tf.device('/CPU:0"):
st=time.time()
tf.sort(value_1)

t=time.time()-st

58

print("TF with CPU", t)
mathod.append("Tensor_flow CPU")

time_data.append(t)

a=np.random.randint(low=1, high=size+1, size=(size))
value_1=torch.from_numpy(a)

st=time.time()

torch.sort(value_1)

t=time.time()-st

print("Torch CPU", t)

mathod.append("Torch CPU")

time_data.append(t)

gpu_tensor=value_1.cuda()
st=time.time()
torch.sort(gpu_tensor)
t=time.time()-st

print("Torch GPU", t)
mathod.append("Torch GPU")

time_data.append(t)

df=pd.DataFrame({"Names":mathod, "Time":time_data})
f = plt.figure()
f.set_figwidth(15)

f.set_figheight(5)

plt.bar(df["Names"], df["Time"], width=0.5)

plt.xticks(

59

rotation=45,
horizontalalignment='right’,
fontweight='light’,

fontsize="large'

plt.tight_layout()
plt.show()

The above up on running on data sets of different sizes ranging from 1000 to 100000000, gives the

following plots.

Data set of 1000 elements(1k):

0.004

0003

0.002

0.001

0.000 -

f Do DS
0‘5\ Q\'b"' * Q\'a‘" 0y \’D("z) éb“z oQ‘\ NG oQk\ & LoQ‘\ Q\'b& & & J,"Q* Q\'a"’z %63\ @t?‘ J,? ‘\LQ &
AN S S &8 F o & &P & ¢
@o‘\ \\%,\ \&’&Q y ~,&,\ @s“' . \v.‘,"'\ e.@' 2 o z@\ Q@‘& (5?,\ G)\L \&h ~2~°’° @?Q’\ @éO; Rc?,,\ «z({a a\%@ Q(/\b &
SE S AR § o o & g IS
& & &8 $ Ly S &S ¢ e
¥ & ¢ 8 G 7Y
¥ & & ¢ Q@‘b ¢ Q@‘b & @‘9

Data set of 1000000 elements(1M):

030

025

020

015

010

0.05

000 -

Dy & ? N @ ¢ & O N
e_(5:Q Q\e" ‘\‘o‘? Q\a" ‘_oQ'\ o g 3 'e'a“ & & 8 Q\o" ‘J@Q‘\ & ,&Q\ N J’&\ Q\@" OR@ a\hq ‘\(5 ¢ ‘\6‘
W & & "',\“ @)\b P & .eg:bq & 5 S d'}\(- "}(‘ A & O e,{(‘ z(\‘-.v ?0 ‘?0 @(’“ /\66‘
oy & & oy @@’ o g ¢ F g @*“' ENC A A &
¥ &S ¢ F F LS & &
¥ & & & 8 G AP AN
¥ ¥ @;“\ ¢ Q,adb ¢ Q,adb & Q'a»‘b

60

Data set of 10000000 elements(10M):

N N N)
%}ﬁ% A qéé% & s e & @ & <#? qéé\ & ‘_éﬁ & & Qég téﬁ\ ¢é9 °Q§$ & ‘*5 4‘(3 <$F§
A2 ¢ . o Y 3 e,
_@o‘\ \\\'b\ “)@Q @Q‘\'& G’N" \v.‘,“@ -33'& &z,\i‘ A q?\i‘ Q:S"b’o (&q& G:)L \&:&‘ & ; & &éq r = «eﬁ“’ 0\3\0 p /0 &
S > & Y e 5] &
¢ & @,@ @ \9@9“ & & 4\‘*“‘\ & &f Q@&“ &@“ & & & &
&
Ko <« ¢ ¢ Q‘,&

Data set of 100000000 elements(100M):

Time taken to sort using Tensor: ©.36566734313864844

TF with GPU ©.9938710594177246
TF with CPU 37.63810658454895
Torch CPU 13.466159343719482

Torch GPU ©.81686263884411621

100

3 o A e e @
& SPQ o ,&Q‘\ ,Q'bb tpq‘\ ,Q\é‘

LA . & & L&
e SAMRCe N A A S SO N At S A & d o
RS S G A A A N P PGNP B
& & @ o F o @ & g F L & &
F e & & & ¢ F g & F @ 4
& & 8 o 8 P R S - Y

It can be hence concluded that sorting using Torch-GPU, TensorFlow are some of the best available

sorting techniques.

61

Thank you

62

ENGR 498-07 Research in Artificial Intelligence and Deep Learning

MaViSS Al

Artificial Intelligence based COVID19
Norms Machine Vision Surveillance
System

Arpan Kundu

(Team Members:
Arpan Kundu, Ritika Nigam)

Advisor: Dr. Jafar Saniie

Summer 2021

CONTENTS

CONTENTS

BACKGROUND

ABSTRACT

INTRODUCTION

SYSTEM MODULES

SYSTEM WORKFLOW
HARDWARE IMPLEMENTATION
SOFTWARE IMPLEMENTATION
RESULTS AND DISCUSSION
REAL-TIME CONSTRAINTS AND FEASIBILITY
SECURITY ISSUES
CONCLUSION

FUTURE WORK

REFERENCES

APPENDICES

A W N DN R

10
11
13
15
18
19
19
20
20
21

BACKGROUND

The ongoing COVID-19 coronavirus outbreak has caused a global disaster with its deadly
spreading. Due to the absence of effective remedial agents and the shortage of
immunizations against the virus, population vulnerability increases. Though vaccines have
been developed by various nations, but as suggested by the World Health Organization
(WHO), vaccines rarely protect 100% of the recipients and vaccinated individuals still run
the risk of contracting the disease. Consequently, all additional precautions against the
epidemic should be carefully considered.

ABSTRACT

Manually monitoring whether all the necessary precautions are being followed by the
people in public areas is tedious, inefficient and often inaccurate. Thus, this brings out the
aim of our project - an automated machine vision surveillance system for real-time
monitoring of COVID-19 norms which is cost effective, accurate, feasible and secure and
overcomes the real time challenges faced during manual monitoring of norms.

Our proposed system -

e Detects and tracks humans for monitoring social distancing and keeps track of the
human count for crowd management,

e Detects face mask and keeps track of face mask usage, and

e Sends alerts in real-time directly to the (monitoring authority’s) smartphone

whenever the norms are breached.

In view of these alerts, security personnel can take relevant actions. Therefore, our
proposed automated surveillance system surpasses several limitations of the manual
monitoring systems.

INTRODUCTION

Since the outbreak of the pandemic, many systems have been developed to monitor
different aspects of COVID-19 norms like face mask usage and social distancing, but most
of them have addressed only specific aspects of the norms and do not have a holistic
approach. Moreover, these systems mainly focus on visualizing the system output but do
not have any alerts component to keep track of violations in norms and notify the
monitoring user about the same.

Our proposed system has a more holistic approach to address these shortcomings and
offers a complete platform for monitoring the COVID-19 norms, as well as sends alerts in
realtime directly to the monitoring user’s smartphone using an instant messaging service
like Telegram.

This solution is comprehensive, feasible and fast as well as secure to use.

Our proposed system is composed of three modules:

|
Face Mask .
Detection 3 '

»
Human Detection
L System Modules } (For Social Distancing) / ' ,'

Alerts / = ,

SYSTEM MODULES

e Face Mask Detection

The face mask detection module detects people’s faces, checks their face mask
usage and classifies it into one of the following three categories:

GOOD
Enclosed within a green bounding box with a ‘good’ remark, it represents that the
person is properly masked.

BAD

Enclosed within an orange bounding box with a ‘bad’
remark, it represents that the person is improperly
masked, i.e. although he/she is wearing a mask, it is
not covering his/her nose or mouth properly.

NONE
Enclosed within a red bounding box with a ‘none’
remark, it represents that the person is not masked.

This module uses the mask-YOLOv4-tiny model which is a neural network based
on the darknet framework and YOLOvV4 architecture. This neural network is
trained by cansik and the dataset for this pre-trained network (consisting of 678

images of people with and without masks) is provided by VictorLin000.

This model was trained on a 1080T]I for about 2 hours over 6000 iterations with a
batch size of 64 and 16 subdivisions. The weights were trained on an image size of
416x416. Complete details of training can be found here.

Fig. Sample test run of Face Mask Detection module

The code for the face mask detection module is attached in Appendix A. We tested
this module on our PCs and the Jetson Nano and achieved the following

performance figures:
FPS Range (Jetson Nano) FPS Range (PC)
Model
CPU GPU CPU
mask-YOLOvA4-tiny 1.37-1.77 3-6 6.5-8.5

Table. Face Mask Detection module performance figures

https://pjreddie.com/darknet/yolo/
https://arxiv.org/abs/2004.10934
https://github.com/cansik
https://github.com/VictorLin000
https://github.com/cansik/yolo-mask-detection#training

The model this module is built on, i.e. YOLOv4-tiny has a mean Average Precision
(mAP) of 40.2%. Precision is defined as:

Precision = TP /(TP + FP)

Where, TP is the number of true positives, i.e. the number of correct predictions
and FP is the number of false positives, i.e. the number of incorrect predictions.
mean Average Precision (mAP) is the average of all the average precisions of the
classes in the given dataset. Thus, this figure is a measure of the accuracy of
detection of the given detection algorithm.

The frame rate is measured in frames per second (FPS). The hardware
configurations of the CPU and GPU of the Jetson Nano and the PC used in the
above test runs are mentioned in the HARDWARE IMPLEMENTATION section.

Human Detection

The human detection module detects humans keeping a human count (for crowd
management), calculates the distance between each pair of detected people (for
social distancing) and then classifies each person into one of the following three
colors of bounding boxes:

GREEN
Represents that the person is at a safe distance* from others (No
Violations).

Represents that the person is at the minimum safe distance**
from others, but not at a safe distance* from others
(Abnormal Violation).

RED
Represents that the person is not at the minimum safe distance**
from others (Serious Violation).

**Minimum safe distance : 1 metre (as set by WHO)
*Safe distance : 2 metres (as set by several countries)

This module uses the YOLOv3-608 model which is a neural network based on the
darknet framework and YOLOv3 architecture. This pre-trained neural network
was trained on the COCO (Common Objects in Context) dataset and can detect 80
different classes of objects. In our case, it is used to detect humans.

DISTANCE CALCULATION

Firstly, the Euclidean distance L is calculated between the two persons (in pixels).

L = @ + 1wy’

Next, this distance is calibrated into metres by multiplying it with the calibration
factor k.

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

((— + —)/2) *H
Where,

H1 and H2 are the heights of the two persons (in pixels) respectively and H is the
average height of a person (in centimeters), which we have assumed to be 170 cm.

Finally, the calibrated distance D (in cm). Is obtained as:

D =k*L

Human Count: 12

|
Abnorrnul Violotions: 2 ?

|!

Fig. Sample test run of Human Detection module

The code for the human detection module is attached in Appendix B. We tested
this module on our PCs and the Jetson Nano and achieved the following
performance figures:

FPS Range (Jetson Nano) FPS Range (PC)
Model
CPU GPU CPU
YOLOV3-608 0.21 0.71-0.79 1.5-2

Table. Human Detection module performance figures

The model this system is built on, i.e. YOLOv3 has a mean Average Precision (mAP)
of 57.9%.

The frame rate is measured in frames per second (FPS). The hardware
configurations of the CPU and GPU of the Jetson Nano and the PC used in the
above test runs are mentioned in the HARDWARE IMPLEMENTATION section.

Alerts

The alerts module sends alert messages in realtime to the monitoring user through
a Telegram bot, whenever a COVID-19 norms violation (in social distancing or face
mask usage) is detected by the system.

2004 ®

MaViSs Al - Alerts
<@k

/start w240
Switch ON Alerts 1.,
Social distancing violations exceeded!
Serious Violations : 7
Face Mask violations exceeded!

Masked : 2
Im|

Serious Violations : 7

Face Mask violations exceeded!
Masked : 2

Improperly Masked : 1

Unmasked "0

Social distancing violations exceeded!
Serious Violations : 7

Social distancing violations exceeded!

Serious Violations : 7

Fig. Telegram bot sending alert messages

This module consists of a trigger function containing a personalized alert message
for different norms violations cases along with count statistics. This function sends
a GET request (containing the alert message) to the Telegram bot’s server, which in
turn conveys the alert message to the monitoring user.

The code for the alerts module is attached in Appendix C.

SYSTEM WORKFLOW

Our system workflow has six main steps or phases:

1. Video:Video s captured from a source like an IP Camera, CCTV or Webcam.

Frames are extracted from this video source.

2. Preprocessing: Preprocessing is done on these received frames and they are
resized for model inference.

3. Model Inference : Model Inference is done by using the YOLO architecture neural
network for state-of-the-art, real-time humans and face mask detection.

4. Calibration: Calibration involves computing parameters like social distancing &
face mask metrics, validating it with the norms and identifying violations.

5. Output: Output is generated in real-time to the monitoring user, displaying the
social distancing metrics, color coded bounding boxes for persons detection &
tracking and face mask usage, and information regarding any violations.

6. Alerts: Alerts are sent directly to the monitoring user’s smartphone in real-time
through a Telegram bot.

10

Identifying
« Social distancing violations
« face mask violations

\
&)

°c » 4
Video Preprocessing Model Inference Calibration

@n)es from Receiving and YOLO model architecture for

video source like resizing the frames

+ human detection

CCTV or IP Cameras for model inference
« face mask detection
Alerts ‘ ‘ Output

L Real-time alerts delivered | = -
straight to smartphone P 123

)

Real-time output with

+ social distancing metrics

* norms violations

+ color coded persons
detection & tracking

2

e

I
[;

Fig. System Workflow

HARDWARE IMPLEMENTATION

The hardware components used in this project are summarized in the table below:

Item Description Units Configuration
Nvidia Jetson Nano 128 Cuda Cores, Cortex®-A57,4 GB
Development Board 1 64-Bit LPDDR4
IMX 219-77 Camera 1 8 MP, 3280 x 2464 resolution, 77° FOV
Personal Computer (used for Intel Core i5 8th Gen @ 1.6 GHz, 8 GB
additional testing)* 1 64-Bit DDR4
External Monitor* 1 -

11

USB Wireless Keyboard 1 -

USB Wireless Mouse 1 -

MicroSD Card (with adapter) 1 32 GB UHS-1 (minimum)

USB WiFi Adapter (or
Ethernet cable for connecting 1 -
Jetson Nano to Internet)

HDMI Cable 1 -

AC/DC Power Supply 1 5V, 4A

Table. Hardware Components

Complete setup cost : 150-180 USD (* items not included in this estimate).

HARDWARE SPECIFICATIONS

e Nvidia Jetson Nano Developer Kit

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43 GHz
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage microSD (not included)

Video Encode 4K @ 30| 4x 1080p @ 30 | 9x 720p @ 30 (H.264/H.265)

Video Decode 4K @ 60| 2x4K @ 30| 8x 1080p @ 30 | 18x 720p @ 30
(H.264/H.265)

Camera 2x MIPI CSI-2 DPHY lanes

Connectivity Gigabit Ethernet, M.2 Key E

Display HDMI and display port
UsB 4x USB 3.0, USB 2.0 Micro-B
Others GPIO, 12C, 12S, SPI, UART

Mechanical 69 mm x 45 mm, 260-pin edge connector

Complete Description at Nvidia Jetson Nano Developer Kit.

12

https://developer.nvidia.com/embedded/jetson-nano-developer-kit

CIRCUIT DIAGRAM

‘ Power Supply

Camera }—» JETSON NANO »— Monitor

Keyboard ‘ ‘ Mouse

Fig. Block Circuit Diagram of System Setup

SOFTWARE IMPLEMENTATION

@ python
e PROGRAMMING LANGUAGE

The project is coded in the Python 3.7 programming language. Python is a simple,
consistent and open source programming language, offering concise and readable
code. The simplicity of syntax allows developers to focus on solving the system
problem rather than the technical nuances of the language.

Additionally, Python also offers a range of frameworks and libraries that enable
developers to solve common programming tasks. It has a rich technology stack
specially for artificial intelligence and machine learning, some of which we have

implemented in our project.

13

Apart from these, Python is also platform independent allowing developers to
implement things on one machine and use them on another machine without any
(or with only minimal) changes. Lastly, it has a huge open source developer
community that enables budding developers to learn and get support all through
their project or programming journey.

All of these factors make Python an ideal choice for building our project.
e LIBRARIES

0
- OpenCV andimutils GO

OpenCV

The OpenCV computer vision library is the main library used in our project.
This project uses OpenCV 4.5.2 and imutils for the video and image
processing tasks. Also, the OpenCV DNN (Deep Neural Networks) module
is used to facilitate the deep learning inference on the videos/live streams
we are processing. This module is compatible with the YOLO (You Only Look
Once) architecture that forms our main detection model.

The OpenCV 4.5.2 version we're using was compiled with CUDA backend
support, in order to utilize the GPU capabilities of the Nvidia Jetson Nano.
The details of the compilation are summarized below:

jtop Mano [Developer Kit Version) - JC: Inactive - MAXMN
HVIDIA Jetson Mano (Developer Kit Version) - Jetpack 4.5.1 [L4T 32.5.1]

= Up Time:] ¥ Version:
- i [L4T .5.1] Author:
e-mail:
Nano (Develop: t Version)
tegrazi@
P3448-0000 P3449-0000
porg
|
1420521018375

- Librarie - Hostname: ritika-desktop

192.168.29.228
i72.417.06.1
n Programming Interface

1ALL 2GPU 3CPU 6 TMFO i Raffaello Bonghi

14

Fig. OpenCV with CUDA support

¢

-> SciPy and Num @‘SciPy N.E:

Scipy and Numpy libraries were used to facilitate various scientific
calculations and calibrations (e.g. distance calculation and calibration) used
in our project.

=> Urllib and Requests

The urllib and requests libraries were used in the alerts module of our
project for sending GET requests to the Telegram bot’s server containing
the alert messages.

e DETECTION MODEL

The main detection model used in our project (for human and face mask detection)
is built around the YOLO architecture, based on the darknet framework. You Only
Look Once (YOLO) is a state-of-the-art, realtime object detection system. Darknet
is an open source neural network framework written in C and CUDA, known for its
speed and support for CPU and GPU computation.

The human detection module (for social distancing) of our project uses the
YOLOv3-608 model and the face mask detection module uses the
mask-YOLOv4-tiny model for performing their respective detection tasks.
More information on this is provided in the SYSTEM MODULES section above.

RESULTS AND DISCUSSION

We tested our system on the Nvidia Jetson Nano as well as our PCs, and pre-recorded as
well as live stream video sources were used.

15

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/

[m 1 MaViss Al - COVID19 Norms Surveillance System

Human Count:
Abnormal Violations: 0

A

5 Hide all

S R ¢ A St
@ MaViss Al - Alerts

1@ MaViss Al + Alerts
1ViSS A so nc

olations
olati

1ViSS A

[®1 MaViss Al - COVID19 Norms Surveillance System

Human Cou
Abnormal Violations: 0

.r | -

] » v\ i 1 VIS vy
e |
-

‘ ‘l v
-~ " ‘ -
- ;
¥ ‘
[
! L
@ MaViss Al - Alerts

ALERE Flc- Mosk Vlolo“onl . WISSA r

[

]r\

.2 Improper

Fig. Sample test run (2)

16

[W 1 MaViss Al - COVID19 Norms Surveillance System - O X

Abnormal Violations: 2

i

Fig. Sample test run (3)

The results obtained from these test runs are shown in our demonstration video, which
can be found here - Demonstration Video.

The performance figures of the system on the Jetson Nano and our PCs are as follows:

FPS Range (Jetson Nano) FPS Range (PC)
Model
CPU GPU CPU
MaViSsS Al 0.15-0.2 0.65-0.83 1.5-2

(YOLOV3-608 +
mask-YOLOV4-tiny)

Table. System test runs performance figures

17

https://drive.google.com/file/d/18jJo9Ax1rSmrX_xPSFU9M9j6xoF7aKiF/view?usp=sharing

The frame rate is measured in frames per second (FPS). The hardware configurations of
the CPU and GPU of the Jetson Nano and the PC used in the above test runs are
mentioned in the HARDWARE IMPLEMENTATION section.

From the above performance figures we infer that our system, MaViSS Al utilizes the
powerful GPU of Jetson Nano with CUDA backend to improve its performance by
approximately 4 times better than that achieved on CPU and runs at a frame rate of
0.65-0.83 FPS.

REAL-TIME CONSTRAINTS AND FEASIBILITY

Our proposed system has major applications in tracking of COVID19 norms in busy areas
like malls, streets, offices, stations, airports, etc. Such applications demand realtime
performance and notifications of violations, so that immediate and swift action can be
taken in response. Thus to boost the performance of the system, the GPU capabilities of
the Jetson Nano have been utilised which results in an improvement of about 4 times in
the performance. However, the performance can be further improved by using more
optimized detection algorithms and higher end hardware, as stated in the future work
section below.

The system can be used feasibly in tracking COVID19 norms in busy outdoor areas as well
as indoor environments. Moreover, the alerts feature enables the monitoring user to get
personalized, realtime alert messages directly to their phones just like an instant
messaging app’s messages. The system, however, can be made more insightful and feasible
by adding a dashboard to the output window containing different metrics of norms
tracking and a better user interface.

18

SECURITY ISSUES

The system’s workflow in terms of storing and sending tracking data to monitoring user’s
smartphone is secure. But, the process can be made more efficient and secure by shifting
this information storage and transmission process to the cloud. A cloud infrastructure
would allow for more storage of the system’s generated data and also make the
transmission of data as alert messages more secure. Moreover, the entire system can be
mounted on the cloud, enabling the users to use the system (independent of location or
device) as a Software-as-a-Service (SaaS) by means of a web application of the same.

CONCLUSION

To summarize, our proposed system MaViSS Al enables the user to monitor social
distancing norms and face mask usage in the scene captured by the surveillance camera
and any norm breach is reported directly to the user as an alert message. Thus, our system
surpasses several limitations of the manual monitoring systems and provides an efficient
and accurate way of monitoring and reporting breaches in COVID19 norms.

Through the course of this project we encountered many challenges and learned several
new concepts and technologies related to setting up the Jetson Nano for our project,
compiling OpenCV with CUDA support so as to utilize the Jetson Nano’s GPU, exploring
different libraries for our project and working on improving the performance and
accuracy of our system. We kept our work pace steady from the beginning, sticking strictly
to our timeline. Finally, we were able to develop a completely functional system capable of
monitoring and reporting breaches in COVID19 norms in various busy places to the
monitoring user in realtime.

19

FUTURE WORK

System output can be made more insightful by collecting and storing the
monitoring data generated, and crunching the same using different Machine
Learning techniques to deliver more insightful results to the user.

Distant faces that are not detected by the Face Mask Detection module can be
handled by using advanced cameras with zoom feature and adjusting the same as
per the scene to obtain frames with detectable faces.

System performance can be improved by using higher end hardware and more
optimized detection algorithms.

Distance calculation can be made more accurate by using depth and aspect
information.

System can be made more insightful and have broader applications in curbing
COVID19 spread by including a body temperature detection module using a
thermal camera.

REFERENCES

Neuralet’s smart social distancing

J.Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified,

Real-Time Object Detection." 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 779-788. doi: 10.1109/CVPR.2016.91.

YOLO v3 (for human detection) - https://pjreddie.com/darknet/yolo/

Mask YOLO v4 tiny (for face mask detection) -
https://github.com/cansik/yolo-mask-detection

YOLOV4 architecture - https://arxiv.org/abs/2004.10934

20

https://neuralet.com/article/smart-social-distancing/
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://pjreddie.com/darknet/yolo/
https://github.com/cansik/yolo-mask-detection
https://arxiv.org/abs/2004.10934

e M.M. Rahman, M. M. H. Manik, M. M. Islam, S. Mahmud and J. -H. Kim, "An

Automated System to Limit COVID-19 Using Facial Mask Detection in Smart City
Network," 2020 IEEE International IOT, Electronics and Mechatronics Conference

(IEMTRONICS), 2020, pp. 1-5, doi: 10.1109/IEMTRONICS51293.2020.9216386.

e Ansari, M., Singh. D.K. Monitoring social distancing through human detection for
preventing/reducing COVID spread. Int. . inf. tecnol. 13, 1255-1264 (2021).

https://doi.org/10.1007/s41870-021-00658-2

e Jetson Nano -

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

APPENDICES

FILES & FOLDERS STRUCTURE

The system folder contains 1 file - main.py and 3 folders -
assets, lib and yolo.
e assets contains pre-recorded videos for testing purpose
e |ib contains 5 files - _init_.py, detect_facemask.py, detect.py,
alerts.py and config.py
e yolo contains 5 files - coco.names, mask-yolov4-tiny.cfg,
mask-yolov4-tiny.weights, yolov3.cfg and yolov3.weights
e main.py is the main execution script integrating all the
different modules of the system

APPENDIX A - detect_facemask.py

importing necessary Llibraries

Name
» = assets
v & lib
> M _pycache_
B} _init_py
Bl alerts.py
@ config.py
2 detect_facemask.py
B detect.py
v & yolo
[coco.names
[} mask-yolov4-tiny.cfg
[} mask-yolov4-tiny.weights
[} yolov3.cfg
D yolov3.weights

21

https://ieeexplore.ieee.org/document/9216386
https://ieeexplore.ieee.org/document/9216386
https://ieeexplore.ieee.org/document/9216386
https://ieeexplore.ieee.org/document/9216386
https://link.springer.com/article/10.1007/s41870-021-00658-2
https://link.springer.com/article/10.1007/s41870-021-00658-2
https://link.springer.com/article/10.1007/s41870-021-00658-2
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

import time

import cv2

import numpy as np

from 1lib.config import Use GPU

class DETECT_FACEMASK:

def __init__(self, config, model, labels, size=416,
confidence=0.5, threshold=0.3):

self.confidence = confidence

self.threshold = threshold

self.size = size

self.labels = labels
self.net = cv2.dnn.readNetFromDarknet(config, model)
checking if there's GPU usage

if Use_GPU:
set CUDA as the preferable backend and target
print("")

print("[INFO] Looking for GPU")
self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND CUDA)
self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

def inference_from_file(self, file):
mat = cv2.imread(file)
return self.inference(mat)

def inference(self, image):
ih, iw = image.shape[:2]

1n
1n

self.net.getLayerNames()
[In[i[@] - 1] for i in self.net.getUnconnectedOutLayers()]

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (self.size,
self.size),
swapRB=True, crop=False)
self.net.setInput(blob)
start = time.time()

22

layerOutputs = self.net.forward(1ln)
end = time.time()
inference_time = end - start

boxes = []
confidences = []
classIDs = []

for output in layerOutputs:

Looping over each of the detections

for detection in output:
extracting the class ID and confidence (i.e.,

probability) of

the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
filtering out weak predictions by ensuring the

detected

probability is greater than the minimum
probability

if confidence > self.confidence:

scaling the bounding box coordinates back relative
to the

size of the image, keeping in mind that YOLO
actually

returns the center (x, y)-coordinates of the
bounding

box followed by the boxes' width and height
box = detection[©:4] * np.array([iw, ih, iw, ih])
(centerX, centerY, width, height) =
box.astype("int")
using the center (x, y)-coordinates to derive the
top and
and left corner of the bounding box
int(centerX - (width / 2))
int(centerY - (height / 2))
updating our List of bounding box coordinates,

H < X H#
1

23

confidences,
and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)

idxs = cv2.dnn.NMSBoxes(boxes, confidences, self.confidence,
self.threshold)

results = []
if len(idxs) > @:
for i in idxs.flatten():

extracting the bounding box coordinates
X, y = (boxes[i][@], boxes[i][1])
w, h = (boxes[i][2], boxes[i][3])
id = classIDs[1i]
confidence = confidences[i]

results.append((id, self.labels[id], confidence, x,
y, w, h))

return iw, ih, inference_time, results

APPENDIX B - detect.py

importing necessary Llibraries

from lib.config import NMS_Threshold, Min_Prob, Human_Counter
import numpy as np

import cv2

defining the detect_humans function
def detect_humans(frame, net, layer names, human_idx = 9):
extracting the dimensions of the frame and

24

initializing the results Llist
(H, W) = frame.shape[:2]
results = []

constructing a blob from the input frame and performing a
forward
pass of the YOLO object detector
gives us the bounding boxes and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB = True, crop = False)
net.setInput(blob)
layerOutputs = net.forward(layer names)

initializing the lists of detected bounding boxes,
centroids and confidences

boxes = []

centroids = []

probabilities = []

iterating through the Layer outputs
for output in layerOutputs:
iterating through each of the detections
for detection in output:
extracting the class ID and object detection
probability
scores = detection[5:]
classID = np.argmax(scores)
probability = scores[classID]

filtering detections by: -

(1) ensuring that a human was detected and

(2) that the minimum probability criteria was satisfied

if classID == human_idx and probability > Min_Prob:
scaling the bounding box coordinates back
relative to

the size of the image, as YOLO returns
the center (x, y) coordinates of the bounding box
followed by the width and height

25

box = detection[©:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) =
box.astype("int")

using the center (x, y) coordinates to find the
top-left corner coordinates

x = int(centerX - (width / 2))
y = int(centerY - (height / 2))

updating the List of bounding box coordinates,
centroids and confidences

boxes.append([x, y, int(width), int(height)])
centroids.append((centerX, centerY))
probabilities.append(float(probability))

applying non-maxima suppression (NMS) to suppress weaker,
overlapping bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, probabilities, Min_Prob,
NMS_Threshold)

calculating the total humans in frame
if Human_Counter:
human_count = "Human Count: {}".format(len(idxs))
cv2.rectangle(frame, (520, 0), (700, 30), (0, 0, 0), -1)
cv2.putText(frame, human_count, (530, 20),
cv2.FONT_HERSHEY DUPLEX, ©.50, (255, 255, 255), 1, cv2.LINE_AA)

ensuring at Lleast one detection exists
if len(idxs) > @:
iterating through the indexes
for i in idxs.flatten():
extracting the bounding box coordinates
(x, y) (boxes[i][©@], boxes[i][1])
(w, h) (boxes[i][2], boxes[i][3])

updating the results List to contain
detection probability, bounding box coordinates and
centroid

res = (probabilities[i], (X, y, X + w, y + h),
centroids[i])
results.append(res)

returning the List of results
return results

APPENDIX C - alerts.py

Module\================================}
importing required Libraries

import urllib, requests

from lib.config import chat_id, token

this script initiates the Telegram alert trigger function

defining the trigger function
def trigger(arr, typ):
setting the alert messages for:
(1) social distancing violations
messagel = 'Social distancing violations exceeded!\n\nSerious
Violations :
{}'.format(arr[@])
(2) face mask usage violations

message2 = 'Face Mask violations exceeded!\n\nMasked : {}
\nImproperly
Masked : {} \nUnmasked : {}'.format(arr[1l], arr[2],
arr[3])
sending GET requests to the Telegram bot’s server
for each case of violation
if typ == 1:
url =

"https://api.telegram.org/bot%s/sendMessage?chat_id=%s&text=%s"' %
(token, chat_id, urllib.parse.quote_plus(messagel))

27

_ = requests.get(url, timeout=10)

if typ == 2:
url =
"https://api.telegram.org/bot%s/sendMessage?chat_id=%s&text=%s"' %
(token, chat_id, urllib.parse.quote plus(message2))
_ = requests.get(url, timeout=10)

APPENDIX D - config.py

base path to YOLO directory
YOLO_PATH = "yolo"

minimum object detection probability
Min_Prob = 0.3

minimum threshold for non-maxima suppression
NMS_Threshold = 0.3

to count number of people in frame (True/False)
Human_Counter = True

set the threshold value for violations
Violations_Threshold = 10

set the ip camera url (e.g. url =
'http://192.168.43.39:4747/video")
set url = @ for webcam

url = @
Hommmomoooooooo oo | TELEGRAM
ALERTS [=== === mmmm e #

toggle telegram alert feature (True/False)
Alert = False

28

telegram bot's chat ID and token
chat_id = "'
token =

toggle GPU usage for computations (True/False)
CPU used by default
Use_GPU = True

set minimum safe distance between 2 people (in cm.)
MAX_DISTANCE = 200 # (i.e. safe distance)
MIN_DISTANCE = 100 # (1.e. minimum safe distance)

set average height of a person (in cm.)
avg _height = 170

APPENDIXE - main.py

importing necessary Llibraries

from lib import config

from lib.detect facemask import DETECT_FACEMASK
from lib.detect import detect_humans

from lib.alerts import trigger

from imutils.video import FPS

from scipy.spatial import distance as dist
import numpy as np

import argparse, imutils, cv2, os, time

PARSING[-========mmemmme e #
argument parser to parse command Line arguments
ap = argparse.ArgumentParser()

29

ap.add_argument("-i", "--input", type=str, default="",
help="path to (optional) input video file")

ap.add_argument("-o", "--output", type=str, default="",
help="path to (optional) output video file")

ap.add_argument("-d", "--display”, type=int, default=1,
help="whether or not output frame should be displayed")

args = vars(ap.parse_args())

Loading YOLO facemask detector classes & object

classes = ["good", "bad", "none"]

detect_facemask = DETECT_FACEMASK("yolo/mask-yolov4-tiny.cfg",
"yolo/mask-yolov4-tiny.weights"”, classes)

initializing facemask detector size & confidence
detect_facemask.size = 416
detect_facemask.confidence = 0.5

facemask detector component colors
colors = [(@, 255, @), (@, 165, 255), (9, @, 255)]

Loading the COCO class Llabels
labelsPath = os.path.sep.join([config.YOLO PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")

deriving the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.YOLO PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.YOLO PATH, "yolov3.cfg"])

Lloading the YOLO object detector trained on COCO dataset (86

classes)
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

30

checking if there's GPU usage

if config.Use_GPU:
set CUDA as the preferable backend and target
print("")
print("[INFO] Looking for GPU")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

determining only the *output* Layer names that we need from YOLO
1n = net.getLayerNames()
1n = [1In[i[@] - 1] for i in net.getUnconnectedOutLayers()]

1f a video path was not supplied

creating a reference with source as the camera

if not args.get("input"”, False):
print("[INFO] Starting the live stream..")
vs = cv2.VideoCapture(config.url)
time.sleep(1.0)

else, creating a reference with source as the video file
else:

print("[INFO] Starting the video..")

vs = cv2.VideoCapture(args["input"])

writer = None

starting the FPS counter
fps = FPS().start()

iterating through the frames from the video stream
while True:

reading the next frame from the file

(grabbed, frame) = vs.read()

1f the frame was not grabbed, then we have reached the end of
the stream

if not grabbed:

break

resizing the frame
frame = imutils.resize(frame, width=700)

calling detect _facemask function to detect face & masks usage
in frames

width, height, inference_time, fm_results =
detect_facemask.inference(frame)

counter for mask usage
masked = ©
improper_masked = ©
unmasked = ©

Looping through facemask detector results
for detection in fm_results:

id, name, confidence, x, y, w, h = detection
cx =X+ (w/ 2)

cy =y + (h/ 2)

updating counters

if id == 0:

masked = masked + 1
if id == 1:

improper_masked = improper_masked + 1
if id == 2:

unmasked = unmasked + 1

drawing a bounding box rectangle and Label on the image
color_fm = colors[id]
cv2.rectangle(frame, (x, y), (X + w, y + h), color_fm, 2)
text fm = "%s (%s)" % (name, round(confidence, 2))
cv2.putText(frame, text fm, (x, y - 5),
CVv2.FONT_HERSHEY_SIMPLEX,
0.5, color_fm, 2)

formatting counters text
masked _text = "Masked: {}".format(masked)
improper_masked_text = "Improperly Masked:

32

{}".format(improper_masked)
unmasked_text = "Unmasked: {}".format(unmasked)

calling detect_humans function to detect only humans in the
frames

results = detect_humans(frame, net, 1n,
human_idx=LABELS.index("person"))

initializing the set of indexes that violate the max/min
social distance Limits

serious = set()

abnormal = set()

ensuring there are *at least* two people detections (required
in

order to compute our pairwise distance maps)

if len(results) >= 2:

extracting all centroids from the results and computing the

Euclidean distances between all pairs of centroids

centroids = np.array([r[2] for r in results])

extracting heights of all detected bounding boxes

pixel heights = np.array([r[1][3]-r[1][1] for r in results])

D = dist.cdist(centroids, centroids, metric="euclidean")

Loop over the upper triangular of the distance matrix
for i in range(9, D.shape[0]):
for j in range(i + 1, D.shape[1]):
calibrating the pixel distance to centimeters
calib_factor = (1/pixel _heights[i] +
1/pixel heights[j]) / 2 * config.avg height
D[i, j] = D[i, j] * calib_factor
check to see 1if the distance between any two
centroid pairs 1is less than the configured number
of pixels
if D[i, j] < config.MIN_DISTANCE:
update our violation set with the indexes of the
centroid pairs
serious.add(i)

33

serious.add(j)

update our abnormal set if the centroid distance
1s below max distance Limit

if (D[i, j] < config.MAX_DISTANCE) and not serious:

abnormal.add(i)

abnormal.add(j)

iterating through the results

for (i, (prob, bbox, centroid)) in enumerate(results):

extracting the bounding box and centroid coordinates, and
initializing the color of the annotation

(startX, startyY, endX, endY) = bbox

(cX, cY) = centroid

color = (@, 255, @)

1f the 1index pair exists within the violation/abnormal sets,
then update the color
if i in serious:
color = (0, @, 255)
elif i in abnormal:
color = (@, 255, 255) #orange = (06, 165, 255)

drawing: -

(1) a bounding box around the person and

(2) the centroid coordinates of the person
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 2)

drawing some of the parameters

Safe_Distance = "Safe distance: > {}
m.".format(config.MIN_DISTANCE/100)

cv2.putText(frame, Safe Distance, (505, frame.shape[0] - 15),

cv2.FONT_HERSHEY_SIMPLEX, ©.45, (255, 0, 0), 2)

Violations_Threshold = "Threshold limit:
{}".format(config.Violations_Threshold)

cv2.putText(frame, Violations Threshold, (505, frame.shape[0] -
37),

cv2.FONT_HERSHEY_SIMPLEX, ©.45, (255, 0, 0), 2)

34

drawing the total number of social distancing violations on

the output frame
cv2.rectangle(frame, (0, 0), (215, 50), (9, 0, 0), -1)

text = "Serious Violations: {}".format(len(serious))
cv2.putText(frame, text, (15, 20), cv2.FONT HERSHEY_ DUPLEX,
©.50, (0, @, 255), 1, cv2.LINE_AA)

textl = "Abnormal Violations: {}".format(len(abnormal))
cv2.putText(frame, textl, (15, 40), cv2.FONT HERSHEY_ DUPLEX,
©.50, (0, 255, 255), 1, cv2.LINE_AA)

displaying counters on screen

cv2.rectangle(frame, (520, 30), (700, 90), (0, 0, 0), -1)

cv2.putText(frame, masked text, (530, 40),
cv2.FONT_HERSHEY_SIMPLEX, ©.40, (0, 255, ©), 1, cv2.LINE_AA)

cv2.putText(frame, improper_masked text, (530, 60),
cv2.FONT_HERSHEY SIMPLEX, ©.40, (@, 165, 255), 1, cv2.LINE_AA)

cv2.putText(frame, unmasked text, (530, 89),
cv2.FONT_HERSHEY_SIMPLEX, ©.40, (0, ©, 255), 1, cv2.LINE_AA)

function[-----=----=----“-c----- #
alerts info array (to be passed to alerts module)
arr = [len(serious), masked, improper_masked, unmasked]

if len(serious) >= config.Violations_Threshold:
cv2.putText(frame, "ALERT: Violations exceeded limit!", (15,
frame.shape[0] - 20),
cv2.FONT_HERSHEY DUPLEX, 0.60, (0, @, 255), 2)
if config.Alert:
print("")
print('[ALERT] Sending social distancing alert...')
trigger(arr, 1)
print('[ALERT] Alert sent')

if unmasked > 3 or improper_masked > 0:

35

cv2.putText(frame, "ALERT: Face Mask Violation!", (15,
frame.shape[0] - 490),
cv2.FONT_HERSHEY DUPLEX, 0.60, (@, 165, 255), 2)
if config.Alert:
print("")
print('[ALERT] Sending face mask usage alert...')
trigger(arr, 2)
print('[ALERT] Alert sent')

checking to see 1if the output frame should be displayed

if args["display"] > @:

displaying the output frame

cv2.imshow("MaVvViSS AI - COVID19 Norms Surveillance System",
frame)

key = cv2.waitKey(1l) & OxFF

breaking Loop if 'ESC' key 1is pressed
if key == 27:
break
updating the FPS counter
fps.update()

1f an output video file path has been supplied and the video

writer has not been initialized, doing so now

if args["output"] != "" and writer is None:

initializing the video writer

fourcc = cv2.VideoWriter_ fourcc(*"MIPG")

writer = cv2.VideoWriter(args["output"], fourcc, 25,
(frame.shape[1], frame.shape[@]), True)

1f the video writer is not None, writing the frame to the
output video file

if writer is not None:

writer.write(frame)

stoping the timer and displaying FPS information
fps.stop()

36

print("[INFO] Elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))

closing any open windows
cv2.destroyAllWindows ()

37

FINAL REPORT BY SHARANYA JHA (BIT MESRA, INDIA)

Topic - Effects of hypobaric hypoxia on the functions
of our Brain

Mentored by — Prof. Abhinav Bhushan

e Area—Human Health (Engineering)
e Unmet needs in the topic -
» Persistent immune dysregulation during exploration missions
» Combined immune-suppressive effects of spaceflight environmental factors
when witnessed along with hypoxia is a cause of grave concern
VIIP syndrome (visual impairment / intracranial pressure)
Exercise countermeasures
Sensorimotor performance due to hypoxia
Acute mountain sickness
Cardiovascular degenerative effects
Oxidative stress

YV VYV VYV

e What has been done in the past?

» NASA gains the capability for efficient EVA with low DCS risk, but it also accrues
the human health and performance risks associated with the addition of
hypobaric hypoxia to the spaceflight environment

» Research addressing some of the unmet needs but no concrete solution as to
how to combat the need in the ISS and other manned missions.

e Answering the “Why” question

» High-altitude cerebral edema is associated with increased ICP (intracranial
pressure)

» AMS (Acute Mountain sickness) appears to be strongly associated with
increased optic nerve sheath diameter, reflecting increased ICP.

» Increased optic nerve sheath diameter has been found to correlate positively
with ICP based on the fact that the subarachnoid cerebrospinal fluid (CSF)
compartment communicates with the peri optic CSF space.

» With the addition of microgravity-induced intracranial hypertension, it is likely
that astronauts would develop greater increases in ICP in an 8.2/34
environment than in 14.7/21.

e Normobaric Vs Hypobaric hypoxia-
» Normobaric Hypoxia- This may be realized by a decrease in oxygen fraction
(FO2), without a change in PB. The effects are either not observed or observed
at a very low intensity when we talk about Normobaric hypoxia
» Hypobaric Hypoxia- This may be realized by a decrease in barometric pressure
(PB) leading to hypobaric hypoxia (HH). Intravascular bubble formation,

FINAL REPORT BY SHARANYA JHA (BIT MESRA, INDIA)

mismatched ventilation and perfusion, and altered gas density or fluid
permeability through the alveolar epithelium observed in HH

e How does it affect the brain?

>

>

Ocular and cerebral adaptations to microgravity and oxygen deprivation
associated with long-duration spaceflight

Ophthalmic changes consisting of disc oedema, posterior globe flattening,
choroidal folds, cotton wool spots, nerve fibre layer thickening, and decreased
near vision and hyperopic shifts

Psychomotor impairment (including incoordination and tremors)
Concentration, confusion, memory loss, flexibility, working memory, and
drowsiness

Postural control influenced by HH, and exacerbated by anteroposterior plane
with eyes wide open

e Secondary Factors that exacerbate HH- High levels of carbon dioxide in spacecraft
cabins, Heavy resistive exercise, Anthropomorphic changes due to microgravity, High
sodium diet. Additionally, an enzymatic polymorphism in the 1-carbon metabolism
cycle has recently been identified as a factor associated with the observed vision
changes, but is not clear if this is causative

e Approaches

>

Non-Medicinal Approach: Visual acuity tests, High resolution retinal imagery,
Visual field assessment, and detailed imagery of intracranial ophthalmic
structures, Inflight diagnostic ultrasound can show intra-orbital changes such
as globe flattening and optic nerve sheath distension over time. NASA’s
approach- Developing an in-flight OCT (Optical Coherence Tomography)
capability that could provide early recognition of microgravity-induced eye and
optic nerve changes

Lower body negative pressure to safely reduce intracranial pressure:
Weightlessness prevents the normal cerebral volume and pressure ‘unloading’
associated with upright postures on Earth, which may be part of the cerebral
and ocular pathophysiology

Usage of NGEN and QUR - Administration of flavonoid showed neuronal
protection and prevented the accumulation of ubiquitin and lesser caspase-3
activation. Mounting evidence suggest that mitochondrial electron chain acts
as an oxygen sensor, releasing reactive oxygen species in response to hypoxia
stress. NGEN and QUR are known antioxidant compounds and therefore, were
effective against the treatment of deficiency of oxygen caused due to a
pressure reduction.

Dual-Task Approach - The Transit Food System will deliver a food system during
the transit and the initial stay on the lunar or planetary surface. The Lunar/
Planetary Surface Food System will provide the crew with the proper nutrition
during the long-duration surface stay. These two food systems are intrinsically

FINAL REPORT BY SHARANYA JHA (BIT MESRA, INDIA)

different. The Transit Food System has to operate in microgravity, and the
Lunar/Planetary Surface Food System must operate in partial gravity, allowing
for more flexibility and more Earth-like operations.

Hydroponic System - Through hydroponic growth of fruits and vegetables,
tomatoes can be cultivated which comes under the category of ready to eat
salad crops. They can thus be the source of NGEN and QUR (flavonoids) that
can act as HH reducers in the body.

Summary of the Current NASA Food System - Space Shuttle, International Space
Station- All the food supporting these programs is processed to achieve shelf stability.
These processed foods are designed to provide crewmembers with a variety of menu
options that are ready to eat or that require only minimal preparation, such as adding
water to or reheating foods. NASA’s Advanced Food Technology (AFT) project team
is investigating the possibility of a partially bioregenerative food system on the
Martian surface. Fresh fruits and vegetables and possibly other commodities can be
grown hydroponically in environmentally controlled chambers.

Overall Solutions

>
>
>

Lower body negative pressure to safely reduce intracranial pressure

Usage of NGEN and QUR

Cultivation of ready to eat salad crops through a bio generative system in a
hydroponic environment

References

>

NASA Exploration Atmospheres Working Group, "Recommendations for exploration
spacecraft internal atmospheres: The final report of the NASA exploration
atmospheres working group. NASA Technical Publication NASA/TP-2010-216134,"
NASA, Johnson Space Center, 2010

P. D. Campbell, "Recommendations for Exploration Spacecraft Internal Atmospheres:
The Final Report of the NASA Exploration Atmospheres Working Group," NASA,
Johnson Space Center, Houston TX, January 2006.

G. P. Millet and V. Pialoux, "Point:counterpoint: hypobaric hypoxia induces / does not
induce different responses from normobaric hypoxia," J. Appl. Physiol., vol. 112, pp.
1783-84, 2012.

R. Mounier and J. V. Brugniaux, "Point:counterpoint: hypobaric hypoxiainduces / does
not induce different responses from normobaric hypoxia," J Appl Physiol, vol. 112, pp.
1784-86, 2012.

Naringenin and quercetin reverse the effect of hypobaric hypoxia and elicit
neuroprotective response in the murine model Aditi Sarkara , M. Sonia Angelinea ,
Kushi Ananda , Rashmi K Ambastaa , Pravir Kumara,b,c,n

Mission to Mars: Food Production and Processing for the Final Frontier Michele H.
Perchonok,1, Maya R. Cooper,2 and Patricia M. Catauro2

Reconfigurable Hardware Design For Signal Processing Applications

Shuvam Adhikary
Birla Institute of Technology

The analysis and evaluation of an ultrasonic data extracted from non-destructive testing applications is quite a difficult
task and arduous. This research provides the technique to analyse and improve ultrasonic signals on the basis of their
flaw(detect). Split Spectrum Processing and Post Processing Techniques such as Minimization and Averaging are used to
process the ultrasonic signal and greatly improve its flaw-to-clutter ratio(FCR). The algorithm can also be embedded
onto a field programmable gate array(FPGA) for the real time evaluation of the ultrasonic data.

I. INTRODUCTION

The most efficient and economical approach for
determining flaws in structures or materials such as
bridges, buildings is through non-destructive testing.
Ultrasonic signal plays a major role when it comes to
non-destructive evaluation of materials. However, the
clutter echoes resulting from the microstructure of
materials pose a serious problem in the detection of the
flaw in the ultrasonic scan. The A-scan is a one
dimensional data which contains information of clutter
echoes and flaw echoes. Due to the randomness of the
clutter echoes, the clutter echoes often mask the flaw and
since both the clutter echoes and the flaw span over the
same frequency range, it becomes difficult to decorrelate
the clutter and improve the flaw visibility. However, it is
possible to achieve clutter decorrelation by frequency
diversification i.e. by obtaining a set of frequency diverse
signals(multiple channels).

This project presents the method to improve the flaw
visibility of the ultrasonic images containing the flaws
through split-spectrum processing. Post-processing
methods such as minimization and averaging are used to
improve the flaw visibility. The parameter flaw-to-clutter
ratio(FCR) serves as the criterion to check the
improvement of the flaw visibility. Moreover, in future,
the algorithm can also be embedded onto a field
programmable gate array(FPGA) for the real time
evaluation of the ultrasonic data by designing an HLS
code/Verilog code from the corresponding MATLAB
code and burning the code onto the FPGA platform.

I1. SPLIT SPECTRUM PROCESSING

Sub-band decomposition also known as split spectrum
processing is an effective technique for obtaining the
frequency-diverse signals. However, the ultrasonic data
has to undergo through the various stages of split-
spectrum processing before providing the final result with
an improved flaw visibility. After the reception of the
echo from the sample under test, it passes through an
analog-to-digital converter. The A-scan then passes
through the Fast Fourier Transform(FFT) block, where

the A-scan in time domain is converted into its
corresponding frequency spectrum. The frequency
spectrum is then divided into various sub-frequency
bands by the sub-band filters present in the next
component. Inverse Fast Fourier Transform is applied
to each sub-frequency band to generate their
corresponding time domain signals. These signals from
each frequency band are then normalized before passing
them onto the post-processor block. The post-processor
block includes the order-statistics filters such as
minimization and averaging. These order-statistic filters
help to improve the flaw visibility by improving the flaw-
to-clutter ratio.

The flaw is more dominant in the low frequency region
rather than the high frequency region where it gets
suppressed. Hence, the sub-band filters are concentrated
more onto the low frequency region of the frequency
spectrum to obtain maximum information about the flaw.
The efficient extraction of information about the flaw
highly depends upon the number of channels used to filter
the frequency spectrum. More the number of channels,
more is the possibility to isolate the flaw echo from the
undesired noise. This project presents the results obtained
using 8 channels. Again, the maximization of FCR highly
depends on the selection of the size of the filters and the
degree of overlap between the channels. Hence, the
proper selection of both the size of the filter and the
degree of overlap becomes a major task.

The post-processor combines all the normalized signals
coming from each channel after the inverse fast fourier
transform to reconstruct the original time-domain signal
but with an improved FCR. There are various order
statistics filters such as Minimization, Averaging, Median,
Polarity checker, Geometric Mean etc. However, it is
found that the FCR is greatly improved when
minimization and averaging are employed as the post-
processors. Hence, this project presents the results
obtained through the post-processors Minimization and
Average. There are certainly limitations to these
processors. When there are a number of channels
exhibiting null observations i.e. the clutter information is
more dominant and the flaw echo information is almost
negligible, these processors tend to suppress the flaw

echo information to the extent that the information is
almost negligible while the clutter information is
enhanced greatly which is quite opposite to the desired
result.

The mathematical expressions for these post-processors
are as follows:

I. Minimization:
Opin(n) = minf[z (n), j=12,...,k

II. Averaging:

d’a\-’(n) = %le,}(”)l

=1

The performance of these post-processors is calculated
and compared using the parameter Flaw-to-clutter ratio.
The FCR is the logarithmic ratio of the maximum flaw
echo amplitude to the maximum clutter echo amplitude.
The mathematical expression for the FCR is given by:

FCR = 20 x log10(F/C)

where F is the maximum amplitude of the flaw echo and
C is the maximum amplitude of the clutter echo.

III. RESULTS

An algorithm was designed implementing the following
processes:

1. Importing and reading the A-scan data in MATLAB.

2. Applying FFT onto the A-scan data.

3. Splitting the frequency spectrum obtained into 8 sub-
frequency bands with variable window size and degree
of overlap.

4. Applying IFFT to all the 8 channels.

5. Normalizing the data of all the 8 channels after the
inverse FFT.

6. Applying the post-processors minimization and
average to reconstruct the original time domain signal
with the improved FCR.

The algorithm was implemented on 14 experimental(real)
ultrasonic A-scans. The results for minimization and
averaging were plotted along with the 8 decomposed
channels. The FCR was calculated for the original data
and also after the minimization and averaging steps. The
FCR obtained from these post-processors was then
compared with the original FCR to evaluate the
improvement in the flaw visibility.

The following plots give information about the original
experimental(real) ultrasonic A-scan data, the 8 channels
or the sub-frequency bands, the time domain signal after
minimization and the time domain signal after averaging
for all the 14 experimental(real) ultrasonic A-scan data.

I. Newscanl

A-Scan Plot
60 ; ‘
40
20+ ,
‘HW {“M l I’M.\ 1“! | |I (Bl
o o WAL O
E WIIU \\ W | n', \'||U \MM N M} i Ul
=5 | [
E -20 |
-40 b
-60 |-
-80 ’ : : !
0 500 1000 1500 2000 2500
Data Samples
Fig.1.1 Experimental A-Scan plot for Newscanl
O SR | T P]
JD 500 1000 1500 2000 2500
;%»«_MW& mw%,, S e :N T N:"'\/V\/'\/'\".“I‘III\"\-V'\AN‘N:L’\ 1
710 500 1000 1500 2000 2500
e e T T]
40 500 1000 1500 2000 2500
T]
7“D 500 1000 1500 2000 2500
s :]
o 500 1000 1500 2000 2500
2l z ! : G +
o ‘ ‘ .l ‘
o 500 1000 1500 2000 2500
1 T T T
o - ‘ e il]
o 500 1000 1500 2000 2500
Pl ‘ el]
] 500 1000 1500 2000 2500
Fig.1.2 8 Observation channels for Newscanl
4 Minimization Post-Processor Result
0.9
0.8
07+
o 06
O
E
£ 05
o
]
=gl
031
0.2
0.1
0 1By ol P M A AT i N A AL Y AL A
0 500 1000 1500 2000 2500

Data Samples

Fig.1.3 Minimization post-processor result for Newscan!

Magnitude

Amplitude

Average Post-Processor Result

1 T T T T

0 500 1000 1500 2000

Data Samples

2500

Fig.1.4 Average post-processor result for Newscanl

II. Newscan2

A-Scan Plot

40 T T T T

30

20 -

40 I I L I

0 500 1000 1600 2000

Data Samples

2500

Fig.2.1 Experimental A-Scan plot for Newscan2

WJWVV\M nfv\/\/vmw\/\pm\/\f

]

1500 2000 2500
: .
DRML\/\/M\/\AMNV\/V\W/\/\/\/\WU 5
] A
2500
1 : . T .
Ohn/-’vv\l‘«J\—NvW\f 'I
o p) i
0 500 1000 1500 2000 2500
1 ! ! . !
0 ‘I‘U\MN\‘\IJ\/\/ <|
.) ! f ¥
0 500 1000 1500 2000 2500
1 | ! . !
D)‘U\I\WV\/WM/\P—\/WM—’VW «I
¥ ! ! !)
0 500 1000 1500 2000 2500
1 : . T .
N A +
,?WW""V' Ll : A :
0 500 1000 1500 2000 2500
"o 500 1000 1500 2000 2500
| ! . ,
D‘“"u"v i A ; W \MU'V\NWW\N‘—’ .I
500 1000 1500 2000 2500

Fig.2.2 8 Observation channels for Newscan2

0.8

0.7

0.6

0.5

04

Magnitude

Minimization Post-Processor Result

500 1000 1500 2000 2500

Data Samples

Fig.2.3 Minimization post-processor result for Newscan2

0.9

Magnitude
o o o o o o
w = [4)] >» ~ o

o
[N

0.1

Average Post-Processor Result

500 1000 1500 2000 2500
Data Samples

Fig.2.4 Average post-processor result for Newscan2

30

20

Amplitude
o

.
o

-20

-30

II1. Newscan3

A-Scan Plot

500 1000 1500 2000 2500
Data Samples

Fig.3.1 Experimental A-Scan plot for Newscan3

0.9

Magnitude
© o o o o o
w EN 5 o ~ co

o
]

. . . .
MWWM : . \ +
500 1000 1500 2000 2500
: , v .
s S
; ‘ : :]
500 1000 1500 2000 2500

500 1000 1500 2000 2500
T T T T
‘ : . ;]
500 1000 1600 2000 2500
Al A H i 0 4
h ok I L i | | il

500 1000 1500 2000 2500

500 1000 1500 2000 2500
e n A : N W\ 4
LLb L L L il

500 1000 1500 2000 2500

R Attt i

500 1000 1500 2000 2500

Fig.3.2 8 Observation channels for Newscan3

Minimization Post-Processor Resuilt

500 1000 1600 2000 2500
Data Samples

Fig.3.3 Minimization post-processor result for Newscan3

0.9

Magnitude
o o o o o ©
w ES W [} ~ oo

o
]

0.1

Average Post-Processor Result

500 1000 1500 2000 2500
Data Samples

Fig.3.4 Average post-processor result for Newscan3

IV. Newscan4

25

Amplitude

A-Scan Plot

55 ‘ ‘ i ‘
0 500 1000 1500 2000 2500
Data Samples
Fig.4.1 Experimental A-Scan plot for Newscan4
1 T T T :
0 : ‘ : :]
710 500 1000 1500 2000 2500
0 ; ; ; :]
710 500 1000 1500 2000 2500
1 T T T %t
e T
o 500 1000 1500 2000 2500
1 T T T T
o i T e]
o 500 1000 1500 2000 2500
r T T T T
i ‘ ‘ T e
o 500 1000 1500 2000 2500
1 m o m y mm 3
o 500 1000 1500 2000 2500
1 T T T
o ‘ ; : i
-“D 500 1000 1500 2000 2500
1 T T T
Rttt ; :]
7“0 500 1000 1500 2000 2500
Fig.4.2 8 Observation channels for Newscan4
4 Minimization Post-Processor Result
09 f 1
08 !
07t 1
o 06 1
b=
E
'€ 05 1
o
©
=gl 1
03 1
0.2 1
0.1 1
0 L .. I uouJlL. QTR | i AT R Wt R LA
0 500 100 1500 2000 2500

Data Samples

Fig.4.3 Minimization post-processor result for Newscan4

09r

Magnitude

o o o o o

£ o [=2] ~ -]
. T

o
w

<o
[S]

0.1

Average Post-Processor Result

500 1000 1500 2000 2500
Data Samples

Fig.4.4 Average post-processor result for Newscan4

20

V. Newscan5

A-Scan Plot

o

Amplitude
o

500 1000 1500 2000 2500
Data Samples

Fig.5.1 Experimental A-Scan plot for Newscan5

: ; / :]

o 500 1000 1500 2000 2500
1 T T T T

°]
E ‘ ‘ . ‘

o 500 1000 1500 2000 2500
1 T T T 1

0]
k: ‘ ‘ . ‘

0 500 1000 1500 2000 2500
pym » : PEvFr]
3 | e]
o 500 1000 1500 2000 2500
1‘ T T T In T

o 500 1000 1500 2000 2500

500 1000 1500 2000 2500
T T T T
‘ ‘ ; ;]
500 1000 1500 2000 2500

500 1000 1500 2000 2500

Fig.5.2 8 Observation channels for Newscan5

Magnitude

09

0.7 1

06

047

0.2

0.1

Minimization Post-Processor Result

Ll Ll \LL il ...m..Ll..
1000 1500
Data Samples

2000 2500

Fig.5.3 Minimization post-processor result for Newscan5

Magnitude

Amplitude

1 T

09

o
co
T

o
)
T

o
o
T

o
4]

<o
S

Average Post-Processor Result

0 500

1000 1500 2000 2500
Data Samples

Fig.5.4 Average post-processor result for Newscan5

30 T

VI. Newscan6

A-Scan Plot

20

o

.
o

-20

o

500

1000 1500 2000 2500
Data Samples

Fig.6.1 Experimental A-Scan plot for Newscan6

e e et i :]

500 1000 1500 2000 2500

500 1000 1500 2000 2500
1 T T T T T
i
_? WAt Ay W . «I
500 1000 1500 2000 2500
1 T T T T
0 ‘ ‘ . ‘ 1
500 1000 1500 2000 2500
1 T T T T
W y I
500 1000 1500 2000 2500
T r T T
DWJ M w wy . vnu"v ot _I
E 500 1000 1500 2000 2500
1 T T T T
m A N " N i T
e e e ey T]
0 500 1000 1500 2000 2500
1 y T T n T
o {lte ool e]
-1
500 1000 1500 2000 2500

0.9

0.8

Magnitude
(=]
(5]

Fig.6.2 8 Observation channels for Newscan6

Minimization Post-Processor Resuilt

P LOPLL LIS GV UL P A
500 1001 1600 2000 2500

Data Samples

Fig.6.3 Minimization post-processor result for Newscan6

Magnitude
o
[5)]

Average Post-Processor Result

500 1000 1500 2000 2500

Data Samples

Fig.6.4 Average post-processor result for Newscan6

VII. Newscan7

Amplitude

Magnitude

60

40

20

o

.
]
=]

-40

-60

A-Scan Plot

500 1000 1500 2000 2500

Data Samples

Fig.7.1 Experimental A-Scan plot for Newscan7

o]
i h h . h

0 500 1000 1500 2000 2500
1 T T T T

o frA WA s]
4 !) . Y

0 500 1000 1500 2000 2500
1 T r T T
AN A PAA AN A AR AN 4

opn o e s : ; i
0 500 1000 1500 2000 2500
Q.Wmmm\www Ty ; y ool]
g h ! | h

0 500 1000 1500 2000 2500
1 — T v T
if Z)]
0 500 1000 1500 2000 2500
10 T r T T

o T —|]
1 h | f |

0 500 1000 1500 2000 2500
1 r r r r
O AT | e i
0 500 1000 1500 2000 2500
1 T r T T

0 WW\WMWWWW <|
1 h h | |

0 500 1000 1500 2000 2500

09

0.8

0.7

Fig.7.2 8 Observation channels for Newscan7

Minimization Post-Processor Result

U Nl Ah’i

500 1000 1500 2000 2500

Data Samples

Fig.7.3 Minimization post-processor result for Newscan7

Magnitude

Amplitude
)
o

Average Post-Processor Result

1 T T T
09r !

0.8 1

0 I I L .
0 500 1000 1500 2000 2500

Data Samples

Fig.7.4 Average post-processor result for Newscan7

VIII. Newscan8

A-Scan Plot

60 T

20 | 1

[=]
L

-40 1

-60 1

0 500 1000 1600 2000 2500
Data Samples

Fig.8.1 Experimental A-Scan plot for Newscan8

ORI SN AN AT N AT]

0 500 1000 1500 2000 2500
1 . T T ;
-“:I' \ ; W_/\f«lfvw\ﬁ/\/ﬂm{\ -I
0 500 1000 1500 2000 2500
1 : T T T
ofw ‘ ; : : i
0 500 1000 1500 2000 2500
1 . . T .
i ‘ ‘ e
0 500 1000 1500 2000 2500
1 : : T :
_113 i ; -«mwllvwv\r\ﬂf\[vv\ww‘w\ «I
0 500 1000 1500 2000 2500
1 : T T i
i ‘ ‘ T N
0 500 1000 1500 2000 2500
1 T : T :
I\ n <|
'13"’ . b h W !
0 500 1000 1500 2000 2500
wrrrrrn o
i} . bl L i} h
e
0 500 1000 1500 2000 2500

Fig.8.2 8 Observation channels for Newscan8

Magnitude

Minimization Post-Processor Result

0.9 T T T
08 !

0.7 1

o
o
T
.

2500

Data Samples

Fig.8.3 Minimization post-processor result for Newscan8

Magnitude

Amplitude

Average Post-Processor Result

1 T T T
09 !

08 1

o
4]

0 500 1000 1500 2000 2500
Data Samples

Fig.8.4 Average post-processor result for Newscan8

IX. Newscan9

A-Scan Plot

80 T

60 1

IS
o
T
L

n
=]
T
L

o
L

)
=]
T
L

IS
S
T
1

-60 - 1

0 500 1000 1500 2000 2500
Data Samples

Fig.9.1 Experimental A-Scan plot for Newscan9

Magnitude

0.

0.

=4
b
T

o <o
3] <]
T T

<
~
T

1
0 FmJVVﬂawVN%\ﬂW\AINMMMﬂWMfU“‘UWWMNm:/J «I
el

0 500 1000 1500 2000 2500
1 T T T T
e e ulwmnmﬁul‘lﬁnw «I
A

0 500 1000 1500 2000 2500
1r T T T T T
o ; : oo e i

0 500 1000 1500 2000 2500
ar T T T il T

I

L . , . AL . +

0 500 1000 1500 2000 2500
10 T T T T T
o ‘ ‘ -l i i

0 500 1000 1500 2000 2500
1 T T T T T
ot T]
A h . A .

0 500 1000 1500 2000 2500
10 : : . = :

N N " A

S i ! ’ i 3 4

0 500 1000 1500 2000 2500
1 T T T T
e ‘ . st]
4

0 500 1000 1500 2000 2500

Fig.9.2 8 Observation channels for Newscan9

9

500 1000 1600

Minimization Post-Processor Resuilt

2000 2500
Data Samples

Fig.9.3 Minimization post-processor result for Newscan9

Magnitude

S
~
T

0.

e
-]
T

o o o o e
L] w 3] @ ~
T T T T

o

gt

Average Post-Processor Result

0

Rl ‘%M%\MWMMMMMMW Mw,'}‘ 1

1000 1500 2000 2500
Data Samples

Fig.9.4 Average post-processor result for Newscan9

X. Newscanl10

60

40

20

Amplitude

-20

-40

-60

-80

A-Scan Plot

L

il il
‘W’h |

I Ir "ll / {f\’\"'l J’ W) "UWI“MWMM“}”WWW%

Data Samples

500 1000 1500 2000

2500

Fig.10.1 Experimental A-Scan plot for Newscan10

1
0 }z\.\f\,\,\fw\,\ APIAS AP pA Aot Jq‘hlﬁv‘” W,
b | . | \

o 500 1000 1500 2000 2500
A

0 AN e rmrmorrnrrettnenl| [WA,
¥ ! ; ; v }

o 500 1000 1500 2000 2500
1 T T T T T

:, W,.‘va‘.mw.kwww‘uw, ,,\A,w«‘w\w.luﬂh,wm”v‘m 4

[} 500 1000 1500 2000 2500
1 T T T i T
gl ! ! ! W ! ‘I

0 500 1000 1500 2000 2500
1 T T T i T

N ;

o 500 1000 1500 2000 2500
1 [T T T i T
_i' C " ’ L oY | ‘I

o 500 1000 1500 2000 2500
1 [T z T T i T

o e A 3

o 500 1000 1500 2000 2500
1 [T T T T

] +

k] i " ? " il 3

] 500 1000 1500 2000 2500

Fig.10.2 8 Observation channels for Newscan10

0.9

0.8

0.7

0.6

0.5

Magnitude

0.4

0.3

0.2

0.1

Minimization Post-Processor Result

500 1000 1500
Data Samples

2000

2500

Fig.10.3 Minimization post-processor result for Newscan10

Average Post-Processor Result Minimization Post-Processor Result

1 ‘ ; ‘ 0.8 : ‘ ‘
09 | 07F E
0.8 1

06 F :
07 1
05| 1

Magnitude
o o
o [=2]
Magnitude
o
S

<o

'S
o
w

T

L

o
w

<o
[S]
e
[S]
T
L

0.1

Amplitude

§ ‘ ! !
0 500 1000 1500 2000 2500 2500
Data Samples Data Samples
Fig.10.4 Average post-processor result for Newscan10 Fig.11.3 Minimization post-processor result for Newscan11
XI. Newscanl1 ; Average Post-Processor Result
A-Scan Plot b]
a0 ; ‘ : ‘
08t |
- | 07t 1
o 06 g
o
2
10 1 Eosf 1
o
]
=04t :
B |
0.3 1
0.2 1
-10 1
0.1 1
20 + 1 0 . . I "
0 500 1000 1500 2000 2500
Data Samples
5 ‘ ; ; ;
0 500 1000 1500 2000 2500
Data Samples Fig.11.4 Average post-processor result for Newscanl11
Fig.11.1 Experimental A-Scan plot for Newscan]11 XII. Newscan12
A-Scan Plot
40 T T T T
1 T T .
s A e a Sy] 30]
° 0 500 1000 1500 2000 2500
1 T T :
_gli WVWW\M/ -I 20 q
0 500 1000 1600 2000 2500
o T ! T] 10 :
710 500 1000 1500 2000 2500 % ‘]
1 ; . " : 2
0 : o= . : i g0 | 1
o 0 500 1000 1500 2000 2500 E
1 T T T T
=10 4
e e— . ‘]
0 500 1000 1500 2000 2500
: : : : :] *
710 500 1000 1500 2000 2500
1r T T T ol T -30 g
b - i ‘ el | ‘]
0 500 1000 1500 2000 2500
1 T vFFR T o T 40 L L
-“:IP WW L AW L | WY L -I 0 500 1000 1500 2000 2500
0 500 1000 1500 2000 2500 Data Samples

Fig.12.1 Experimental A-Scan plot for Newscan12
Fig.11.2 8 Observation channels for Newscan11

A-Scan Plot

1 T T T T 25 T T
o ; ; AWM i

0 500 1000 1500 2000 2500 20 1
1 T T T T
7? / : WWIWW «I i |

[] 500 1000 1500 2000 2500

1 T T T i

DW : ‘ - M/\M\rwvm,‘\t\ <| 10 |
10 500 1000 1500 2000 2500

10 T T T M T 5 R
of : ‘ ey et] -

0 500 1000 1500 2000 2500 ‘_'=l 0 4
1 T T T T m T
b T e T] g

0 500 1000 1500 2000 2500 -6 7
1 T T T T
0 Www\n/ww s A ; e ; u\f'w ; ‘I -10 1
710 500 1000 1500 2000 2500
e e : ‘] 15 f
: ; ‘ : :

[} 500 1000 1500 2000 2500

1 T T T T -20 1
0 : ‘ : :]
o 500 1000 1500 2000 2500 -25 3 . g ;

0 500 1000 1500 2000 2500
Data Samples
Fig.12.2 8 Observation channels for Newscan12 Fig.13.1 Experimental A-Scan plot for Newscan13

’ Minimization Post-Processor Resuilt

1 T T T :
,? WWMWWWP’“NLJ\F\N\ «I
09r g 1500 2500
08l | L MWNWWMWM]
2500
o7t 1 W\memwwwmmwwmww\wmﬂ\]
. 1500 2500
g 0.6 1 QNU\WW\N\WWWMWWWWM -I
"E 05F 4 7“0 500 1000 1500 2000 2500
o 1 T T T T
2 oal | o T e ey]
- 0 500 1000 1500 2000 2500
1 T T T T
03+ | _? M&WNVWMMVW«WWWWMWWWQ -I
1500 2500
0.2 1 WWVWNWWWNVwVWVWMVWVM -I
| g 2000 2600
e i L T 000 1500 2000 2500
0 500 1000 1500 2000 2500
Data Samples
Fig.12.3 Minimization post-processor result for Newscan12 Fig.13.2 8 Observation channels for Newscan13
’ Average Post-Processor Result - Minimization Post-Processor Result
0.9 1
0.8 1
0.7 1
@ 06) °
- b=
=2 2
Z 05 1 £
o o
@O ©
= 04 1 =
0.3 1
0.2 1
0.1 1
0 L L i L i A, Ui iy BN ¥ i
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Data Samples Data Samples
Fig.12.4 Average post-processor result for Newscan12 Fig.13.3 Minimization post-processor result for Newscan13

XIII. Newscanl3

’ Average Post-Processor Result

Magnitude
o o o o o
£ o [=2] ~ [+-]
T

o
w

M’ | ‘

!J "|H MJ W |

0 I L
0 1000 1500 2000 2500

Data Samples

<
[S]

0.1

Fig.13.4 Average post-processor result for Newscan13

XIV. Newscanl4

A-Scan Plot
40 T T T T

'J

40 . . L .
0 500 1000 1600 2000 2500

Data Samples

o

Amplitude
o

o

£ —

0
=}

-30

Fig.14.1 Experimental A-Scan plot for Newscan14

0 ff\/‘ VAATEAANAAAANAN U AAA]
& 500 1000 1500 2000 2500

\[\/”\/—\/‘r\ﬁ/\f\/\rvv\/\/”\/\/\ J’ y \j\f‘ /VV' -I
500 1000 1500 2000 2500

0 Wﬁf\/’\r\,”\/\fwvm\ VAN NSV 5
g 500 1000 1500 2000 2500

oer T]
4 500 1000 1500 2000 2500

0 waw W"JVV\M\N"‘J‘N’\N"JW\‘V"WVV‘\‘/\N\F r»«/\mwﬁmmm)' W w»wﬁ 1
- 0 500 1000 1500 2000 2500

0 sz\mwwm'tﬂ |||w\,n}u\ymw\m|.m WMFU.,WNW:\WWW A ‘\'\ J'\‘{I“"WNW\:N. +
4 500 1000 1500 2000 2500

7? WM('MI'“I T e e]
500 1000 1500 2000 2500

wawul“.l’ oot J
= 500 1000 1500 2000 2500

Fig.14.2 8 Observation channels for Newscan14

Minimization Post-Processor Result

0.9

08

06

0471

Magnitude

1000
Data Samples

1500

2000 2500

Fig.14.3 Minimization post-processor result for Newscan14

1 T

Average Post-Processor Result

09

0.7 1

0.6

Magnitude

oal

A i

ol F»Wa rllw

I\

N

ml |}

e
i
WJ |

0 500

1000

1500

Data Samples

2000 2500

Fig.14.4 Average post-processor result for Newscan14

Table 1. gives the values of the original FCR, FCR after
minimization, the improvement in the FCR and also the
window size and the degree of overlap for each
experimental(real) ultrasonic A-scan data.

Newscan | FCR_Original | FCR_Min FCR_Improved | Window_Size | Gap
1 5.7533 17.5633 11.81 60 10
2 -2.0708 12.5489 14.6197 40 7
3 -7.2636 1.7421 9.0057 60 4
4 -0.7558 6.7358 7.4916 60 8
5 -3.7417 8.6275 12.3692 60 7
6 -3.5218 7.4467 10.9685 60 5
7 -4.1990 7.4858 11.6848 60 7
8 -0.1436 9.7097 9.8533 40 6
9 5.7533 18.3009 12.5476 60 11
10 6.7634 17.3859 10.6225 60 9
11 0.9485 11.7854 10.8369 40 6
12 0 10.1034 10.1034 60 9
13 -2.8534 1.3033 4.1567 60 4
14 -1.7430 10.0454 11.7884 40 8

Table 2. gives the values of the original FCR, FCR after
averaging, the improvement in the FCR and also the
window size and the degree of overlap for each
experimental(real) ultrasonic A-scan data.

Newscan | FCR_Original FCR_Avg | FCR Improved Window_Size Gap
1 5.7533 10.1378 4.3845 60 10
2 -2.0708 7.4609 9.5317 40 7
3 -7.2636 0.9049 8.1685 60 4
4 -0.7558 44715 5.2273 60 8
5 -3.7417 5.9771 9.7194 60 7
6 -3.5218 3.9363 7.4581 60 5
7 -4.1990 5.8432 10.0422 60 7
8 -0.1436 7.2634 7.407 40 6
9 5.7533 10.9165 5.1632 60 11
10 6.7634 12.0558 5.2924 60 9
11 0.9485 6.0616 5.1131 40 6
12 0 6.1863 6.1863 60 9
13 -2.8534 1.3367 4.1901 60 4
14 -1.7430 2.8719 4.6149 40 8
IV. DISCUSSION

It can be seen from the results obtained that the
experimental(real) ultrasonic A-scans having a quite good
FCR originally such as the scans 1, 9 10 have been
tremendously improved. Also, the experimental(real)
ultrasonic A-scans which do not have quite a good FCR
originally and the flaw is very poorly visible such as the
scans 3, 5, 6, 7 have also been greatly improved in terms
of their FCR and visibility.

Future work would include:

I. Implementing a Neural Networks Post-Processor for
the best results.

II. Embedding the corresponding HLS code/Verilog code
onto an FPGA platform for real time evaluation of the
ultrasonic data.

III. Implementing both FPGA and ARM together.

Implementing the algorithm onto the FPGA platform
would require the following blocks:

I. A block which captures the incoming data from the
ADC and the transducer.

II. A block which implements the split spectrum
processing and contains the components for FFT,
windowing, IFFT, normalization and the post processor.
III. A block for communication with the host PC.

IV. A Finite State Machine for controlling the process
flow of the split-spectrum processing and data acquisition
and transmission.

V. The output may be visualised on a LCD or softwares
such as GTKWave.

V. CONCLUSION

Both minimization and averaging post processors produce
quite satisfying results and improve the flaw visibility to
a great extent. However, the minimization post-processor
is quite better than the averaging post-processor in
isolating the flaw and greatly maximizing its visibility
while suppressing all the clutter echo information.

Table 3. provides a direct comparison between the
improvement in the FCR of minimization and average
post-processors.

Newscan FCR_Original FCR_Improved(Min) | FCR_Improved(Average)
1 5.7533 11.81 4.3845
2 -2.0708 14.6197 9.5317
3 -7.2636 9.0057 8.1685
4 -0.7558 7.4916 5.2273
5 -3.7417 12.3692 9.7194
6 -3.5218 10.9685 7.4581
7 -4.1990 11.6848 10.0422
8 -0.1436 9.8533 7.407
9 5.7533 12.5476 5.1632
10 6.7634 10.6225 5.2924
11 0.9485 10.8369 5.1131
12 0 10.1034 6.1863
13 -2.8534 4.1567 4.1901
14 -1.7430 11.7884 4.6149
VI. ACKNOWLEDGEMENT

I would like to extend my sincere thanks to Dr. Erdal
Oruklu for giving me this opportunity to work under him
on this research. I thank him for the constant support and
guidance throughout the research . I would also like to
thank him for all the knowledge he gave me about the
processing of ultrasonic signals. I would also like to
acknowledge ISRE undergraduate research programme
for giving me the opportunity to work under Dr. Erdal
Oruklu.

VII. REFERENCES

1. Jafar Saniie, Fellow, IEEE, Erdal Oruklu, Senior
Member, IEEE, and Sungjoon Yoon

System-on-Chip Design for Ultrasonic Target
Detection Using Split-Spectrum Processing

and Neural Networks

IEEFE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Co ntrol, vol. 58, no. 7, July 2011

ENGR 498-07 Research in Artificial Intelligence and Deep Learning

Artificial Intelligence System for Emotion
Recognition and Text Analytics

Team Members:

Reshu Agarwal
Namrata Chaudhari
Meghna Narwade

Advisor: Dr. Jafar Saniie

Summer 2021

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Artificial Intelligence System for Emotion Recognition
and Text Analytics

ABSTRACT :

Companies around the world are trying to harness the power of emotional
intelligence to improve their business processes. Emotional analysis can help to gain an
accurate understanding of customer response which can be used to improve an existing
process, seize new opportunities, and reduce costs in any business facing customers.
In this project, we propose an artificial intelligence based stand alone system which will
allow us to classify and analyse facial expression in real time and perform sentiment
analysis by examining the body of the text (extracted from audio) to understand the
opinion expressed by it. This helps us provide a deeper understanding of how
customers really feel at a given time. The proposed system uses a deep neural network
(DNN) for classifying 8 basic emotions based on features extracted from facial
expression and uses pretrained sentiment analysis tools to quantify text (extracted from
audio) based on polarity.

INTRODUCTION :

The aim of this project is to build a stand alone system capable of classifying
emotions from real time video and categorizing the text extracted from audio as positive,
negative or neutral. This can be used by users to analyze and improve their behavioral
skills and maintain a good conversation tone. It can be used by companies in the
market research industry by employing behavioral methods that observe user’s reaction
while interacting with a brand or product along with the traditionally used review
analysis. The proposed system extracts the audio and visual cues from real time audio
and video respectively, and uses these extracted cues to perform facial expression
recognition and text sentiment analysis. The facial expression recognition pipeline
classifies emotions from the detected faces in the frame (of the video) using a deep
neural network by extracting vectorized landmarks features from the detected faces.
The text sentiment analysis pipeline uses pretrained sentiment analysis tools provided
in various Pythonic NLP libraries.

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

RELATED WORKS:

Effective communication involves two components: Verbal cues and Non verbal
cues. The proposed system covers the verbal aspect of communication by performing
text sentiment analysis and non-verbal aspect of communication by analysing facial
expressions.

Facial emotion detection system:

In recent years, advances in facial expression detection have accelerated, and more
and more experts have been involved in the development of emotion recognition. The
research of expression recognition in computer vision focuses on the feature extraction
and feature classification. Feature extraction refers to extracting landmarks from faces

that can be used for classification from input pictures or video streams. There are
multiple methods for feature extraction from detected faces. The facial expression
classification refers to the use of specific algorithms to identify the categories of facial
expressions according to the extracted features. Commonly used methods of facial
expression classification are Hidden Markov Model (HMM), Support Vector Machine
(SVM), AdaBoost, and Artificial Neural Networks (ANN).

Techniques for facial emotion detection using landmark extraction :

Number of | Method of Dataset used Classifier | Accuracy

Research Paper landmarks | landmark used

detection
Real time emotion 10 Manually Own database CNN 93.02%
recognition system placed through
using facial optical flow
expression and algorithm
EEG
Real time facial 22 Manually CK+ database SVM 86.0%
expression placed using
recognition in Video feature

displacement

approach
Real-time Mobile 77 Extracted CK+ database SVM 85.8%
Eacial Expression using STASM
Recognition System library

https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib37
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar_lookup?title=Real%20time%20facial%20expression%20recognition%20in%20video%20using%20support%20vector%20machines&publication_year=2003&author=P.%20Michel&author=R.%20El%20Kaliouby
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study

A fuzzy logic 68 Extracted CK+ database FURIA 83.2%
approach for real using DLIB
time facial library
recognition of facial
emotions
Our approach: 68 Extracted Images from CK+ | DNN 86.75%
Response using DLIB database,
sentiment analysis library JAFFE database,
system. TFEID database,
RaFD database

Text Sentiment Analysis:

In the proposed system, text sentiment analysis is performed on the extracted real time
audio which is converted to text. Speech to text conversion can be done using various
available API’s and python libraries.

The most popular speech to text conversion APls include Google Cloud Speech, IBM
and Rev.ai

Link Result
A Benchmarking of IBM le an This research paper differentiates among 1BM,
Wit Automatic Speech Recognition Google cloud speech, & Wit.
Systems Result: Google Cloud Speech dominates
Which Automatic Transcription Differentiating among various speech to text
Service is the Most Accurate? APIs available
Result: 1st Google cloud speech & 2nd Temi by
Rev.ai
How Reliable is Speech-to-Text in An article that differentiates among different
20217 speech to text APIs.
Result: 1st Temi by Rev.ai & 2nd Google cloud
speech

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/
https://medium.com/descript/which-automatic-transcription-service-is-the-most-accurate-2018-2e859b23ed19
https://medium.com/descript/which-automatic-transcription-service-is-the-most-accurate-2018-2e859b23ed19
https://www.cxtoday.com/speech-analytics/how-reliable-is-speech-to-text-in-2021/
https://www.cxtoday.com/speech-analytics/how-reliable-is-speech-to-text-in-2021/

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Sentiment analysis (opinion mining) is a text mining technique that uses machine
learning and natural language processing (nlp) to automatically analyze text for the
sentiment of the speaker (positive, negative, neutral). Text Sentiment analysis is
normally implemented using 2 approaches:

1. Constructing supervised machine learning and deep learning models. Text
sentiment can be classified using machine learning models like Support Vector
Machine (SVM), Naive Bayes and Decision Tree.

2. Using unsupervised lexicon based approaches. Determining polarity of text using
pretrained sentiment analysis tools from various Python NLP libraries (TextBlob,
Vader)

We have used an unsupervised lexicon based approach to implement text sentiment
analysis.

SYSTEM COMPONENTS:

The proposed system can be implemented using a laptop PC. In addition we
have used Nvidia’s Jetson nano as a hardware component. Jetson nano is a compact,
low voltage System on Chip (SoC) designed to carry out programmed instructions. It
provides Maxwell 128 core GPU emphasized on Deep Learning in its hardware design
and software libraries. It is capable of running multiple neural networks in parallel for
applications like image classification, object detection, segmentation, and speech
processing. The Jeston nano is powered using a SW 4A power supply. The camera
used is Raspberry Pi MIPI CSI which has a frame rate of about 90 fps.

The programming language used to code the system is python. Python is an

open source language and has extensive support libraries which allow us to perform
video processing, speech recognition and natural language processing (NLP) tasks.

Jetson Nano Specifications

ENGR-498 - Research in Al and DL

Namrata Chaudhari — A20498270

Eront View Rear View
oF = —
‘i i J —_— "' &
Vo maaw ., U Wik
1 e
Power USB Type Micro-USB microSD Heatsink
jack A Card Slot
HOMI Type A Gigabit
and DisplayPort Ethemet
Top View
Serial Port Header — — =~ POE (Power over
© © .| Ethernet)
J40 —
e 1 — M.2 Key E Slot
Button Header _ . i1 ==
i 'I £
- = A
JJ13) §].Ha.é)
TiE A7 i1 | __— Expansion Header
| IE & 11 E \DP s
Camera Connector {|E = -
| g Inl-
ﬁ ~]= ' T
L i 1= SODIMM Connector
oo a2)
- -~ — Fan Header
NSlaawe
i N 3 Po LED
y 8 rq 4 wer
:| 1 J& | i 132 J33 343 =
Power Jack iri} L1 ol " 1 ,ﬁ.\ Micro B USB
N e It S ———
o Ty;ﬁ[:j::l‘: Ethernet Jack
USB 3.0 Type A
(2 x2 stacked)
GPU 128-core Maxwell
CPU Quad-core ARM AS7 @ 1.43 GHz
Memory 4 GB 44-bit LPDDRS 25.6 GB/s
Storage microSD Inot included)

Video Encode
Video Decode
Camera
Connectivity
Display

use

Others

Mechanical

4K [@ 30 | 4x 1080p 1@ 30 | 9x 720p @ 30 [H.264/H.265)

4K 1@ 60| 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 [H.264/H.265]

1x MIPI C5I-2 DPHY lanes
Gigabit Ethernet, M.2 Key E
HDMI 2.0 and eDP 1.4

4x USB 3.0, USB 2.0 Micre-B
GPIO, I12C, 175, SPI, UART

100 mm x 80 mm x 29 mm

ENGR-498 - Research in Al and DL

Namrata Chaudhari — A20498270

Python libraries used

Library Use

OpenCV Video Processing

Dlib Face detection and landmark extraction
Tensorflow Build and train Deep Neural Network
Pyaudio To record audio

Speech Recognition

Speech to text conversion

Punctuator

Add punctuations to text

TextBlob

Simple API to perform basic NLP tasks

SYSTEM OVERVIEW :

The proposed system uses the camera to extract visual cues which are used to

perform facial expression recognition and uses the mic to extract audio cues which are
converted to text and used to perform text sentiment analysis.

System Components

O

Camera
visual cues

Extract facial
landmarks

Facial emotion
detection

4

mic
audio cues

Speech to text
conversion

Text Sentiment
analysis

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

We need to extract the generated audio and visual cues simultaneously from a real time
scenario. This is being done using multi-threading which helps us to run multiple
function calls simultaneously i.e. one thread records the video using opencv and the
other thread records the audio using pyaudio and the output of each of these threads
will then be served as an input to the two modules implemented which will then predict
emotions and analyze the polarity of the content obtained from the audio.

The frame rate for the multithreading process is calculated by: dividing the total number
of frames with the elapsed time of the program & the fps recorded was about 4-5fps.

FACIAL EMOTION DETECTION SYSTEM :

The facial emotion detection module is built from scratch to detect one of eight
emotions: happiness, sadness, anger, surprise, fear, disgust and contempt, The visual
cues are used to detect faces and extract 68 landmarks (features) which are then fed to
the deep neural network (DNN) to classify emotion from the given frame.

Facial landmark Extraction :

Convolutional neural networks can be used to classify raw input images but
performing feature landmark extraction allows us to achieve comparable results with a
simpler neural network.

Facial landmark extraction is performed using the Dlib library in python. The
extracted features are then fed as an input to the neural network. The Dlib library
detects faces from the input image and uses the predictor function to place 68
landmarks on the detected faces. It uses Histogram of Oriented Gradients (HOG) for
Object Detection with a linear classifier, an image pyramid, and sliding window detection
scheme to detect faces in an image. Once the region of face is determined, facial
landmarks will be detected using One Millisecond Face Alignment with an Ensemble of
Regression Trees. The Dlib library accurately detects landmarks from the detected
faces at an angle of -25 to +25 degrees in any direction. (Code for checking angle:
Appendix F)

The coordinates of the 68 landmarks have a fixed orientation (shown in the figure
below). The resultant landmarks are given in the form of an array.
Resultantant array : = [(x0,y0) , (x1,y1), , (x67,y67)]

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

& 3 & @5
o’ * o ! o’ ¢ e
43 44
o 135':1 ':: o & .4?:4?:4@45 ¢
o
. &2 ¢
¢ : v
ol §3.3m35
.’ 2 5 o’
4@_—,3 .(:ﬁ;ﬁ?
o &° .55 o’
.SB .5;.56
o o'
o o0
o o -

Extracting features from faces allows us to construct a simple neural network with less
training data which will converge faster as compared to traditional CNNs.

Neural Networks perform best when the feature vector in scaled to a small range of
values [-1, 1]. Inorder to optimize the gradient descent process normalize the facial
landmarks and align them at the tip of the nose (x33,y33). Vectorization of facial
landmarks is achieved by putting tensors of 2-dimensional coordinates into a vector
which is fed into the neural network.

Shifting the origin to the tip of the nose (x33,y33):
For (x,y) in resultant array:
X =X -Xx33
y=y-y33

Normalizing the coordinates in range [-1, 1]:
scale height =y8 // coordinate (x8,y8) :=(*, -1)
scale width =max (| x0 |, | x16|)
For (x,y) in resultant array:
x = x / scale width
y =y / scale height

The normalized coordinates are stored in the form of a feature vector.
[(x0, y0), (x1, y1), ..., (x67, y67)] -> [X0, YO, X1, y1, , X67, y67]

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

The result data can be stored in a CSV file with an integer indicating the emotion in the
last column (label L) which can be used to train and test the neural network.

Building a Deep Neural Network (DNN):

The dataset was created using images from CK+ (Extended Cohn-Kanade
dataset), JAFFE dataset, TFEID (Taiwanese Facial Expression Image Database), and
RaFD(Radboud Faces Database) . The created dataset is composed of eight classes
with a total of 3000 images divided into training and test sets. The vectorized facial
landmarks of images from the dataset are stored in a CSV file along with an integer
indicating the emotion. The test and train csv files are then used to train and evaluate
the DNN.

The model used in building the deep neural network is a sequential model with three
hidden layers. The type of layers used is dense which implies that every neuron in the
dense layer receives input from all neurons of the previous layer. The activation function
used was a sigmoid. Adam optimizer allows the framework to adjust the step size
depending on the loss. Accuracy obtained after testing the model: 86.75%

Implementation Flowchart

Dataset

Detect face for images in
dataset using dlib

Detect landmarks for
detected faces (68
landmarks) using dlib

normalize the feature array

Create csv files for train and
test datset

Train DNN network using
csv file

Evaluate test accuracy

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

Model Summary:

Model: "sequential”

Layer (type) Output Shape Param #
dense (dense) (wne, 272) mss
dense_1 (Dense) (None, 544) 148512
dense_2 (Dense) (None, 272) 148248
dense_3 (Dense) (None, 8) 2184

Total params: 336,280
Trainable params: 336,288
Neon-trainable params: @

Confusion Matrix for the test set classification:

:angry
. contempt
: disgust

: fear

: happiness
: neutral

: sadness

. surprise

~NOoO OB WN -0

Real time facial emotion Detection

The system uses OpenCV, to read video frames either by using the feed from a
camera connected to a computer or by reading a video file. We then perform face

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

detection and facial landmark extraction on the frame and feed the normalized landmark
coordinates into the DNN which classifies the emotion of the faces in the frame.

Since we use the sigmoid activation function in the neural network, the output of the
DNN is an array in which each element represents the probability of (indexed) emotion
occurring independent of other emotions. The sum of the array elements may not
necessarily be 1 as sigmoid function doesn't treat emotions to be mutually exclusive.
This allows us to improve the accuracy of our system while performing real time
processing by setting a threshold for the level of confidence for each of the eight
emotions. We only display the emotion if the confidence level of that emotion is greater
than its threshold value. If the emotion detected does not cross the threshold value we
display the emotion rendered in the previous frame.

The facial emotion detection of a video performed with and without threshold is shown
below.

Without threshold:

Without threshold plot

emation index

0 40 &0 B0 100
frame

=

With Threshold:

With threshold plot

L

0 10 20 30 40 50 &0
frame

6.0

emotion index
o= wn wn
L%,) [} [V,]

F
L=

L
L

[
=}

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

The frame rate achieved for real time face emotion detection is about 8.9 fps for laptOp
PC and 4.1 on Jetson Nano.

On Laptop :

fps start
fps stop

[INFO] elapsed time: 12.74
[INFO] approx. FP5: 8.9%

On Jetson Nano :
fps stop

fps recorded on Jetson nano

[INFO] elapsed time: 27.20
[INFO] approx. FPS: 4.19

TEXT SENTIMENT ANALYSIS SYSTEM :

The system converts real time audio to text using the Speech Recognition library
in python. We use the Pyaudio library to record audio from a mic. The recorded audio is
broken down into chunks and processed bit by bit using the Recognizer function in the
Speech recognition library which transcribes the audio. The transcribed audio is split
into sentences before using the Punctuation Model adding the required punctuation to
the text.This text is then used to perform text sentiment analysis .

The proposed system determines the polarity of text using pretrained sentiment
analysis tools from various Python NLP libraries (TextBlob, Vader).The most widely
used pretrained libraries for estimating polarity of text are TextBlob and Vader.

The following are some negative and positive interviewee responses to check how well
these libraries can classify their polarity and overall we find TextBlob with Naive Bayes
yields more satisfying results. The numbers shown in the table are the polarity of each
sentence where -100 means negative and +100 means positive.

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

content textblob textblob_bayes nitk_vader

0 I've enjoyed and grown in my current role 25 65 51
1 | am an ambitious and driven individual. | thrive in a goal-oriented environment 12 _ 48
2 What makes me unigue is my ability to meet and exceed deadlines 38 59 32
3 While | highly valued my time at my previous company, there are no longer opportunities for growth that align with my career goals 0 3 73
4 | hated the job and the company. They were awful to work for. - -60 -80
5 | do good work 70 4 44
6 | tend to lose my patience with incompetent people. -35 -33 70
7 I missed too much work. 20 -10 30

The accuracy of Textblob vs Vader was compared by testing these models on the IMDB
dataset and the product review dataset. It can be seen that TextBlob has higher
precision and F1 score for these datasets

Vader Vs Textblob

. Accuracy
= Fl Score

=
[}
o
g|
B
z

Libraries

The proposed system uses the TextBlob library with Naive Bayes Classifier to estimate
the polarity of the text. TextBlob is a python library of Natural Language Processing
(NLP) that uses the Natural Language ToolKit (NLTK) to perform its functions. NLTK is a
library that provides easy access to many lexical resources and allows users to work
with categorization, classification and many other tasks.It calculates average polarity
and subjectivity over each word in a given text using a dictionary of adjectives and their
hand-tagged scores. It actually uses a pattern library for that, which takes the individual
word scores from sentiwordnet. The TextBlob with Naive Bayes calculates the sentiment
score by NaiveBayesAnalyzer trained on a dataset of movie reviews. We use the
polarity calculated by TextBlob to classify text as either positive, negative or neutral by

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

setting a threshold value. The polarity value lies in the range of [-1, 1], where -1
indicates negativity and +1 indicates positivity.

Threshold values set to classify text into three classes:
Polarity above 60% is classified as Positive
Polarity between 40% and 60% is classified as Neutral
Polarity below 40% is classified as Negative

Analysis of a transcribed text passage is done as follows:
Number of positive sentences in the passage: x

Number of negative sentences in the passage: y
Number of neutral sentences in the passage: z
Total number of sentences in a passage: x+y+z

Overall positivity of the passage: Sum of polarities above 60% / Total number of
sentences in a passage

Overall neutrality of the passage: Sum of polarities between 40% - 60% / Total number
of sentences in a passage

Overall negativity of the passage: Sum of polarities below 40% / Total number of
sentences in a passage

Speech to text conversion

Preprocessing dala (check
| grammar and punctuations) |

Tex(Blob library with Naive
Bayes Classifier

Output polarity and check
threshold

Calculating positive,negative
and neutral percentages

Text Sentiment Analysis Workflow

ENGR-498 - Research in Al and DL Namrata Chaudhari — A20498270

RESULTS AND DISCUSSION :

The integrated system extracts video and audio simultaneously with a frame rate
of 4-5 fps. The facial emotion detection system successfully detects facial expression of
faces detected in real time video with an accuracy of about 86.75%. The audio from the
video is successfully extracted, converted to text, cleaned and processed to determine if
the attitude of the speaker in a given situation is positive, negative or neutral.

The proposed system can be used in a wide sale of applications. It can be used
to make the interview process bias free by analyzing the emotional expressions and
answers of prospective candidates for its entry-level jobs. Candidates can also use this
system analysing their own responses during a mock interview.It can be used to
perform market research by analysing customers' response to a particular advertising
scheme. If customized this system can be used for the interrogation process.

The results and applications are used in the video attached.

https://drive.qgooaqale.com/file/d/1wnGr-dlYQGUQgiDZS2CVY2-WS850fUCvO/view?usp=sh

aring

CONCLUSION :

The project is research on face expression recognition and analysing text for the
sentiment , which allows us to know a way of sensing emotions that can be considered
as mostly used Al and pattern analysis applications. To summarize, we have developed
a system that can perform emotion detection and text sentiment analysis in real time.

FUTURE WORK:

The system can be further improved by covering more aspects of communication
skills like using the extracted audio from video to perform speech emotion detection to
recognize the emotional aspects of speech irrespective of the semantic contents. The
accuracy of the facial emotion detection and text sentiment analysis system can be
further improved to make the system more feasible and accurate.

https://drive.google.com/file/d/1wnGr-dIYQGUqjDZS2CVY2-WS850fUCvO/view?usp=sharing
https://drive.google.com/file/d/1wnGr-dIYQGUqjDZS2CVY2-WS850fUCvO/view?usp=sharing

REFERENCES :

[1] Dlib Library python:
https://pypi.org/project/dlib/

[2] Textblob Library python:
h : i.org/project/textblob

[3] OpenCV:
https://pypi.org/project/opencv-python/

[4]Speech Recognition library python:
https://pypi.org/project/SpeechRecognition/

[5] Recording Audio and Video together code:

https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-
in-python-from-a-camera-or-webcam

[6] Facial emotion recognition dataset images:
https://github.com/spenceryee/CS229

[7] Angle detection for landmarks:
https://www.programmersought.com/article/27703847966/

[8] Related works in facial emotion detection:

e Development of a Real-Time Emotion Recognition System Using Facial

Expressions and EEG based on machine learning and deep neural network
methods

e Real time facial expression recognition in video using support
vector machines

e Real-time Mobile Facial Expression Recognition System
e A fuzzy logic approach for real time facial recognition of facial emotions

https://pypi.org/project/dlib/
https://pypi.org/project/textblob/
https://pypi.org/project/opencv-python/
https://pypi.org/project/SpeechRecognition/
https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-in-python-from-a-camera-or-webcam
https://stackoverflow.com/questions/14140495/how-to-capture-a-video-and-audio-in-python-from-a-camera-or-webcam
https://github.com/spenceryee/CS229
https://www.programmersought.com/article/27703847966/
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://www.sciencedirect.com/science/article/pii/S235291482030201X#bib33
https://dl.acm.org/doi/abs/10.1145/958432.958479
https://dl.acm.org/doi/abs/10.1145/958432.958479
https://scholar.google.com/scholar?q=Real-time%20mobile%20facial%20expression%20recognition%20systema%20case%20study
https://link.springer.com/article/10.1007/s11042-019-7250-z

CODE:

Appendix A: Extracting audio and visual cues

#AudioVideo recording code

import cv2

import pyaudio
import wave
import threading
import time
import subprocess
import os

class VideoRecorder () :

Video class based on openCVv
def init (self):

self.fourcc = "MJIPG" # capture images (with no dec
rease 1in speed over time; testing is required)

self.dim = (640,480) # video formats and sizes als
o depend and vary according to the camera used

self.video filename = "Fer.avi"

self.fps = 6

self.cap = cv2.VideoCapture (0)

self.open = True

self.write = cv2.VideoWriter fourcc(*self.fourcc)

self.vid = cv2.VideoWriter (self.video filename, self.wri
te, self.fps, self.dim)

self.frame counts = 1
fps should be the minimum constant rate at
which the camera can

self.start time = time.time ()

Video starts being recorded
def record(self):
counter = 1
timer start = time.time ()
timer current = 0

while (self.open==True) :
ret, frame = self.cap.read()

if ret:
self.vid.write (frame)
print (str (counter) + " " + str(self.count)
+ " frames written " + str(timer current))
self.frame counts += 1
counter += 1

timer current = time.time() - timer start
time.sleep(0.16)
gray = cv2.cvtColor (frame, cv2.COLOR BGR2G

RAY)
cv2.imshow ('frame', frame)
cv2.waitKey (1)

Finishes the video recording therefore the thread too
def stop(self):

if self.open==True:
self.open=False
self.vid.release ()
self.cap.release()
cv2.destroyAllWindows ()
else:
pass

Launches the video recording function using a thread

def start (self):
tl = threading.Thread(target=self.record)
tl.start ()

class AudioRecorder () :

Audio class based on pyAudio and Wave
def init (self):

self.open = True
self.rate 44100
self.frames per buffer = 1024
self.channels = 2

self.format = pyaudio.palntl6

self.audio filename = "video 1.wav"

self.audio = pyaudio.PyAudio ()

self.stream = self.audio.open(format=self.format,
channels=self.channels,
rate=self.rate,
input=True,

frames per buffer = self.f
rames per buffer)

self.audio frames = []
Audio starts being recorded
def record(self):

self.stream.start stream()

while (self.open == True):

data = self.stream.read(self.frames per buffer)

self.audio frames.append (data)
if self.open==False:
break

Finishes the audio recording therefore the thread too
def stop(self):

if self.open==True:
self.open = False
self.stream.stop stream()
self.stream.close ()
self.audio.terminate ()

aud = wave.open (self.audio filename, 'wb')

aud.setnchannels (self.channels)

aud.setsampwidth (self.audio.get sample size(self.for
mat))

aud.setframerate(self.rate)

aud.writeframes (b''.Jjoin(self.audio frames))

aud.close ()

pass

Launches the audio recording function using a thread
def start(self):
t2 = threading.Thread(target=self.record)
t2.start ()

def

def

def

def

start AVrecording (filename) :

global t1l
global t2

tl
t2

VideoRecorder ()
AudioRecorder ()

t2.start ()
tl.start ()

return filename

start video recording(filename) :
global t1l

tl = VideoRecorder ()
tl.start ()

return filename

start audio recording(filename) :
global t2

t2 = AudioRecorder ()
t2.start ()

return filename

stop AVrecording (filename) :

t2.stop ()
frame counts

tl.frame counts

elapsed time
recorded fps
print ("total

time.time () - tl.start time
frame counts / elapsed time

frames " + str(frame counts))
print ("elapsed time " + str(elapsed time))

print ("recorded fps " + str(recorded fps))
tl.stop ()

Makes sure the threads have finished

while threading.active count () > 1:
time.sleep (1)

Required and wanted processing of final files
def file manager (filename) :

local path = os.getcwd()

if os.path.exists (str(local path) + "/temp audio.wav"):
os.remove (str(local path) + "/temp_audio.wav")

if os.path.exists(str(local path) + "/temp video.avi"):
os.remove (str (local path) + "/temp video.avi")

if os.path.exists (str(local path) + "/temp video2.avi"):
os.remove (str (local path) + "/temp video2.avi")

if os.path.exists (str(local path) + "/" + filename + ".avi")
os.remove (str (local path) + "/" + filename + ".avi")
filename = "Default user"

file manager (filename)
start AVrecording (filename)
time.sleep (20)

stop AVrecording (filename)
print ("Done™)

Appendix B: Real time face emotion detection

#Face emotion detection:

import dlib

import cv2

import numpy as np

import matplotlib.pyplot as plt
import tensorflow as tf

initialize face and facial landmark detector
detector = dlib.get frontal face detector ()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

#loading DNN

path save ="./testsave4"

model restore = tf.keras.models.load model (
path save)

model restore.summary ()

#text characterstics

window name = 'Image'

font = CV2.FONT_HERSHEY_SIMPLEX
fontScale = 1

color = (0, 0, 255)

thickness = 2

#femotion detected dictionary

emotions = { O:"angry" ,l:"contempt" ,2:"disgusted",3:"fearful",
4:"happy", 5:"neutral",6:"sad",7:"surprised"}

print (emotions)

#fnormalize and add to array function
def normalize (detected face,shape,new arr):
i=1
arr = []
x scale =-1*(shape.parts() [0].x - shape.parts () [33].x)
y _scale = shape.parts() [8] .y -shape.parts() [33].y
for p in shape.parts():
detected face = cv2.circle (detected face, (p.x,p.vy), 2,
(0,0,255), -1)
p=p-shape.parts () [33]

x new = p.x / x scale
y new = p.y / y scale

arr = np.append(arr,x new)
arr = np.append(arr,y new)
i+=1

return arr

#finding emotion from output
def result (test result,emotion result,index result):
for r in test result:

c o= nn

if r[0]>99:
3=0
index result.append(J)
emotion result.append(emotions[j])
c = c + emotions[]j] + " "

if r[1]>0.99:
J=1
index result.append(J)
emotion result.append(emotions[]])
c = c + emotions[j] + " "

if r[(2]>0.99:
J=2
index result.append(]j)
emotion result.append(emotions[j])
c = c + emotions[j] + " "

if r[(3]1>0.99:
J=3
index result.append(J)
emotion result.append(emotions([]])
c = c + emotions[j] + " "

if r[4]>0.85:
j=4
index result.append(]j)
emotion result.append(emotions[]])
c = ¢ + emotions[j] + " "

if r[5]>0.90:
J=5
index result.append(J)
emotion result.append(emotions[j])
c = c + emotions[j] + " "

if r[6]>0.99:
J=0
index result.append(J)
emotion result.append(emotions[]])

c = c + emotions[]] +
if r[7]1>0.90:

J=7

index result.append(J)

emotion result.append(emotions[]])

c = c + emotions[j] + " "

return emotion result, index result,c

from imutils.video import FPS
vid = cv2.VideoCapture (0)
vid = cv2.VideoCapture ('fer video.mp4d'")

frs FPS () .start ()

x =0

analysis arr = []

analysis ind = []

prev_c = "unknown"

c="m

out = cv2.VideoWriter ('output.mp4', -1, 20.0, (640,480))

while True:
ret, frame = vid.read()

print (x)
if ret:
print (frame.shape)
gray = cvZ2.cvtColor (frame, cvZ2.COLOR RGBZGRAY)
faces = detector(gray, 0)
detected face = frame
new arr = []
print (faces)
fprs.update ()

for £ in faces:
shape = predictor(gray, f)
pred = normalize (detected face, shape,new arr)
new arr.append (pred)

g=0

for £ in faces:
arr x = np. reshape(new arr[qg], (1,136))
index result=[]
emotion result=[]

test result = model restore.predict (arr x)

print (test result)
emotion result, index result, ¢ = result(test result
,emotion result, index result)
if ¢c=="":
c=prev_c
if len(index result) !=0:

analysis arr.append(emotion result[0])
analysis ind.append(index result[0])
detected face = cv2.rectangle(detected face, (f.tl c

orner () .x, f.tl corner().y),
(f.br corner().x, f.br corner
).y), (0,255,0), 3)
frame = cv2.putText (frame, c, (f.tl corner().x, f.t
1 corner().y), font,
fontScale, color, thickness, cv2.LINE AA)
g+=1
cv2.imwrite (f"Frames/Frame{x}.Jjpg", frame)

out.write (frame)

cv2.imshow ('frame', frame)

prev c = C

x += 1

if cv2.waitKey(l) & OxFF == ord('qg'):
break

out.release ()
vid.release ()

fprs.stop()

print (x)

print ("fps start")

print ("fps stop\n")

print ("[INFO] elapsed time: {:.2f}".format (fps.elapsed()))
("[INFO] approx. FPS: {:.2f}".format (fps.fps()))
("\n")

print
print

cv2.destroyAllWindows ()

print(analysis ind)
print(analysis arr)

Appendix C: Text Sentiment Analysis

#text sentiment analysis

from textblob import TextBlob

from textblob.classifiers import NaiveBayesClassifier
from textblob.sentiments import NaiveBayesAnalyzer
import nltk

from pydub import AudioSegment

import speech recognition as sr

from os import path

from nltk import tokenize

nltk.download('movie reviews')
nltk.download ('punkt')
nltk.download('stopwords')

#Converting mp4 to wav format with 128k bitrate
src="debatel .mp4"

AudioSegment.converter = "C:/ffmpeg-4.4-full build/bin/ffmpeg.ex
e"
AudioSegment.ffmpeg = "C:/ffmpeg-4.4-full build/bin/ffmpeg.exe"

AudioSegment.ffprobe ="C:/ffmpeg-4.4-full build/bin/ffprobe.exe"

sound = AudioSegment.from file(file=src, format="mp4")
sound.export ("recording.mp3", format="mp3", bitrate="128k")

convert mp3 file to wav

sound = AudioSegment.from mp3 ("recording.mp3")
sound.export ("transcript.wav", format="wav")

##Code-—————-—-

importing libraries

import speech recognition as sr

import os

from pydub import AudioSegment

from pydub.silence import split on silence

create a speech recognition object
r = sr.Recognizer ()

a function that splits the audio file into chunks
and applies speech recognition
def get large audio transcription(path):
Splitting the large audio file into chunks
and apply speech recognition on each of these chunks
open the audio file using pydub
sound = AudioSegment.from wav (path)
split audio sound where silence is 700 miliseconds or more
and get chunks

chunks = split on silence (sound,
experiment with this value for your target audio file
min silence len = 500,

adjust this per requirement
silence thresh = sound.dBFS-14,
keep the silence for 1 second, adjustable as well
keep silence=500,
)
folder name = "audio-chunks"
create a directory to store the audio chunks
if not os.path.isdir (folder name) :
os.mkdir (folder name)
whole text = ""
process each chunk
for i, audio_chunk in enumerate (chunks, start=1):
export audio chunk and save it in
the “folder name’ directory.
chunk filename = os.path.join(folder name, f'"chunk{i}.wa

audio chunk.export (chunk filename, format="wav'")
recognize the chunk
with sr.AudioFile (chunk filename) as source:
audio listened = r.record(source)
try converting it to text
try:
text = r.recognize google(audio listened)
except sr.UnknownValueError as e:
print ("Error:", str(e))
else:
text = f"{text.capitalize()}. "
#print (chunk filename, ":", text)
whole text += text
return the text for all chunks detected
return whole text

path = "transcript.wav"

#print ("\nFull text:", get large audio transcription(path))
t=get large audio transcription (path)

print (t)

sentence break=[]
sentence break=t.split('."')
print (sentence break)

from punctuator import Punctuator
p = Punctuator ('punctuator model/Demo-Europarl-EN.pcl')
semi final=[]
final=1[]
for ele in sentence break:
if len(ele)>1:
test=p.punctuate (ele)
semi final=test.split('.")
for 1 in semi final:
if il="":
final.append (i)
#pre-trained model 1
#pl=Punctuator ('punctuator model/INTERSPEECH-T-BRNN.pcl')
pre-trained model 2
t=p.punctuate (text)
print (t)
print (final)

1=1]
b=[]
for 1 in range (0,len(final)):
blob=TextBlob (final[i],analyzer=NaiveBayesAnalyzer())
#print (blob.sentiment)
1l.append(blob.sentiment.p pos)
b.append (blob.sentiment.p neq)

pos=0

neg=0

neu=0

pos per=0
neg per=0
neu per=0

for i in 1:

if i>0.6:

pos=pos+tl
pos_per=pos per+i
elif 1i>0.4 and 1<0.6:
neu=neu+1l
neu per=neu per+i
elif 1<0.4:
neg=neg+1
neg per=neg per+i
print (1)
print (len(final))

print ("Number of positive sentences in the passage:",pos)
print ("Number of negative sentences in the passage:",neq)
print ("Number of neutral sentences in the passage:",neu)

print ("Overall positivity of the passage:",round(pos per/sum(l),

2))

print ("Overall negativity of the passage:",round(neg per/sum(l),

2))

print ("Overall neutrality of the passage:",round(neu per/sum(l),

2))

chart=1]

chart.append (round(pos per/sum(l),2))
chart.append (round(neu per/sum(l),2))
chart.append (round(neg per/sum(l),2))

plt.pie(chart)

mylabels = ["Positive", "Neutral", "Negative"]
mycolors = ["green" ,"yellow","red"]

plt.pie(chart, labels = mylabels, colors = mycolors)
my circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf ()

p.gca() .add artist(my circle)

plt.show ()

Appendix D: Training and Test csv files

#Dataset to csv

import dlib
import cv2
import numpy as np

print ("Dlib version: {}".format (dlib. version))
print ("OpenCV version: {}".format (cv2. version))

initialize face and facial landmark detector

detector = dlib.get frontal face detector ()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

import os

import csv

import glob

Classes=["'anger', 'contempt', 'disgqust', 'fear', "happy', 'neutral',’
sad', 'surprise']

x=0

for category in Classes:
path = glob.glob (f"train/{category}/*.Jjpg")

for img in path:
img array=cvz.imread (img)
img gray = cv2.cvtColor (img array, cv2.COLOR RGBZGRAY)
plt.imshow (img gray)
plt.show()

f#detect faces in image

faces = detector(img gray, 0)
#print (len (faces), faces)
if len(faces) !=0:

detected face = img array

for £ in faces:
draw bounding box

detected face = cv2.rectangle (detected face,

(f.tl corner().x, f.tl corner().y),

#top left corner of the d

#bottom right corner of t

) [0] .x%,
Y
X,0.Y),
ob]

2y

(f.br corner().x, f.br corner().y),
(0,255,0),3)
landmark arr = np.array([])

detect facial landmarks in a box
shape = predictor (img gray, f)

i=1

x _scale = max(shape.parts() [33].x - shape.parts/
shape.parts () [16] .x - shape.parts() [33].x)

y scale

for p in shape.parts():

shape.parts () [8] .y —-shape.parts () [33].

detected face = cv2.circle(detected face, (p.

(0,0,255), -1)
p=p-shape.parts () [33]
X new = p.x / x scale
y new = p.y / y scale

landmark arr = np.append(landmark arr,x new)
landmark arr = np.append(landmark arr,y new)
i+=1

print (x)

x+=1

landmark arr=np.append(arr,Classes.index (category))

print (landmark arr)
with open('traind.csv', 'at' , newline='")

csv_writer = csv.writer (write obj)
csv_writer.writerow(landmark arr)

as write

Appendix E: training the Deep Neural Network

#Train DNN
import tensorflow as tf

featureDim = 136
classes = 8

model = tf.keras.Sequential (layers = (tf.keras.layers.Dense (272,
input shape=(featureDim,), activation='sigmoid'),
tf.keras.layers.Dense (544, activation='sigmoid'),
tf.keras.layers.Dense (272, activation='sigmoid'),
tf.keras.layers.Dense(classes, activation='sigmoid'))

model.compile (loss=tf.keras.losses.SparseCategoricalCrossentropy
(from logits=True),

optimizer="'adam',

metrics=['accuracy'])
model . summary ()

def createData (pathToData, featureDim = 136, classes = 8):
f = open(pathToData, "r")
x = []
y = [1]
for line in f:
parse = line.split(',")
item x = [float(d) for d in parse[:featureDim]]

x.append (item x)
label = parse[-1]
label = label[:3]
y.append (int (float (label)))
print (x)
#return tf.convert to tensor(x, dtype=tf.float32), tf.conver
t to tensor(y, dtype=tf.float32)
return x, Vv

train x, train y = createData("C:/Users/Namrata
Chaudhari/Downloads/Lab 6/Emotion Recognition Using DNN/trainéd.c
sv",

featureDim = featureDim,

classes = classes

print (len(train x))

import pandas as pd
data = pd.read csv("trainl.csv")
print (data.head())

#fit dataset
model.fit(x = train x, y = train y, batch size = 64, shuffle =T

rue, epochs = 1000)
#save model
path save ="./testsave4"

tf.keras.models.save model (
model, path save, overwrite=True, include optimizer=True, save fo
rmat=None , signatures=None, options=None)

#restore saved model
model restore = tf.keras.models.load model (
path save)

model restore.summary ()

load train dataset
test x, test y = createData("C:/Users/Namrata
Chaudhari/Downloads/Lab 6/Emotion Recognition Using DNN/test4.cs
v",

featureDim = featureDim,

classes = classes

)

fevaluate test accuracy
model.evaluate (test x,test y)

#plot confusion matrix
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt

confusion matrix = confusion matrix(test y , result)

plt.figure ()

plt.imshow(confusion matrix, interpolation='nearest',6 cmap=plt.c
m.Blues)

thresh = confusion matrix.max() / 2.
for 1 in range (confusion matrix.shape[0]) :
for j in range (confusion matrix.shape[l]):
plt.text(j, 1, format (confusion matrix([i, J]),
ha="center", va="center",
color="white" if confusion matrix([i, J] == 0 or
confusion matrix[i, J] > thresh else "black")
plt.tight layout ()
plt.colorbar ()

Appendix F: Checking angles for landmark detection

#Detect angle code:

import cv2

import numpy as np
import dlib

import time

import math

detector = dlib.get frontal face detector()

predictor = dlib.shape predictor ("shape predictor 68 face landma
rks.dat")

POINTS NUM LANDMARK = 68

Get the biggest face
def largest face (dets):
if len(dets) ==
return 0

face areas = [(det.right()-det.left())*(det.bottom()-det.to
p()) for det in dets]

largest area = face areas|[0]

largest index = 0

for index in range(l, len(dets)):
if face areas[index] > largest area
largest index = index
largest area = face areas[index]

print ("largest face index is {} in {} faces".format (largest
index, len(dets)))

return largest index

Extract the point coordinates needed for pose estimation from
the detection results of dlib
def get image points from landmark shape (landmark shape) :
if landmark shape.num parts != POINTS NUM LANDMARK:
print ("ERROR:landmark shape.num parts-{}".format (landmar
k shape.num parts))
return -1, None

#2D image points. If you change the image, you need to chang
e vector

image points = np.array ([
(landmark shape.part(30) .x, landmark shape.part (30).y),
Nose tip
(landmark shape.part(8).x, landmark shape.part(8).y),
Chin
(landmark shape.part(36).x, landmark shape.part(36).y),
Left eye left corner
(landmark shape.part(45) .x, landmark shape.part(45).y),
Right eye right corner
(landmark shape.part(48) .x, landmark shape.part (48).y),
Left Mouth corner
(landmark shape.part (54) .x, landmark shape.part (54).y)
Right mouth corner

], dtype="double™)

return 0, image points

Use dlib to detect key points and return the coordinates of s
everal points needed for pose estimation
def get image points (img) :

#gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY) # The pi
cture is adjusted to gray
dets = detector(img, 0)

for £ in dets:
shape = predictor (img, f£f)

a=0
for £ in dets:
img = cv2.rectangle (img, (f.tl corner().x, f.tl corner()
.y), (f.br corner().x, f.br corner().y), (0,255,0), 3)
gt+=1
if 0 == len(dets):

print ("ERROR: found no face")
return -1, None
largest index = largest face (dets)
face rectangle = dets[largest index]

landmark shape = predictor (img, face rectangle)

return get image points from landmark shape (landmark shape)

Get rotation vector and translation vector

def get pose estimation(img size, image points):
3D model points.

model points = np.array ([
(0 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(- 225 0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corner
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner

1)

Camera internals

focal length = img size[l]

center = (img size[l1l]/2, img size[0]/2)

camera matrix = np.array(

[[focal length, 0, center[0O]],
[0, focal length, center[1l]],

[0, O, 111, dtype = "double"

)

print ("Camera Matrix :{}".format (camera matrix))

dist coeffs = np.zeros((4,1)) # Assuming no lens distortion
(success, rotation vector, translation vector) = cvZ2.solvePn

P (model points, image points, camera matrix, dist coeffs,

cv2.SOLVEPNP ITERATIVE)

flags=

print ("Rotation Vector:\n {}".format (rotation vector))
print ("Translation Vector:\n {}".format (translation vector))

return success, rotation_vector, translation_vector,
matrix, dist coeffs

Convert from rotation vector to Euler angle
def get euler angle(rotation vector):
calculate rotation angles
theta = cv2Z.norm(rotation vector, cvZ.NORM L2)

transformed to quaterniond
w = math.cos (theta / 2)

camera

def

b
|

= math.sin(theta / 2)*rotation vector[0][0] / theta
math.sin(theta / 2)*rotation vector[1][0] / theta
= math.sin(theta / 2)*rotation vector([2][0] / theta

N K
o

ysqr =y * vy

pitch (x-axis rotation)

t0 = 2.0 * (w * x + vy * z)

tl = 1.0 - 2.0 * (x * x + ysqr)
print ("tO0:{}, tl:{}'.format (t0, tl))
pitch = math.atan2 (t0, t1)

yaw (y-axis rotation)
t2 =2.0* (w*y -z *¥ x)
if t2 > 1.0:

t2 = 1.0
if t2 < -1.0:
t2 = -1.0

yaw = math.asin (t2)

roll (z-axils rotation)

t3 =2.0 * (w * z + x * vy)

td = 1.0 - 2.0 * (ysgqr + z * z)
roll = math.atan2 (t3, t4)

print ('pitch:{}, vaw:{}, roll:{}'.format (pitch, yaw, roll))

Unit conversion: convert radians to degrees

Y = int ((pitch/math.pi)*180)
X = int ((yaw/math.pi) *180)
Z = int((roll/math.pi) *180)

return 0, Y, X, 2
get pose estimation in euler angle (landmark shape, im szie):

try:
ret, image points = get image points from landmark shape

(landmark shape)

if ret !'= 0:
print ('get image points failed')
return -1, None, None, None

ret, rotation vector, translation vector, camera matrix,

dist coeffs = get pose estimation(im szie, image points)

if ret != True:
print ('get pose estimation failed')
return -1, None, None, None

ret, pitch, yaw, roll = get euler angle(rotation vector)
if ret !'= 0:

print ('get euler angle failed')

return -1, None, None, None

euler angle str = 'Y:{}, X:{}, Z:{}'.format(pitch, yaw,
roll)

print (euler angle str)

return 0, pitch, yaw, roll

except Exception as e:
print ('get pose estimation in euler angle exception:{}'.
format (e))
return -1, None, None, None

cap = cv2.VideoCapture (0)
cap.set(cv2.CAP_PROP_FPS, 10)
fourcc = cv2.VideoWriter fourcc(*'XVID'")
output video = cv2.VideoWriter ('output.mp4', fourcc, 10.0, (640,
480))
while (cap.isOpened()):
start time = time.time ()

Read Image
ret, im = cap.read()
if ret != True:
print ('read frame failed')
continue
size = im.shape
if size[0] > 700:
h = size[0] / 3
w = sizel[l] / 3

im = cv2.resize(im, (int(w), int(h)), interpolation
=cv2.INTER CUBIC)
size = im.shape
ret, image points = get image points (im)
if ret '= 0:

print ('get image points failed')
continue

ret, rotation vector, translation vector, camera matrix, dis
t coeffs = get pose estimation(size, image points)
if ret != True:

print ('get pose estimation failed')
continue
used time = time.time() - start time
print ("used time:{} sec".format (round(used time, 3)))

ret, pitch, yaw, roll = get euler angle(rotation vector)
euler angle str = 'Y:{}, X:{}, Z:{}'.format (pitch, yaw, roll

print (euler angle str)

Project a 3D point (0, 0, 1000.0) onto the image plane.
We use this to draw a line sticking out of the nose

(nose _end point2D, jacobian) = cvZ.projectPoints(np.array ([(
0.0, 0.0, 1000.0)1), rotation vector, translation vector, camera

_matrix, dist coeffs)

for p in image points:

cv2.circle(im, (int(p[0]), int(pl1])), 3, (0,0,255), -1)
pl = (int(image points[0][0]), int(image points[0][1]))
p2 = (int(nose end point2D[0][0][0]), int(nose end point2D]
01[001[11))

cv2.line(im, pl, p2, (255,0,0), 2)

Display image

#cv2.putText (im, str(rotation vector), (0, 100), cv2.FONT H
ERSHEY_PLAIN, 1, (0, 0, 255), 1)

cv2.putText (im, euler angle str, (0, 120), cv2.FONT HERSHEY
_PLAIN, 1, (O, 0, 255), 1)

cv2.imshow ("Output", im)

output video.write (im)

if cv2.waitKey (1) & OxFF == ord('s'):

break

output video.release ()
cap.release ()
cv2.waitKey (0)
cv2.destroyAllWindows ()

	Saad Aziz Zaidi_Btech1001218 ISRE Writeup.pdf
	ENGR 498-07_FINAL_PROJECT_REPORT_Ritika Nigam (1).pdf
	Meghna.pdf
	ENGR498_FinalReport (1).pdf
	Internship Report.pdf
	Final Report · Arpan Kundu · ENGR 498-07.pdf
	FINAL REPORT SUBMISSION ILLINOIS INSTITUTE OF TECH (1) (3).pdf
	Shuvam.pdf
	ENGR498_FinalReport_reshu.pdf

