NEW COURSE STRUCTURE- To be effective from academic session 2018-19 Based on CBCS & OBE model

for

I.M.Sc. (Physics)

Department of Physics B.I.T. Mesra, Ranchi 98A, Academic Council, 2nd May, 2018

<u>CBCS</u> based Course structure for I.MSc. programme of BIT: Important notes:

The basic criteria of UGC have been followed in preparing the course structure of this programme.

The Exit option with B.Sc. (Physics Honours) can be offered to them who want to get it after successful completion of 6th semester.

On the other hand, a parallel entry is allowed in 7th semester in the form of M.Sc. progremme.

Department Vision

To become an internationally recognized centre of excellence in academics and research in the area of Physics and related inter-disciplinary fields.

Department Mission

The Department of Physics (previously known as Department of Applied Physics) since its inception in 1955 has played a pivotal role in the institute. Other than BE Courses, the important thrust of the Department of Physics is the 5 year Integrated M. Sc. Programme which has been offering since 2011. The course aims to train the young students with the following objectives:

To impart high quality Science education in a vibrant academic ambience.

To prepare students to take up challenges as a researcher in diverse areas of theoretical and experimental physics.

Excellent lab and internet facilities.

Opportunity of pursuing high end research as project work.

Exit option available after completion of three years with a B.Sc. Honours Degree that enables students to take admission in the Integrated M.Sc. plus Ph.D. programs of different prestigious research organizations.

During 9th and 10th semesters, students may opt special papers for the following areas: Theoretical and Computational Physics, Condensed Matter Physics, Electronics, Photonics and Plasma Sciences.

Program Educational Objectives of I.M.Sc.:

To impart high quality education in Physical Sciences.

To prepare students to take up challenges as globally competitive physicists/researchers in diverse areas of theoretical and experimental physics.

To make the students technically and analytically skilled.

To provide opportunity of pursuing high end research as project work.

To give exposure to a vibrant academic ambience.

To create a sense of academic and social ethics among the students.

To prepare them to take up higher studies of interdisciplinary nature.

Program Outcomes of I.M.Sc.:

The students will obtain good knowledge in Physical Sciences. They will be trained to compete national level tests like UGC-CSIR NET, JEST, GATE, etc., successfully.

They will be prepared to take up challenges as globally competitive physicists/researchers in diverse areas of theoretical and experimental physics.

They will be technically and analytically skilled enough to pursue their further studies.

They will have a sense of academic and social ethics.

They will be capable of taking up higher studies of interdisciplinary nature.

They will be able to recognize the need for continuous learning and develop throughout for the professional career.

The contents of laboratory papers are designed to meet the course objectives and outcomes of their respective theory papers.

Level		Category	Code no.	Name of the subjects	L	Т	P	C
L.								
				THEORY				
	Ι	PC	PH 101	Mechanics	3	1	0	4
	er	ν.	PH 102	Electricity & Magnetism	3	1	0	4
	Ē	HSS	MT 123	Buisness Communications	2	0	2	3
	lest	FS	CH 111	Chemistry I	3	1	0	4
	em			LABORATORIES				
	Š		PH 104	Electricity & Magnetism Lab	0	0	4	2
		FS	CH 112	Chemistry I Lab	0	0	3	1.5
				Mandatory Course				-
		MC	MC 101/102/103/104	NCC/ NSS/PT & Games/ Creative				1
				Arts				
				Total				21.5

Course : I.M.Sc.(Physics)

Level		Category	Code no.	Name of the subjects	L	Т	Р	С
Ĺ								
	Ι			THEORY				
		PC	PH 105	Mathematical Physics-I	3	1	0	4
	e le		PH 106	Waves and Optics	3	1	0	4
	Semester		MA 108	Mathematics III	3	1	0	4
	D		CE 101	Environmental Science	2	0	0	2
	ē		CS 101/EE 101/EC	Programming for problem	3	1	0	4
			101/ME 101	solving / Basics of Electrical				
				Engineering / Basics of				
				Electronics & Communication				
				Engg. / Basics of Mechanical				
1				Engg				
1				1			-	
			PH 107	Mathematical Physics-I Lab	0	0	4	2
			PH 108	Waves and Optics Lab	0	0	4	2
		GE	CS 102/PE 101/EC	Programmingforproblem	0	0	3	1.5
			102/ME 102	solving Lab / Workshop practice				
				/ Electronics & Communication				
				Lab/ Engg Graphics Lab				
				Mandatory Course				
		MC	MC	NCC/ NSS/PT & Games/				1
			105/106/107/108	Creative Art				
						1	[otal	24.5

Level		Category	Code no.	Name of the subjects	L	Т	Р	С
				THEORY				
		PC	PH 201	Thermal Physics	3	1	0	4
			PH 202	Digital Systems and Applications	4	0	0	4
			PH 203	Classical Dynamics	3	0	0	3
		FS	CH213	Chemistry II	3	1	0	4
		OE		Open Elective-I				3
				LABORATORIES				
2		PC	PH 204	Thermal Physics Lab	0	0	4	2
	Semester]		PH 205	Digital Systems & Applications	0	0	4	2
	st		PH206	Classical Dynamics Lab	0	0	4	2
	le	OE		Open Elective Lab	0	0	3	1.5
	u	FS	CH214	Chemistry II Lab	0	0	3	1.5
	G			Mandatory Course		-	-	-
		MC	MC	NCC/ NSS/PT & Games/				1
			201/202/203/204	Creative Art				
						J	Fotal	28

		Category	Code no.	Name of the subjects	L	Т	Р	С
Level								
				THEORY				
		PC	PH 207	Mathematical Physics II	3	1	0	4
			PH 208	Elements of Modern Physics	3	1	0	4
			PH 209	Analog Systems & Applications	3	1	0	4
		FS	MA 207	Mathematics IV	3	1	0	4
				LABORATORIES				
2	\geq	PC	PH 210	Mathematical Physics II Lab	0	0	4	2
	er]		PH 211	Elements of Modern Physics Lab	0	0	4	2
	Semester		PH 212	Analog Systems & Applications Lab	0	0	4	2
	B			Mandatory Course				
	ē	MC	MC	NCC/ NSS/PT & Games/				1
			205/206/207/208	Creative Art				
]	Fotal	23

E		Category	Code no.	Name of the subjects	L	Т	Р	С
Level								
				THEORY		-		
		PC	PH 301	Quantum Mechanics and Applications	3	1	0	4
			PH 302	Solid State Physics	4	0	0	4
		FS	MA301	Probability and Statistics	3	1	0	4
		PE	PH 303/PH 304	PE -I (Annexure I)	3	0	0	3
3	I V		PH 305/PH 306 / PH 307	PE -II (Annexure I)	3	0	0	3
	te			LABORATORIES				
	es	PC	PH 308	Quantum Mechanics Lab	0	0	4	2
	B		PH 309	Solid State Physics Lab	0	0	4	2
	Semester	PE	PH310/PH311	PE -I Lab (Annexure I)	0	0	4	2
			PH312/PH313/PH314	PE -II Lab (Annexure I)	0	0	4	2
]	otal	26

Leve I		Category	Code no.		Name of the subjects	L	T	P	С
					THEORY				
		PC	PH 315		Electromagnetic Theory	3	1	0	4
			PH 316		Statistical Mechanics	3	1	0	4
		PE	PH317/PH318/PH	H319	PE -III(Annexure I)	3	0	0	3
3			PH320/PH321		PE -IV(Annexure I)	3	0	0	3
5	ter				LABORATORIES				
	est	PC	PH 322		Electromagnetic Theory Lab	0	0	4	2
	emé		PH 323		Statistical Mechanics Lab	0	0	4	2
	Ē	PE	PH 324/PH327/PH	1328	PE -III Lab (Annexure I)	0	0	4	2
			PH325/PH326		PE -IV Lab (Annexure I)	0	0	4	2
							r	Fotal	22

Total Credit of I.M.Sc. - I to VI Semesters = 145

Notes: -

Internship (In-house/External) of at least 2 months should be done by the students (Non-credit) during 5th/6th semester.

The Exit option with B.Sc. (Physics Honours) can be offered to the student who wants to get it after successful completion of 6^{th} semester.

Level			Code no.	Name of the subjects	L	Т	Р	C
Le								
				THEORY				
		PC	PH 401	Mathematical Method in Physics	3	0	0	3
			PH 402	Electrodynamics	3	0	0	3
			PH 403	Classical Mechanics	3	0	0	3
			PH 404	Quantum Mechanics	2	1	0	3
4	Π		PH 405	Modern Computational Techniques & Programming	2	0	0	2
		OE		Open Elective II	3	0	0	3
	ľ	OE		LABORATORIES	3	U	U	3
	te	PC					4	2
	Semester	PC	PH 406	Modern Computational Techniques & Programming Lab	0	0	4	
	m		PH 407	Modern Physics Lab	0	0	4	2
2	e.	MC	MT204	Constitution of India	2	0	0	Non-
								Credit
]	Fotal	21

Level			Code no.	Name of the subjects	L	Т	Р	С
	Η	Category		THEORY				
	Π	PC	PH 408	Statistical Physics	3	1	0	4
			PH 409	Atomic and Molecular Spectroscopy	3	1	0	4
	1		PH 410	Electronic Devices & Circuits	3	0	0	3
4	te		PH 411	Condensed Matter Physics	3	0	0	3
	estei	OE		Open Elective III	3	0	0	3
	em			SESSIONAL / LABORATORY	Y			
	ē	PC	PH 412	Electronics Lab	0	0	4	2
	Š		PH 413	Condensed Matter Physics Lab	0	0	4	2
							Fotal	21

Ξ		Category	Code no.	Name of the subjects	L	Т	Р	С
Level								
				THEORY				
		PC	PH 501	Nuclear and Particle Physics	3	1	0	4
			PH 502	Advanced Quantum Mechanics	3	1	0	4
			PH 503	Laser Physics and Applications	3	1	0	4
5	er IX	PE	PH 504 to PH 512 (Annexure II)	PE- V One paper from Either Group A or B or C or D or E: Specialization	4	0	0	4
	nester	PE	PH 500 (Annexure II)	Project (Phase-I) from Either Group A or B or C or D or E				4
	em			LABORATORIES			-	
	Ś	PC	PH 513	Laser Physics Lab	0	0	4	2
							Total	22

Level		Category	Code no.	Name of the subjects	L	Т	Р	C
				THEORY				
		PE	PH 513 to	PE - VI: One paper from Either	4	0	0	4
			PH 530	Group A or B or C or D or E:				
	X		(Annexure II)	Specialization				
5	, L			PE - VII: One paper from Either	4	0	0	4
5	te			Group A or B or C or D or E:				
	emester			Specialization				
	n		PH 550	Project (Phase-II) from Either Group				8
	er			A or B or C or D or E				
	Š							
			1	Total			-	16

Total Credits of I.M.Sc. Physics (VII to X Semesters) /M.Sc. Physics (I to IV Semesters) = 80

Grand Total for I.M.Sc. (I to X Semesters)=145+80 = 225 (Minimum requirement for Degree award)

Annexure I

	PE		Subjects	L-T-P-C
			Theory and Lab Papers	
5 th Semester	PE-I	PH 303	Advanced Mathematical Physics	3-0-0-3
		PH 304	Nano Materials and Applications	3-0-0-3
5 th Semester	PE-II	PH 305	Computational Physics	3-0-0-3
		PH 306	Materials Science and Nanotechnology	3-0-0-3
		PH 307	Experimental Technique	3-0-0-3
5 th Semester	PE -I Lab	PH 310	Advanced Mathematical Physics Lab	0-0-4-2
		PH311	Nano Materials and Applications Lab	0-0-4-2
5 th Semester	PE -II Lab	PH312	Computational Physics Lab	0-0-4-2
		PH313	Materials Science and Nanotechnology Lab	0-0-4-2
		PH314	Experimental Technique Lab	0-0-4-2
6 th Semester	PE -III	PH317	Nonconventional Sources of Energy	3-0-0-3
		PH318	Introduction to Nuclear and Particle Physics	3-0-0-3
		PH319	Nuclear Hazard and Waste Managements	3-0-0-3
6 th Semester	PE -IV	PH320	Atmospheric Physics	3-0-0-3
		PH321	Advanced Experimental Technique	3-0-0-3
6 th Semester	PE III Lab	PH324	Nonconventional Sources of Energy Lab	0-0-4-2
		PH327	Introduction to Nuclear and Particle Physics Lab	0-0-4-2
		PH328	Nuclear Hazard and Waste Management Lab	0-0-4-2
6 th Semester	PE -IV Lab	PH325	Atmospheric Physics Lab	0-0-4-2
		PH326	Advanced Experimental Technique Lab	0-0-4-2
	• •			

Annexure II

PE	Pre-requisites	Subjects	
PE-V	One paper from	Group A- Theoretical and Computational Physics:	
	Either Group A	Numerical Methods for Physicists	PH 504
	or B or C or D or	Theory of Solids	PH 505
	Ε	Group B- Condensed Matter Physics:	
		• Theory of Solids	PH 505
		Functional Materials	PH 506
		Group C – Photonics:	
		• Fiber and Integrated Optics	PH 507
		Quantum & Nonlinear Optics	PH 508
		Group D- Electronics	
		Instrumentation and Control	PH 509
		Physics of Low dimensional Semiconductors Devices	PH 510
		Group E- Plasma Sciences:	
		 Introduction to Plasma Physics 	PH 511
		Plasma Processing of Materials	PH 512
PE -VI	Two papers from	Group A- Theoretical and Computational Physics:	
to VII	any group	 Theoretical and Computational Fluid Dynamics 	PH 514
10 11	(Papers shall be	 Theoretical and Computational Fluid Dynamics Theoretical and Computational Condensed Matter Physics 	PH 515
	chosen from same	 Nonlinear Dynamics and Chaos 	PH 516
	group in IX and X		
	Semesters)	Group B- Condensed Matter Physics:	
		Nonconventional Energy Materials	PH 517
		Cryogenic Physics	PH 518
		Physics of Thin Films	PH 519
		• Theory of Dielectrics and Ferroics	PH 520
		Theoretical and Computational Condensed Matter Physics	PH 515
		Group C- Photonics:	
		 Photonic and Optoelectronic Devices 	PH 521
		 Holography and Applications 	PH 522
		Quantum photonics and applications	PH 523
		 Introduction to Nanophotonics 	PH 524
			111021
		Group D- Electronics:	
		 Microprocessor and Microcontroller Applications 	PH 525
		Integrated Electronics	PH 526
		Microwave Electronics	PH 527
		Course E. Diamon Colonaan	
		Group E- Plasma Sciences:	DII 529
		Theory of PlasmasPlasma Confinement	PH 528
			PH 529
		Waves and Instabilities in Plasma Physics of Thin Eilma	PH 530
		Physics of Thin Films	PH 519

I.M.Sc. (Physics) (VII -X Sem) as well as M.Sc. (I -IV Sem)

Semester	Subjects	Credit	Total
I.M.Sc. VII / M.Sc. I	Mathematical Method in Physics	3	21
	Electrodynamics	3	
	Classical Mechanics	3	
	Quantum Mechanics	3	
	Modern Computational Techniques & Programming	2	
	Open Elective I	3	
	Modern Computational Techniques & Programming Lab	2	
	Lab-II (Modern Physics Lab)	2	
I.M.Sc. VIII / M.Sc. II	Statistical Physics	4	21
	Atomic and Molecular Spectroscopy	4	
	Electronics Devices & Circuits	3	
	Condensed Matter Physics	3	
	Open Elective II (Other Dept)	3	
	Lab III (Electronics Lab)	2	
	Labs IV (Condensed Matter Physics Lab)	2	
I.M.Sc. IX / M.Sc. III	Nuclear and Particle Physics	4	22
	Advanced Quantum Mechanics	4	
	Laser Physics and Applications	4	
	PE-V One paper from Either Group A or B or C or D or E: Specialization	4	Papers shall be chosen from same group in I.MSc. IX and X Semesters
	Project from Either Group A or B or C or D or E	4	
	Lab –V (Laser Physics Lab)	2	
I.M.Sc. X / M.Sc. IV	PE-VI One paper from the same Group A or B or C or E PE - VII One paper from the same Group A or B or C or E	4+4	16
	Project (Phase-II) from Either Group A or B or C or D or E	8	
	Comprehensive Viva		00
		Total	80

Minimum requirement: 145 (UG)+80 (PG)= 225 Credits

<u>Internship (In-house/External)</u> of at least 2 months should be done by the students (Non-credit) during 5th/6th semester.

<u>CORE COURSE (I.M.Sc. 1st to 6th Semesters)</u> Semester I

COURSE INFORMATION SHEET

Course code: PH 101 Course title: Mechanics Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr. S. Lahiri

Theory: 50 Lectur				
Code: PH 101	Title : Mechanics	L-T-P-C [3-1-0-4]		
 2. Adv 3. Exer 4. Prov 5. Intro 	Depective: entle introduction to the kinematics of rigid bodies and the concepts of work and energy. ancing the above notions to explain collision processes, and teaching rotational dynamics. mplification of the notion of central force motion through discussions on gravitation. riding familiarity with the mathematical structure of waves and oscillations. oduction to the niceties of the special theory of relativity. cussion of some preliminary ideas of fluid motion and elasticity.			
 Develop: Getting e Capacity Solving p 	to solve problems on mechanics using the notion of work and energy. ing intuitive as well as mathematical understanding of rotational dynamics. equipped with mathematical tools to handle problems on central force motion. to grasp the underlying principles of waves and oscillations. problems related to relativistic transformation of variables in different inertial frames. o explain common effects of fluid motion and elasticity.			
Module-1	 Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Momentum of variable-mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy 	10		
Module-2	 Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire. 	10		
Module-3	Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one- body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea	12		

	of global positioning system (GPS). Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.	
Module-4	Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.	8
Module-5	Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum.	10
1. An i 2. Mec 3. Phys 4. Feyn Intro Addi 1. Mec 2. Univ 3.Physi	rence Books: Introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill. Introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill. Introduction to mechanics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill. Sics, Resnick, Halliday and Walker 8/e. 2008, Wiley. Introduction, K.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education oduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, John Wiley and Sons. Introduction to Special Relativity, R. Resnick, 2000, Tata McGraw Hill.	

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark		\checkmark		
End Sem Examination Marks	\checkmark		\checkmark	\checkmark	
Quiz I			\checkmark		
Quiz II					

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes							
	а	b	с	d	e	f		
1	Н	Н	Н	L	Η	М		
2	Н	Н	Н	L	L	М		
3	Н	Н	Н	L	Н	М		
4	Н	Н	Н	L	Н	М		
5	Н	Н	Н	L	L	М		
6	Н	Н	Н	L	Н	М		

Lecture wise Lesson planning Details.

Week No.	Lect. No.	Tentati ve Date	Ch. No.	Topics to be covered	Text Book / Refere	COs mapped	Actual Content covered	Method ology used	Remarks by faculty if
					nces				any
1.	L1-L3			Reference frames. Review of Newton's Laws Galilean transformations; Momentum of	l	1			
				variable-mass system.	-				
2.	L4-L6			Motion of projectile Dynamics of a system of particles. Conservation of momentum.	T1, R1	1			
3.	L7-L9			Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy	T1, R1	1			
4.	L10-L1			Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Law of conservation of Energy	.T1, R1	1			
5.	L12-L1			Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames.	T1, R2				
6.	L15-L1			Angular momentum of a particle and system of particles. Conservation of angular momentum. Moment of Inertia. Motion involving both translation and rotation	-				
7.	L18-L2				T3, R4				
8.	L21-L2			Law of gravitation. Gravitational potential energy. Potential and field due to spherical shell and solid sphere.	· ·				
	L24-26			Two-body problem and its reduction to one-body problem and its solution. Kepler's Laws. Satellite in circular orbit and applications.					
9.	L27-29			SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time- average values. Damped oscillation. Forced oscillations: Transient and steady states;					
	L30			Resonance, sharpness of resonance; power dissipation and Quality Factor.	,T1,T3				
11.	L31-33			Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating	•				

10		coordinate systems. Centrifugal force. Coriolis force and its applications.
12.	L34-36	Components of Velocity and T1, T3 Acceleration in Cylindrical and Spherical Coordinate Systems.
13.	L37-39	Michelson-Morley Experiment and T3, R2 its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations.
12.	L40-42	Simultaneity and order of events.T3, R2 Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number.
13.	L43-45	Relativisticaddition ofvelocities.T3, R2Variation of mass with velocity. Massless Particles.Mass-energy Equivalence.RelativisticDoppler effect.effect.RelativisticDoppler effect.TransformationofEnergy energyMomentum.Momentum.Momentum.Momentum.Momentum.

Course code: PH 102 Course title: ELECTRICITY AND MAGNETISM Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr R. Kumar

	le: 102	Title: ELECTRICITY AND MAGNETISM L-T-P [3-1-0	
	-		
	1.	know and apply the basic theorems related to electrostatics potential and field	
	2.	know how to deal electrostatics situation when dielectric is involved.	
	3.	know the various laws of magnetostatics in vacuum and when there is magnetic medium	
	4.	know the laws of electrodynamics and its application in AC circuits.	
	5.	know about Network theorems in linear circuits	
Cours	se Outo	omes : After the completion of this course, students will be able to	
Γ		apply Gauss's law and uniqueness theorem to calculate electric field	
F		to calculate various quantities like displacement vector and polarization in the presence of dielec	ctircs.
-		to apply the laws of magnetostatics-like Biot-Savart law, Ampere's circuital law, and to calculate	
		nysteresis energy loss.	
		to apply Maxwell's equations, and the laws of electromagnetic induction to deal AC circuits.	
		to apply network theorems to get the information about the voltage and current in various branch a dc circuit	es of
Mo	dule-1	Electric Field and Electric Potential	10
		Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge	
		distributions with spherical, cylindrical and planar symmetry. Conservative nature of	
		Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness	
		Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.	
Mo	dule-2	Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere.	10
Mo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere.	10
Moo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of	10
Moo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere.	10
Moo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization	10
Moo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate,	10
Moo		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P	10
		Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics.	
	dule-3	 Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. Magnetic Field: Magnetic force between current elements and 	10 10
	dule-3	 Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. Magnetic Field: Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. 	
	dule-3	 Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. Magnetic Field: Magnetic force between current elements and 	
	dule-3	 Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. Magnetic Field: Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. 	
	dule-3	Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics. Magnetic Field : Magnetic force between current elements and FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole).	
	dule-3	 Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. Magnetic Field: Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current 	
	dule-3	Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics. Magnetic Field : Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic	
	dule-3	Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics. Magnetic Field : Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity(H).	
	dule-3	Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics. Magnetic Field : Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity(H). Magnetic Susceptibility and permeability. Relation between B , H , M . Ferromagnetism. B-H	
Moo	dule-3	Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D . Relations between E , P and D . Gauss' Law in dielectrics. Magnetic Field : Magnetic force between current elements and definition of Magnetic FieldB. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity(H).	

	Maxwell's Equations. Charge Conservation and Displacement current . Electrical Circuits:
	AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series
	LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band
	Width. Parallel LCR Circuit.
Module-5	Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems 10
	Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum
	Power Transfer theorem. Applications to dc circuits
	Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and
	Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CD
References); }
Text book	s:
1. Intro	oduction to Electrodynamics by D.J. Griffits, Prentice Hall(1999).
2. Elec	tricity and Magnetism by E. M. Purcell and D. J. Morin, Cambridge. University press(2013)
3. Sch	aum's outline of Theory and Problems of Electrical Circuits, TMH 2002, by Mahmood Nahri & J.
Ed	minister
Reference	books:
1 01 '	l electrodynamics, J.D. Jackson, John and Wiley press, Third edition

Course Delivery methods Lecture by use of boards/LCD projectors/OHP projectors Tutorials/Assignments Seminars Mini projects/Projects

Laboratory experiments/teaching aids

Industrial/guest lectures

Industrial visits/in-plant training

Self- learning such as use of NPTEL materials and internets

Simulation

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		
Quiz I			\checkmark		
Quiz II					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	Н	Н	М	М	Н
2	Н	Н	Н	L	L	М
3	Н	Н	Н	М	М	М
4	Н	Н	Н	М	М	М
5	Н	Н	Н	М	М	М

Mapping of Course Outcomes onto Course Objective

Course Objective#		Course Outcomes					
	а	b	с	d	e	f	
1	Н	Н	Н	М	М	Н	
2	Н	Н	Н	М	Н	М	
3	Н	Н	Н	М	М	М	
4	Н	Н	Н	М	Н	М	
5	Н	Н	Н	М	М	М	

	Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1		
CD2	Tutorials/Assignments	CO2	CD1		
CD3	Seminars	CO3	CD1 and CD2		
CD4	Mini projects/Projects				
CD5	Laboratory experiments/teaching aids				
CD6	Industrial/guest lectures				
CD7	Industrial visits/in-plant training				
CD8	Self- learning such as use of NPTEL materials and internets				
CD9	Simulation				

Lecture wise Lesson planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No		Book /	mapp	Content	used	byfaculty
					Refere	ed	covered		if any
					nces				
1	L1,L2,L3,L		1	Electric field: Electric field	T1, T2	1, 2		CD1 and CD2	
	4			lines. Electric flux. Gauss' Law					
				with applications to charge					
				distributions with spherical,					
				cylindrical and planar					
				symmetry. Conservative nature					
				of Electrostatic Field.					
				Electrostatic Potential					
2	L5,L6,L7,L		1	Laplace's and Poisson	T1, T2			CD1 and CD2	
	8			equations. The Uniqueness					
				Theorem. Potential and Electric					
				Field of a dipole. Force and					

			Torque on a dipole.			
3	L9,L10,L11	2	Electrostatic energy of system	T1. T2	CD1 and CD2	
C	L12	_	of charges. Electrostatic energy			
	· · · ·		of a charged sphere.			
			Conductors in an electrostatic			
			Field. Surface charge and force			
			on a conductor. Capacitance of			
			a system of charged conductors.			
			Parallel-plate capacitor.			
			Capacitance of an isolated			
			capacitatice of all isolated			
4	T 12 T 14 T 1	2		T1 T2		
4.	L13,L14,L1	2	Method of Images and its	11, 12	CD1 and CD2	
	5,L16		application to: (1) Plane Infinite			
			Sheet and (2) Sphere			
			Dielectric Properties of Matter:			
			Electric Field in matter.			
			Polarization, Polarization			
			Charges. Electrical			
			Susceptibility and Dielectric			
			Constant.			
5.	L17,L18,L1	2			CD1 and CD2	
	9,L20			F 1 F 2		
6.	L21,L22,L2	3	e	T1, T2	CD1 and CD2	
	3,L24		Magnetic Field B. Biot-Savart's			
			Law and its simple applications:			
			straight wire and circular loop.			
			Current Loop as a Magnetic			
			Dipole and its Dipole Moment			
			(Analogy with Electric			
			Dipole). Ampere's Circuital Law			
			and its application to (1)			
			Solenoid and (2) Toroid.			
7.	L25,L26,L2	3	Properties of B: curl and	T1, T2	CD1 and CD2	
	7,L28		divergence. Vector Potential.			
			Magnetic Force on (1) point			
			charge (2) current carrying wire			
			(3) between current elements.			
			Torque on a current loop in a			
			uniform Magnetic Field.			
			Magnetic Properties of Matter:			
			Magnetization vector (M).			
			Magnetic Intensity(H).			
			Magnetic Susceptibility and			
			permeability			
8.	L29,L30,	3,		T1, T2		
	L31,L32	4	Ferromagnetism. B-H curve and	, · <u> </u>		
	, -		hysteresis. Faraday's Law.			
			Lenz's Law. Self Inductance			
			and Mutual Inductance.			
9.	L33,L34,L3	4	Reciprocity Theorem. Energy	Т1 Т2	CD1 and CD2	
9.	L33,L34,L3 5,L36	4	stored in a Magnetic Field.			
	5,250		Introduction to Maxwell's			
			Equations. Charge Conservation			
			and Displacement current .			
			and Displacement current.			

10.	L37,L38,L3	4	Electrical Circuits: AC Circuits:	T1, T2	CD1 and CD2	
	9,L40		Kirchhoff's laws for AC			
			circuits. Complex Reactance			
			and Impedance. Series LCR			
			Circuit: (1) Resonance, (2)			
			Power Dissipation and (3)			
			Quality Factor,)and (4) Band			
			Width. Parallel LCR Circuit.			
11.	L41,L42,L4	5	Network theorems: Ideal	T3	CD1 and CD2	
	3,L44		Constant-voltage and Constant-			
			current Sources. Network			
			Theorems: Thevenin theorem,			
			Norton theorem, Superposition			
			theorem, Reciprocity theorem,(
12.	L45,L46,	5	Maximum Power Transfer	T3	CD1 and CD2	
	L47,L48		theorem. Applications to dc			
			circuits			
			Ballistic Galvanometer: Torque			
			on a current Loop. Ballistic			
			Galvanometer: Current and			
			Charge Sensitivity.			
			Electromagnetic damping.			
13.	L49,L50	5	Logarithmic damping.		CD1 and CD2	

Course code: PH 103 Course title: Mechanics Lab Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr S Lahiri

		L-T-P-C
	MECHANICS LAB	[0-0-4-2]
1.	Measurements of length (or diameter) using vernier caliper, screw gauge and travelling icroscope.	
2.	To study the random error in observations.	
3.	To determine the height of a building using a Sextant.	
4.	To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus	
	of rigidity.	
5.	To determine the Moment of Inertia of a Flywheel.	
6.	To determine \mathbf{g} and velocity for a freely falling body using Digital Timing Technique	
7.	To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).	
8.	To determine the Young's Modulus of a Wire by Optical Lever Method.	
9.	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.	
10.	To determine the elastic Constants of a wire by Searle's method.	
11.	To determine the value of g using Bar Pendulum.	
12.	To determine the value of g using Kater's Pendulum.	
	Reference Books	
	Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House	
•	Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4 th Edition, reprinted 1985, Heinemann Educational Publishers	
•	A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Edn, 2011, Kitab Mahal	
•	Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.	
	Practical Physics, G.L. Squires, 2015, 4 th Edition, Cambridge University Press.	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Course code: PH 104 Course title: ELECTRICITY AND MAGNETISM LAB Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr R. Kumar

ELECTRICITY AND MAGNETISM LAB	L-T-P-C [0-0-4-2]
Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current,	
Capacitances, and (e) Checking electrical fuses.	
1. To study the characteristics of a series RC Circuit.	
2. To determine an unknown Low Resistance using Potentiometer.	
3. To determine an unknown Low Resistance using Carey Foster's Bridge.	
4. To compare capacitances using De'Sauty's bridge.	
5. Measurement of field strength B and its variation in a solenoid (determine dB/dx)	
6. To verify the Thevenin and Norton theorems.	
7. To verify the Superposition, and Maximum power transfer theorems.	
8. To determine self inductance of a coil by Anderson's bridge.	
9. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, ((b)
Impedance at resonance, (c) Quality factor Q, and (d) Band width.	
10. To study the response curve of a parallel LCR circuit and determine its	
11. Anti- resonant frequency and (b) Quality factor Q.	
12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer	
13. Determine a high resistance by leakage method using Ballistic Galvanometer.	
14. To determine self-inductance of a coil by Rayleigh's method.	
15. To determine the mutual inductance of two coils by Absolute method.	
Reference Books	
1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, AsiaPublishing House	
2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Ed., 2011, Kitab Mahal	
3. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4 th Edition, reprinted 1985, Heinemann Educational Publishers	
4. Engineering Practical Physics, S.Panigrahi and B.Mallick, 2015, Cengage Learning.	
 A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, VaniPub. 	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Semester II

COURSE INFORMATION SHEET

Course code: PH 105 Course title: MATHEMATICAL PHYSICS-I Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L: 3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: II Branch: PHYSICS Name of Teacher: Dr. S. Keshri

	Theory: 5	0 Lectures
Code:	Title: MATHEMATICAL PHYSICS-I	L-T-P-C
PH 105		[3-1-0-4]
Course Obj		
-	students an understanding of expressing periodic functions as discrete Fourier series, and comp	lex
repres	entation of Fourier series.	
-	ide fundamental concepts for solving ordinary differential equations which is required to unders rmulation of specialized courses in Physics.	tand
3.To fami	liarize students with some special integrals and their solutions which frequently appear while m	odeling
physic	cal systems.	-
4. To train	to estimate various errors in solving equations due to approximations or uncertainty in initial co	onditions.
	duce the concepts of partial differential equations and their applications in various problems in p	
1.Determi 2.Analyze some	Itcomes: The student should be able to ne Fourier series of a given periodic function by evaluating Fourier coefficients. e first-order and second-order differential equations and recognize special functions as solutions differential equations. special integrals.	of
-	te standard errors while solving equations.	
	artial differential equations using classical solution methods.	
Module-1	Fourier Series : Periodic functions. Orthogonality of sine and cosine functions, Dirichlet	10
Module-1	Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine	10
	functions and determination of Fourier coefficients. Complex representation of Fourier	
	series. Expansion of functions with arbitrary period. Expansion of non-periodic functions	
	over an interval. Even and odd functions and their Fourier expansions. Application.	
	Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series.	
	Parseval Identity.	
Module- 2	Frobenius Method and Special Functions: Singular Points of Second Order Linear	10
iniouule 2	Differential Equations and their importance. Frobenius method and its applications to	10
	differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations.	
	Properties of Legendre Polynomials: Rodrigues Formula, Generating Function,	
	Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre	
	Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence	
	relations. Zeros of Bessel Functions ($J_0(\mathbf{x})$ and $J_1(\mathbf{x})$) and Orthogonality.	
Module-3	Some Special Integrals: Beta and Gamma Functions and Relation between them.	10
	Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).	
	Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of	
	Errors. Standard and Probable Error. Least-squares fit. Error on the slope and intercept of a	
	fitted line.	
Module-4	Partial Differential Equations: Solutions to partial differential equations, using	10

	separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation.	
Module-5	Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.	10
Text Bo	oks:	
T1:	Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.	
T2:	Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.	
Т3:	Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.	
Refe	rence Books:	
R1:	Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.	
R2:	Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.	
R3:	Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press	
R4:	Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		\checkmark
Quiz I			\checkmark		
Quiz II				\checkmark	

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #			Program O	utcomes		
	a	b	с	d	e	f
1	Н	Н	Н	L	М	L
2	М	Н	Н	L	L	L
3	Н	М	М	М	М	М
4	М	Н	М	М	Н	М
5	Н	Η	Н	L	Н	L

	20	0 1	· ·	n	A (
Mapping of	Course	Outcomes	onto .	Program	Outcomes

Course Outcome #		Course Objectives			
	А	В	С	D	Е
1	Н	М	М	М	М
2	L	Н	L	L	М
3	L	М	Н	М	М
4	Н	L	Н	Н	L
5	Н	М	М	L	Н

	Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8		
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8		
CD3	Seminars	CO3	CD1, CD2 and CD8		
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8		
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8		
CD6	Industrial/guest lectures				
CD7	Industrial visits/in-plant training				
CD8	Self- learning such as use of NPTEL materials and internets				
CD9	Simulation				

Lecture wise Lesson planning Details.

Week	Lect.	Tentativ	Module	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	e Date	No.		Book / Refere	mapped	Content	used	by faculty
		Date			nces		covered		if any
1	L1		Ι	Fourier Series: Periodic	T1,T2			PPT Digi	
				functions. Orthogonality of sine				Class/Chal	
				and cosine functions,				k-Board	
1	L2			Dirichlet Conditions (Statement	T1, T2			PPT Digi	
				only).				Class/Chal	
								k-Board	
1	L3-			Expansion of periodic functions	T1, T2			PPT Digi	
	L4			in a series of sine and cosine				Class/Chal	
				functions and determination of				k-Board	
				Fourier coefficients.					

2	L5		Complex representation of	T1, T3	PPT Digi
2	LJ		Complex representation of Fourier series. Expansion of		Class/Chal
			~		
			functions with arbitrary period.		k-Board
2	L6-		Expansion of non-periodic	Т1, Т3	PPT Digi
	L8		functions over an interval. Even		Class/Chal
			and odd functions and their		k-Board
			Fourier expansions.		
2	L9-		Application. Summing of Infinite	T2	PPT Digi
	L10		Series. Term-by-Term		Class/Chal
			differentiation and integration of		k-Board
			Fourier Series. Parseval Identity.		
3	L11-		Frobenius Method and Special	Т1. Т3	PPT Digi
	L13		Functions: Singular Points of		Class/Chal
			Second Order Linear Differential		k-Board
			Equations and their importance.		
			Frobenius method and its		
			applications to differential		
			equations.		
3	L14-		Legendre, Bessel, Hermite and	T1, T3	PPT Digi
	L16		Laguerre Differential Equations.		Class/Chal
		II	Properties of Legendre		k-Board
			Polynomials: Rodrigues Formula,		
			Generating Function,		
			Orthogonality.		
3	L17-		Simple recurrence relations.	Т1 Т3	PPT Digi
5	L17- L18		1	11, 13	Class/Chal
	LIO		Expansion of function in a series		
			of Legendre Polynomials. Bessel		k-Board
			Functions of the First Kind:		
			Generating Function,		
4	L19-		Simple recurrence relations.	T1, T3	PPT Digi
	L20		Zeros of Bessel Functions $(J_0(x)$		Class/Chal
			and $J_1(x)$) and Orthogonality.		k-Board
4	L21-		Some Special Integrals: Beta	T1, T3	PPT Digi
	22		and Gamma Functions and	,	Class/Chal
			Relation between them.		k-Board
5	L23-	———————————————————————————————————————	Expression of Integrals in terms	T1, T3	PPT Digi
Ĩ	24		of Gamma Functions. Error		Class/Chal
			Function (Probability Integral).		k-Board
5	L25-			T1 T2	
5			Theory of Errors: Systematic	11, 13	PPT Digi
	L26	III	and Random Errors.		Class/Chal
	1.07			T 1 T 2	k-Board
6	L27-		1 0	T1, T3	PPT Digi
	L28		Law of Errors. Standard and		Class/Chal
			Probable Error. Least-squares fit.		k-Board
6-7	L29-		Error on the slope and intercept	T1, T3	PPT Digi
	L30		of a fitted line.		Class/Chal
					k-Board
	L31-	IV	Partial Differential Equations:	T1, T3	PPT Digi
	L32		Solutions to partial differential		Class/Chal
			equations, using separation of		k-Board
			variables Diffusion Equation.		
	1		randolos Diffusion Equation.		

L33-	Laplace's Equation in problems of T1, T3	DDT Digi
		PPT Digi
L35	rectangular,	Class/Chal
		k-Board
L36-	Wave equation and its solution T1, T3	PPT Digi
L39	for vibrational modes of a	Class/Chal
	stretched string, rectangular and	k-Board
	circular membranes.	
L40	Cylindrical and spherical T1, T3	PPT Digi
	symmetry	Class/Chal
		k-Board
L41-	Orthogonal Curvilinear T1, T2	PPT Digi
L43	Coordinates:	Class/Chal
	Orthogonal Curvilinear	k-Board
	Coordinates.	
L44-	Derivation of Gradient, T1, T3	PPT Digi
L46	Divergence.	Class/Chal
	V	k-Board
L47-	Curl and Laplacian in Cartesian, T1, T3	PPT Digi
L48		Class/Chal
		k-Board
L49-	Spherical and Cylindrical T1, T3	PPT Digi
L50	Coordinate Systems.	Class/Chal
		k-Board

Course code: PH 106 Course title: WAVES AND OPTICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L:3 T: 1 P: 0 Class schedule per week: 3 Class: I.M.Sc. Semester / Level: II Branch: PHYSICS Name of Teacher:Dr Nishi Srivastava

Code	Theory: 50 Lectures Title: WAVES AND OPTICS	L-T-P-C
PH 1		[3-1-0-4]
		-1
1.	To provide thorough knowledge of superposition principle, superposition of collinear and perpendicular	
	oscillations; and basic information about waves	
2.	To appreciate the variation in velocity of waves and formation of standing waves.	
3.	To understand the concept of interference and instruments based on this phenomenon.	
4.	To know the concept of diffraction, its theory and classes	
5.	To understand the polarized light and its basic principles.	
Cours	Outcomes: After the completion of this course, students will	
1.	Be able to explain superposition principle, formation of Lissajous figure and classes of waves	
2.	Be able to understand changes in waves and characteristics of standing waves	
3.	Be able to explain the optical phenomenon interference and working of instruments based on this phenome	enon
4.	Get familiar with optical phenomenon diffraction and various theory explaining it	
5.	Acquire knowledge of polarization, various class of polarized light and its construction	
Module	 Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods Lissajous Figures with equal an unequal frequency and their uses. Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. 	12
Module	 Velocity of Waves: Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. Superposition of Two Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes.Superposition of N Harmonic Waves. Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. 	12
Module	 Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer. 	
Module	-4 Diffraction: Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula. (Qualitative discussion only)	10

	Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.	
	Fresnel Diffraction : Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone	
	Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.	
	Polarization: Unpolarised light, linear, circular, eliptical polarized light, Malus law,	4
	Polarisation by reflection, refraction, and scattering, double refraction, Nicol's prism,	
Module-5	Babinet compensator, Jones vector, Jones matrices.	
Text Book	XS	
T1:	Optics, Ajoy Ghatak, 2008, Tata McGraw Hill	
Reference	Books	
R2:	Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill Principles of Optics, May Rom and Emil Wolf 7 th Edn. 1000, Bergamon Press	
D 2.	Dringinlag of Ontigg Max Porn and Emil Walf 7 Edn. 1000 Dargamon Prass	

- R3: Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press. R4: The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.

- R5: The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill. R6: Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand Publications.

Course Delivery methods		
Lecture by use of boards/LCD projectors/OHP projectors	Y	
Tutorials/Assignments	Y	
Seminars	Ν	
Mini projects/Projects	Ν	
Laboratory experiments/teaching aids	Y	
Industrial/guest lectures	Ν	
Industrial visits/in-plant training	Ν	
Self- learning such as use of NPTEL materials and internets	Y	
Simulation	Ν	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark		\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark		
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course O	Mapping between Course Objectives and Course Outcomes					
Course Objectives	1	2	3	4	5	
А	Н	Н	М	М	М	
В	Н	Н	М	М	L	
С	М	L	Η	М	L	
D	L	М	М	Н	L	
Е	L	L	М	L	Н	

apping between Course Objectives and Course Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes				
Outcom e #	1	2	3	4	5	6
1	Н	Н	М	М	Н	Н
2	Н	Н	М	М	Н	Н
3	Н	Н	М	М	Н	Н
4	Н	Н	М	М	Н	Н
5	Н	Н	М	М	Н	Н

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Metho d			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures	-	-			
CD7	Industrial visits/in-plant training	-	-			
CD8	Self- learning such as use of NPTEL materials and internets	-	-			
CD9	Simulation	-	-			

Lecture wise Lesson planning Details.

We	Lect.	Tent		Topics to be covered	Text	COs	Actual	Methodo	Remar
ek	No.	ative	No.		Book /	mapp	Content	logy	ks by
No.		Date			Refere	ed	covered	used	faculty
					nces				if any
1	L1-L4			Linearity and Superposition	T1,R1,				
				Principle. Superposition of two	R4				
				collinear oscillations having (1)					
				equal frequencies and (2) different					
				frequencies (Beats). Superposition of					
				N collinear Harmonic Oscillations					
				with (1) equal phase differences and					
				(2) equal frequency differences.					
	L5-L8			Graphical and Analytical Methods.	T1,R4				
				Lissajous Figures with equal an					
				unequal frequency and their uses.					
	L9-L12			Planeand Spherical Waves.	T1,R1,				
				Longitudinal and Transverse Waves.	R5				
				Plane Progressive (Travelling)					

	Waves. Wave Equation. Particle and
	Wave Velocities. Differential
	Equation. Pressure of a Longitudinal
	Wave. Energy Transport. Intensity of
	Wave. Water Waves: Ripple and
	Gravity Waves.
L13-L16	Velocity of Transverse Vibrations of T1,R3
	Stretched Strings. Velocity of
	Longitudinal Waves in a Fluid in a
	Pipe. Newton's Formula for Velocity
	of Sound. Laplace's Correction.
L17-L20	Standing (Stationary) Waves in a T1,R3
	String: Fixed and Free Ends.
	Analytical Treatment. Phase and
	Group Velocities. Changes with
	respect to Position and Time. Energy
	of Vibrating String. Transfer of
	Energy. Normal Modes of Stretched
	Strings. Plucked and Struck Strings.
	Melde's Experiment. Longitudinal
	Standing Waves and Normal Modes.
	Open and Closed Pipes.
I 01 I 04	Superposition of N Harmonic Waves.
L21-L24	Electromagnetic nature of light. T1,R5
	Definition and properties of wave
	front. Huygens Principle. Temporal
	and Spatial Coherence.
L25-L26	Division of amplitude and wavefront. T1,R5
	Young's double slit experiment.
L27-L28	Lloyd's Mirror and Fresnel's T1,R5
L27-L20	Biprism. Phase change on reflection:
1.20.1.20	Stokes' treatment.
L29-L30	Interference in Thin Films: parallel T1,R6
	and wedge-shaped films. Fringes of
	equal inclination (Haidinger
	Fringes);
L31-L32	Fringes of equal thickness (Fizeau T1,R6
	Fringes). Newton's Rings:
	Measurement of wavelength and
	refractive index
L33-L36	Michelson Interferometer-(1) Idea of T1,R6
	form of fringes (No theory required),
	(2) Determination of Wavelength, (3)
	Wavelength Difference, (4)
	Refractive Index, and (5) Visibility
	of Fringes. Fabry-Perot
	interferometer.
L37-L39	Kirchhoff's Integral Theorem, T1,R3
	Fresnel-Kirchhoff's Integral
	Ũ
	only)
L40-L42	Single slit. Circular aperture, T1,R3
	Resolving Power of a telescope.
	Double slit. Multiple slits.

	Diffraction grating. Resolving power	
	of grating.	
L43-L44	Half-Period Zones for Plane Wave. Explanation of Rectilinear, Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone	°1,R3
L45-L46	Plate. Fresnel's Integral,	
L43-L40	Fresnel diffraction pattern of a Ti straight edge, a slit and a wire	⁻¹ ,R6
L47-L48	Unpolarised light, linear, circular, T eliptical polarized light, Malus law, Polarisation by reflection, refraction, and scattering,	`1,R6
L49-50	double refraction, Nicol's prism, T Babinet compensator, Jones vector, Jones matrices.	T1, R2

Course code: PH 107 Course title: MATHEMATICAL PHYSICS-I LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 4 Class: I.M.Sc. Semester / Level: II Branch: PHYSICS Name of Teacher:

MATHEMATICAL PHYSICS-I LAB

Course Objectives:

- 1. To give an overview of computer structure and organization.
- 2. To introduce the fundamentals of scientific computing.
- 3. To introduce the basics of programming in C/C^{++} .
- 4. To train students to solve linear equations and do interpolation by writing programs in C/C^{++} .
- 5. To teach to solve differential and integral equations using C/C++ programming and introduce Monte-Carlo method.
 - Course Outcomes: Students should be able to:
- 1. Understand the computer structure.
- 2. Significance of the form of input data to solve equations in computer.
- 3. Write simple programs in C/C++ .
- 4. Use C/C++ programming to solve problems like finding roots of linear equations, transcendental equations, etc.
- 5. Perform numerical integration and numerical differentiation on computer.

Topics	Description with Applications	L-T-P-C
		[0-0-4-2]
Introduction to Numerical computation software Scilab	Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensional arrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).	
Curve fitting, Least square fit, Goodness of fit, standard deviation Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems Generation of Special functions using User defined functions in Scilab	Ohms law to calculate R, Hooke's law to calculate spring Constant Solution of mesh equations of electric circuits (3 meshes) Solution of coupled spring mass systems (3 masses) Generating and plotting Legendre Polynomials Generating and plotting Bessel function	
Solution of ODE	First order differential equation	

First order Differential equation	Radioactive decay	
Euler,	• Current in RC, LC circuits with DC source	
modified Euler and Runge-Kutta		
second	• Newton's law of cooling	
order methods	Classical equations of motion	
	• Second order Differential Equation	
Second order differential equation	• Harmonic oscillator (no friction)	
Fixed difference method		
	Damped Harmonic oscillator	
	Over dampedCritical damped	
	 Oscillatory 	
	 Oscillatory Forced Harmonic oscillator 	
	 Transient and Steady state solution 	
	• Apply above to LCR circuits also	
	d ²	
	• Solve $x^2 \frac{d^2y}{dx^2} - 4x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$	
	un un	
	with the boundary conditions at	
	$x = 1, y = \frac{1}{2}e^2, \frac{dy}{dx} = -\frac{3}{2}e^2 - 0.5,$	
	$x = 1, y = \frac{1}{2}e^{-x}, \frac{1}{dx} = -\frac{1}{2}e^{-x} = 0.5,$	
	in the range $1 \le x \le 3$. Plot y and $\frac{dy}{dx}$ against x in the	
Doution differential equations Using	given range on the same graph.	
Partial differential equations Using Scicos / xcos	Partial Differential Equation:	
Scicos / xcos	Faitiai Differentiai Equation.	
	• Wave equation	
	Heat equation	
	 Poisson equation 	
	 Laplace equation 	
	• Generating square wave, sine wave, saw tooth wave	
	Solution to harmonic oscillator	
	• Study of beat phenomenon	
	• Phase space plots	
Reference Books:		
Mathematical Methods for Phy	sics and Engineers, K.F Riley, M.P. Hobson and	
S. J. Bence, 3 ^{ru} ed., 2006, Cam	oridge University Press	
Complex Variables, A.S. Fokas	s & M.J. Ablowitz, 8 th Ed., 2011, Cambridge Univ. Press	
	s with applications, D.G. Zill and P.D. Shanahan,	
1940, Jones & Bartlett	er, 1 st Edn., 2015, Scientific International Pvt. Ltd.	
• A Guide to MATI AR RD U	int, R.L. Lipsman, J.M. Rosenberg, 2014, 3 rd Edn.,	
• A Guide to MATLAB, B.K. Ho Cambridge University Press	an, N.D. Eipoman, J.M. Roschoerg, 2014, J Edill,	
.	ls with MATLAB®, OCTAVE and SCILAB: Scientific	
	s: A.V. Wouwer, P. Saucez, C.V. Fernández.	
2014 Springer		
• Scilab by example: M. Affoul 2	2012 ISBN: 978-1479203444	
· -	ab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company	
	bert M. Surhone. 2010 Betascript Publishing	
 Schab Image Processing: Land www.scilab.in/textbook_comp 		
• www.schab.m/textbook_comp	amon/generate_000k/271	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 108 Course title: WAVES AND OPTICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: II Branch: PHYSICS Name of Teacher: Dr Nishi Srivastava

WAVES AND OPTICS LAB	L-T-P-C [0-0-4-2]
1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 –T law. 2. To investigate the motion of coupled oscillators.	
3. To study Lissajous Figures.	
4. Familiarization with: Schuster's focusing; determination of angle of prism.	
5. To determine refractive index of the Material of a prism using sodium source.	
 To determine the dispersive power and Cauchy constants of the material of a prism using mercury source. 	
7. To determine the wavelength of sodium source using Michelson's interferometer.	
 8. To determine wavelength of sodium light using Fresnel Biprism. 9. To determine wavelength of sodium light using Newton's Rings. 	
10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.	
11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.	
12. To determine dispersive power and resolving power of a plane diffraction grating.	
Reference Books	
 Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal 	
 A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11 Ed., 2011, Kitab Manal Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers 	
4. A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Semester III

COURSE INFORMATION SHEET

Course code: PH 201 Course title: THERMAL PHYSICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L: 3T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher: Dr Nishi Srivastava

Theory: 50 Lectures				
Code:	Title: THERMAL PHYSICS	L-T-P-C		
PH 201		[3-1-0-4]		
Course (D bjectives: This course enables the students			
1. To ı	inderstand the basic laws, concepts of thermodynamics and heat engines			
2. To e	xplains the second law of thermodynamics with concept of entropy, Carnot cycle and thermodynamic	:		
potent	ials			
3. To u	inderstand the derivation of Maxwell's thermodynamic relations			
4. To e	nlighten the kinetic theory of gases and distribution of velocities			
5. To a	ppreciate behavior of ideal and real gas and detailed discussion about it.			
	Dutcomes: After the completion of this course, students will			
	e to explain the laws of thermodynamics, reversible and irreversible processes and heat engines.			
	re knowledge of entropy, Carnot cycle and thermodynamic potential definitions			
	miliar with Maxwell's thermodynamic relations and its applications.			
	le to appreciate the kinetic theory of gases, equipartition of energy and molecular collision			
	le to understand difference in ideal and real gases, laws and theory related with real gas.			
odule-1	Introduction to Thermodynamics	10		
	Zeroth and First Law of Thermodynamics : Extensive and intensive Thermodynamic Variables,	10		
	Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature,			
	Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form,			
	Internal Energy, First Law & various processes, Applications of First Law: General Relation			
	between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and			
	Expansion Co-efficient.			
	Second Law of Thermodynamics: Reversible and Irreversible process with examples.			
	Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine			
	& efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-			
	Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of			
	Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to			
	Perfect Gas Scale.			
odule-2	Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of	10		
	Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy.			
	Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe.			
	Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy.			
	Temperature-Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics.			
	Unattainability of Absolute Zero.			
	Thermodynamic Potentials : Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz			
	Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films			
	and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic			
	demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations			
Modula 2		0		
Module-3	Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) TdS Equations, (4)	8		
	Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of			
	Temperature during Adiabatic Process.			
	35			

Module-4	Kinetic Theory of Gases Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal	12
	Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's	
	Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases.	
	Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean FreePath.	
	Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3)	
	Diffusion. Brownian Motion and its Significance	
Module-5	Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and	10
	Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with	
	Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect	
	Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal	
	Gases. Temperature of Inversion. Joule- Thomson Cooling.	

Text Books:

T1: Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.

T2: A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press

Reference Books:

R1: Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill R2: Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer. R3: Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa. R4: Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press

R5: Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Y
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment		
Mid Sem Examination Marks	25		
End SemExamination Marks	50		
Two Quizzes	10+10		
Teacher's assessment	5		

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark				
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark		
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
Α	Н	Н	L	L	М
В	Н	Н	L	L	М
С	L	L	Н	L	L
D	L	L	L	Н	М
Е	L	L	L	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes							
Outcome #	1	1 2 3 4 5							
1	Н	Н	Н	М	Н	Н			
2	Н	Н	Н	М	Н	Н			
3	Н	Н	Н	М	Н	Н			
4	Н	Н	Н	М	Н	Н			
5	Н	Н	Н	М	Н	Н			

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures	-	-					
CD7	Industrial visits/in-plant training	-	-					
CD8	Self- learning such as use of NPTEL materials and internets	-	-					
CD9	Simulation	-	-					

Week	Lect.	Tentat	Ch.	Topics to be covered	TextBook /	COs	Actual	Methodol	Remarks
No.	No.	ive	No.		References	mapped	Content	ogy used	by faculty
		Date					covered		if any
1	L1-L3			Extensive and intensive Thermodynamic Variables Thermodynamic Equilibrium Zeroth Law of Thermodynamics & Concept of Temperature Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form,					
	L4-L6			Internal Energy, First Law & various processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and					

· · · · · · · · · · · · · · · · · · ·	
	Adiabatic Processes,
	Compressibility and Expansion
	Co-efficient.
L7-L8	Reversible and Irreversible T1, T2, R2
	process with examples.
	Conversion of Work into Heat
	and Heat into Work. Heat
	Engines. Carnot's Cycle, Carnot
	engine & efficiency.
	Refrigerator & coefficient of
	performance,
L9-L10	2nd Law of Thermodynamics: T1,T2,R1
	Kelvin-Planck and Clausius
	Statements and their
	Equivalence. Carnot's Theorem.
	Applications of Second Law of
	Thermodynamics:
	Thermodynamic Scale of
	Temperature and its Equivalence
	to Perfect Gas Scale.
L11-L13	Concept of Entropy, Clausius T1,R4
	Theorem. Clausius Inequality,
	Second Law of Thermodynamics
	in terms of Entropy. Entropy of a
	perfect gas. Principle of Increase
	of Entropy.
L14-L16	Entropy Changes in Reversible T1,R1
L14-L10	
	and Irreversible processes with examples. Entropy of the
	Universe. Entropy Changes in Reversible and Irreversible
	Processes. Principle of Increase of Entropy. Temperature–
	Entropy diagrams for Carnot's
	Cycle. Third Law of
	Thermodynamics.
	Unattainability of Absolute Zero.
L17-L18	Thermodynamic Potentials: T1,R4
	Internal Energy, Enthalpy,
	Helmholtz Free Energy, Gibb's
	Free Energy. Their Definitions,
	Properties and Applications.
	Surface Films and Variation of
	Surface Tension with
	Temperature. Magnetic Work,
L19-L20	Cooling due to adiabatic T1,R5
	demagnetization, First and
	second order Phase Transitions
	with examples, Clausius
	Clapeyron Equation and
	Ehrenfest equations
L21-L22	Derivations and applications of T1, R2
	Maxwell's Relations,
L23-L28	Maxwell's Relations:(1) T1, R2
	Clausius Clapeyron equation, (2)

	Values of $C_p-C_{v_1}$ (3) TdS		
	Equations, (4) Joule-Kelvin		
	coefficient for Ideal and Van der		
	Waal Gases, (5) Energy		
	equations, (6) Change of		
	Temperature during Adiabatic		
	Process.		
		T1 D 4	
L29-L31	Maxwell-Boltzmann Law of	11,K4	
	Distribution of Velocities in an		
	Ideal Gas and its Experimental		
	Verification. Doppler	T1 D2	
L32-L34	Broadening of Spectral Lines	T1,R3	
	and Stern's Experiment. Mean,		
	RMS and Most Probable		
	Speeds. Degrees of Freedom.		
	Law of Equipartition of Energy		
	(No proof required). Specific		
	heats of Gases.		
L35-L37	Mean Free Path. Collision		
	Probability. Estimates of Mean		
	FreePath.		
L38-L40	Transport Phenomenon in Ideal	T1,R4	
	Gases: (1) Viscosity, (2)		
	Thermal Conductivity and (3)		
	Diffusion. Brownian Motion and		
	its Significance		
L41-L43		T1,T2	
	Deviations from the Ideal Gas	11,12	
	Equation. The Virial Equation.		
	Andrew's Experiments on CO2		
	Gas.	T 1 T 2	
L44-L46	Critical Constants. Continuity of	T1,T2	
	Liquid and Gaseous State.		
	Vapour and Gas. Boyle		
	Temperature. Van der Waal's		
	Equation of State for Real		
	Gases. Values of Critical		
	Constants. Law of		
	Corresponding States.		
L47-50	Comparison with Experimental	T1, T2	
	Curves. P-V Diagrams. Joule's		
	Experiment. Free Adiabatic		
	Expansion of a Perfect Gas.		
	Joule-Thomson Porous Plug		
	Experiment. Joule-Thomson		
	Effect for Real and Van der		
	Waal Gases. Temperature of		
	Inversion. Joule- Thomson		
	Cooling.		

Course code: PH 202 Course title: DIGITAL SYSTEMS AND APPLICATIONS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L:4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher: Dr Ela Sinha

Theory: 50 Lectures

	Theory: 50 Lectures	
Code PH 202	Title: DIGITAL SYSTEMS AND APPLICATIONS	L-T-P-C 4-0-0-4]
	e objectives : Students will try to learn	
	o understand number representation and conversion between different representation in digital electronic circ	cuits
	o analyze logic processes and implement logical operations using combinational logic circuits.	
	o understand characteristics of memory and their classification.	
	o understand concepts of sequential circuits and to analyze sequential systems.	
5. To	o understand basic architecture of 16 bit and 32 bit microprocessors.	
Cours	e outcomes: After successful completion of the course student will be able:-	
	develop a digital logic and apply it to solve real life problems.	
	analyze, design and implement combinational logic circuits.	
	classify different semiconductor memories.	
	analyze, design and implement sequential logic circuits.	
	write programs to run on 8085 microprocessor based systems.	10
Module-1	Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection System and Time Base.	10
	Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage,	
	Current, Frequency, and Phase Difference.	
	Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components.	
	Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic	
	idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs.	
Module-2	Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary	10
	and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates	
	(realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR	
	Gates and application as Parity Checkers.	
	Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean	
	Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into	
	Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.	
Module-3	Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.	10
	Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders.	
	Half & Full Subtractors, 4-bit binary Adder/Subtractor.	
	Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset	
	and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop.	
	Timers : IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator.	
Module-4	Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in Parallel-	10
	out Shift Registers (only up to 4 bits).	
	Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. Computer Organization : Input/Output Devices. Data storage (idea of RAM and ROM). Computer	
	memory. Memory organization & addressing. Memory Interfacing. Memory Map.	
Andrel - 5		10
Module-5	Intel 8085 Microprocessor Architecture: Main features of 8085. Block diagram. Components. Pin-out diagram. Busas, Pagistars, ALU, Mamory, Stack memory, Timing Control circuitry, Timing states	10
	diagram. Buses. Registers. ALU. Memory. Stack memory. Timing Control circuitry. Timing states. Instruction cycle, Timing diagram of MOV and MVI.	
	Introduction to Assembly Language: 1 byte, 2 byte & 3 byte instructions.	
	indouted to Assembly Language. 1 byte, 2 byte & 5 byte instructions.	

Text Books:

- 1. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw $(T\tilde{1})$
- Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.(T2)
 Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.(T3)
- 4. Digital Electronics G K Kharate ,2010, Oxford University Press(T4)

Reference Books

- Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning (R1) 1.
- 2.
- Logic circuit design, Shimon P. Vingron, 2012, Springer.(R2) Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.(R3) Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill (R4) 3.
- 4.
- 5. Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall. (R5)

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I					
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes								
Course Objectives	1	2	3	4	5			
А	Н	Η	Μ	Η	Н			
В	М	Н	Μ	L	Н			
С	М	Μ	Η	Μ	Н			
D	М	Μ	Μ	Η	Н			
Е	Н	Μ	L	L	Н			

Mapping between Course Objectives and Course Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						
	а	b	с	d	e	f		
1	М	М	Н	Η	Н	Н		
2	М	М	Н	Н	Н	Н		
3	L	М	Н	Н	Н	Н		
4	М	М	Н	Н	Н	Н		
5	Н	М	Н	Н	Н	Н		

Mapping Between COs and Course Delivery (CD) methods

CD	Course Delivery methods	Course	Course Delivery
		Outcome	Method
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
CD8	Self- learning such as use of NPTEL materials and internets	-	-
CD9	Simulation	-	-

Week	Lect.	Tentat	Ch	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	ive	No.		Book /	mapped	Content	used	by faculty
		Date			Referen		covered		if any
					ces				
	1		1.	Block Diagram of CRO. Electron	T1			PPT Digi	
				Gun				Class/Chock-	
								Board	
	2-5			Deflection System and Time Base.	T1,			PPTDigi	
				Deflection Sensitivity.	T2,R1			Class/ chock-	
				Applications of CRO: (1) Study of				Board	
				Waveform, (2) Measurement of					
				Voltage, Current, Frequency, and					
				Phase Difference.					
	6,7			Active & Passive components.	T2,T4			PPT Digi	
				Discrete components. Wafer,				Class/Chock	
				Chip.				-Board	
	8-10			Advantages and drawbacks of ICs.	T2,T4,			PPT Digi	
				Scale of integration: SSI, MSI,	R4			Class/Chock	
1				LSI and VLSI (basic idea and				-Board	
				definitions only). Classification of					

<u> </u>					I I I I I I I I I I I I I I I I I I I
			ICs. Examples of Linear and		
			Digital ICs.		
11		2.	Difference between Analog and	T1,T2	PPT Digi
			Digital Circuits. Binary Numbers.		Class/Chock
			Decimal to Binary and Binary to		-Board
			Decimal Conversion.		
12-	-15		BCD, Octal and Hexadecimal	T1, T3	PPT Digi
			numbers. AND, OR and NOT		Class/Chock
			Gates (realization using Diodes		-Board
			and Transistor). NAND and NOR		
			Gates as Universal Gates. XOR		
			and XNOR Gates and application		
			as Parity Checkers.		
16-	18		De Morgan's Theorems. Boolean	T1, T4	PPT Digi
			Laws. Simplification of Logic	· ·	Class/Chock
			Circuit using Boolean Algebra.		-Board
			Fundamental Products. Idea of		
			Minterms and Maxterms.		
19-	20		Conversion of a Truth table into	T1,	PPT Digi
17	20		Equivalent Logic Circuit by (1)	R1	Class/Chock
			Sum of Products Method and (2)	M	-Board
			Karnaugh Map.		Dourd
21-	25	3.	Basic idea of Multiplexers, De-	T4	PPT Digi
21	23	5.	multiplexers, Decoders, Encoders.	14	Class/Chock
			Arithmetic Circuits: Binary		-Board
			Addition. Binary Subtraction		-Doard
			using 2's Complement. Half and		
			Full Adders. Half & Full		
			Subtractors, 4-bit binary		
			Adder/Subtractor.		
26-	28		SR, D, and JK Flip-Flops. Clocked	ТЗ,	PPT Digi
20-	-20		· · ·	,	PPT Digi Class/
			(Level and Edge Triggered) Flip-	R4	Class/ Chock-Board
			Flops. Preset and Clear operations.		CHOCK-BOAID
			Race-around conditions in JK		
			Flip-Flop. M/S JK Flip-Flop.		
29-	30		Timers : IC 555: block diagram	T4, R3	PPT Digi
			and applications: Astable	· ·	Class/
			multivibrator and Monostable		Chock-Board
			multivibrator		
31-	32	4.	Serial-in-Serial-out, Serial-in-	T2.T3	PPT Digi
		-	Parallel-out	.,=•	Class/
					Chock-Board
33-	35		Parallel-in-Serial-out and Parallel-	T2,T3	PPT Digi
	~		in Parallel-out Shift Registers	,	Class/ Chock
			(only up to 4 bits)		-Board
36-	37		Ring Counter. Asynchronous	T1 T4	PPT Digi
30	51		counters, Decade Counter.		Class/
			Synchronous Counter		Chock-Board
38-	.40		Computer Organization:	T1 T4	PPT Digi
38-	ΨV		Input/Output Devices. Data		Class/
			storage (idea of RAM and ROM).		Class/ Chock-Board
					CHOCK-DOALD
			Computer memory. Memory organization & addressing.		
			6		
			Memory Interfacing. Memory		
			Map.		

41-42	5. Main features of 8085. Block diagram. Components. Pin-out diagram.	T3, R1	PPT Digi Class/ Chock -Board
43-45	.Registers. ALU. Memory. Stack memory. Timing Control circuitry	T2, T4	PPT Digi Class/ Chock-Board
46-48	Timing states. Instruction cycle, Timing diagram of MOV and MVI.	T1,T2	PPT Digi Class/ Chock -Board
49-50	1 byte, 2 byte & 3 byte instructions.	T1, R4	PPT Digi Class/ Chock -Board

Course code: PH 203 Course title: Classical Dynamics Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 3 L: 3 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher: Dr Rishi Sharma

Code PH 203		L-T-P-0 3-0-0-3					
Course	Objectives This course enables the students:	5-0-0-2					
Course	i. To recall the concepts of Newtonian Mechanics and Electrodynamics.						
	ii. To explain the concepts of generalized coordinates and to introduce the formulation						
	of Lagrangian and Hamiltonian Mechanics.						
iii. To develop the conceptsof potential energy and small amplitude oscillations.iv. To develop the foundation of special theory of relativity and Minkowski space.							
Course C	utcomes After the completion of this course, students will be able to:						
1.	Solve the problems of Newtonian Mechanics and Electrodynamics.						
2.	Illustrate the formulation of Lagrangian and Hamiltonian mechanics and solve the related problem	ns.					
3.	Solve the problems of small amplitude oscillations.						
4.	Explain the space-time diagrams, time-dilation, length contraction and twin paradox, four-velocit	•					
	and acceleration, metric and alternating tensors, four-momentum and energy-momentum relation etc.,						
-	and apply these to solve the problems.						
5.	Illustrate the formulation of the basic equations in fluid mechanics like continuity equation and n	nass					
	conservation, stream-lined motion, laminar flow, Poiseuille's equation, Navier-Stokes equation, etc.						
Iodule-1	Review of Newtonian Mechanics; Application to the motion of a charge particle in external electric	5					
	and magnetic fields- motion in uniform electric field, magnetic field- gyroradius and						
	gyrofrequency, motion in crossed electric and magnetic fields.						
Iodule-2							
	equations, one-dimensional examples of the Euler-Lagrange equations- one-dimensional Simple						
	Harmonic Oscillations and falling body in uniform gravity; applications to simple systems such as						
	coupled oscillators Canonical momenta & Hamiltonian. Hamilton's equations of motion.						
	Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple						
	Harmonic Oscillations; particle in a central force field- conservation of angular momentum and						
	energy.						
Iodule-3	Minima of potential energy and points of stable equilibrium, expansion of the potential energy	10					
	around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations						
	example of N identical masses connected in a linear fashion to (N -1) - identical springs.						
Iodule-4	Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The	15					
	invariant interval, light cone and world lines. Space-time diagrams. Time-dilation, length						
	contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-velocity and						
	acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation.						
	Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-						
lodula 5	momentum. Relativistic kinematics. Application to two-body decay of an unstable particle	5					
Iodule-5							
	mass conservation, stream-lined motion, laminar flow, Poiseuille's equation for flow of a liquid						
	through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number						
	books:						
	lassical Mechanics by H. Goldstein, Pearson Education Asia. lassical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill Publishing Company Limite						
		ad					

New Delhi. **Reference books:**

- 1. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- 2. Classical Electrodynamics, J.D. Jackson, 3rd Edn., 1998, Wiley.
- **3.** The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Elsevier.
- 4. Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education.
- 5. Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.
- 6. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- 7. Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark		\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I		\checkmark			
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

		5							
		Course Outcomes							
Course Objectives	1	2	3	4	5				
Α	Η	М	Μ	М	М				
В	-	Н	Μ	М	L				
С	Μ	М	Η	L	-				
D	Μ	М	L	Н	-				
Е	M	-	-	-	Н				

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes							
Outcome #	a	b	С	d	e	f			
1	М	L	-	Н	Μ	Н			
2	Н	Η	Н	Н	М	Н			
3	М	М	М	Н	Μ	Н			
4	Н	Η	Н	Н	Н	Н			
5	М	L	L	Н	М	Н			

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2							
CD2	Tutorials/Assignments	CO2	CD1 and CD2							
CD3	Seminars	CO3	CD1 and CD2							
CD4	Mini projects/Projects	CO4	CD1 and CD2							
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2							
CD6	Industrial/guest lectures	-	-							
CD7	Industrial visits/in-plant training	-	-							
CD8	Self- learning such as use of NPTEL materials and internets	-	-							
CD9	Simulation	-	-							

Week	Lect.	Tenta		Topics to be covered	Text	COs	Actual	Method	Remar
No.	No.		No.	-	Book /		Content	ology	ks by
		Date			Refere	ed	covered	used	faculty
					nces				if any
	L1-L5			Review of Newtonian Mechanics	T1,T2				
	L6-L10			Application to the motion of a charge	T1,T2				
				particle in external electric and					
				magnetic fields- motion in uniform					
				electric field, magnetic field-					
				gyroradius and gyrofrequency,					
				motion in crossed electric and					
				magnetic fields					
	L11-			Generalized coordinates and	T1,T2				
	L13			velocities, Hamilton's principle,					
				Lagrangian and the Euler-Lagrange					
				equations					
	L14- L16			one-dimensional examples of the	T1,T2				
				Euler-Lagrange equations- one-					
				dimensional Simple Harmonic					
				Oscillations and falling body in					
				uniform gravity; applications to					
				simple systems such as coupled					
				oscillators					
	L17-L22			Canonical momenta & Hamiltonian.	T1,T2				
				Hamilton's equations of					
				motion.Applications: Hamiltonian for					
				a harmonic oscillator, solution of					
				Hamilton's equation for Simple					

	Harmonic Oscillations				
L23-L25	 particle in a central force field-	T1,T2			
L23-L23	conservation of angular momentum				
	and energy				
 126129		T1 T2			
L26-L28	Minima of potential energy and	T1,T2			
 1.00	 points of stable equilibrium,	F1 F0			
L29-	expansion of the potential energy	T1,T2			
L32	around a minimum, small amplitude				
	oscillations about the minimum,				
 	 normal modes of oscillations				
L33-L35	example of N identical masses	T1,T2			
	connected in a linear fashion to (N -1)				
	 - identical springs.			 	
L36,L37	Postulates of Special Theory of	T1,T2			
	Relativity. Lorentz Transformations.				
L38-L42	Minkowski space. The invariant	T1,T2			
	interval, light cone and world lines.				
	Space-time diagrams. Time-dilation,				
	length contraction and twin paradox				
L43-L46	Four-vectors: space-like, time-like	T1,T2			
	and light-like. Four-velocity and				
	acceleration. Metric and alternating				
	tensors. Four-momentum and energy-				
	momentum relation. Doppler effect				
	from a four-vector perspective.				
L47-L50	Concept of four-force. Conservation	T1,T2			
	of four-momentum. Relativistic				
	kinematics. Application to two-body				
	decay of an unstable particle.				
L51-L53	Density ρ and pressure P in a fluid, an	T1,T2			
	element of fluid and its velocity,	,			
L54-L56		T1,T2			
	conservation, stream-lined motion,	,			
	laminar flow				
L57-L60	Poiseuille's equation for flow of a	T1.T2			
LJ / L00	liquid through a pipe, Navier-Stokes	,			
	equation, qualitative description of				
	turbulence, Reynolds number.				
	taroutenee, reguloido number.				

Course code: PH 204 Course title: THERMAL PHYSICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher: Dr Nishi Srivastava

	L-T-P-C
THERMAL PHYSICS LAB	[0-0-4-2]
 To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions. To calibrate a thermocouple to measure temperature in a specified Range using (1)Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature. 	
 Reference Books Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub. 	

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 205 Course title: DIGITAL SYSTEMS AND APPLICATIONS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L:0T:0P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher: Dr Ela Sinha

	DIGITAL SYSTEMS AND APPLICATIONS LAB	L-T-P-C [0-0-4-2]
1.	To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.	
2.	To test a Diode and Transistor using a Multimeter.	
3.	To design a switch (NOT gate) using a transistor.	
4.	To verify and design AND, OR, NOT and XOR gates using NAND gates.	
5.	To design a combinational logic system for a specified Truth Table.	
6.	To convert a Boolean expression into logic circuit and design it using logic gate ICs.	
7.	To minimize a given logic circuit.	
8.	Half Adder, Full Adder and 4-bit binary Adder.	
9.	Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.	
10.	To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.	
11.	To build JK Master-slave flip-flop using Flip-Flop ICs	
12.	To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.	
13.	To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.	
14.	To design an astable multivibrator of given specifications using 555 Timer.	
15.	To design a monostable multivibrator of given specifications using 555 Timer.	
16.	Write the following programs using 8085 Microprocessor	
	Addition and subtraction of numbers using direct addressing mode Addition and subtraction of numbers using indirect addressing mode	
	Multiplication by repeated addition.	
	Division by repeated subtraction.	
	Handling of 16-bit Numbers.	
	Use of CALL and RETURN Instruction.	
	Block data handling.	
	Other programs (e.g. Parity Check, using interrupts, etc.).	
	Reference Books:	
	• Modern Digital Electronics, R.P. Jain, 4 th Edition, 2010, Tata McGraw Hill.	
	 Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill. 	
	 Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, Prentice Hall. 	
	 Microprocessor 8085:Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI Learning. 	

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Course code: PH 206 Course title: Classical Dynamics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: III Branch: PHYSICS Name of Teacher:

		L-T-P-			
	Classical Dynamics Lab	[0-0-4-			
(For computation purpose use Matlab, Mathematica or, Scilab)					
1.	Study of motion of a charged particle in a (a) transverse electric field and (b) Magnetic field?				
2.	Using Matlab, draw the locus of a charge particle in a (a) mutually perpendicular and (b) parallel electric and magnetic fields?				
3.	To determine the coupling coefficient of coupled pendulums.				
4.	To determine the coupling coefficient of coupled oscillators.				
5.	Experimental visualization of coupled modes of oscillation of LC circuits and mathematical modelling of experimentally observed results?				
6.	Mathematical calculation of variation of time delay and length contraction with varying speed of the particle?				
7.	To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).				
8.	To determine the moment of inertia of a flywheel.				
9.	To determine the speed of sound in air using a water filled open ended pipe.				
	. To determine Coefficient of Viscosity by Stoke's method.				
	. To determine Coefficient of Viscosity by rotating viscometer.				
	To determine the rate of flow of a liquid using venturimeter.				
	To determine damping coefficient of a damped harmonic oscillator.				
14.	To determine charge to mass ratio for electron.				

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Semester IV COURSE INFORMATION SHEET

Course code: PH 207 Course title: MATHEMATICAL PHYSICS-II Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L: 3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: IV Branch: PHYSICS Name of Teacher: Dr. Madhu Priya

	Theory: 50 Lectures				
Code: PH 207	Title: MATHEMATICAL PHYSICS-II L				
FH 207	The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.	[3-1-0-4]			
Course (Dbjectives				
This <u>cour</u>	se enables the students:				
1.	To understand the fundamental concepts of complex analysis and explain their role in applied physics.				
2.	To use the Cauchy Residue Theorem to evaluate integrals and sum series				
3.	To have an understanding of integral Fourier, inverse Fourier transforms and convolutiontheorem.				
4.	Fo learn to calculate Laplace transforms of elementary functions.				
Course (Dutcomes				
After the	completion of this course, students will be able to:				
1.	Evaluate integrals along a path in the complex plane and obtain Taylor and Laurent expansions of simple functions.				
2.	To solve problems using complex analysis techniques for various physics problems.				
3.	To calculate the Fourier transform or inverse transform of common functions including sinusoidal, gaussian, delta, etc.				
4.	To solve second-order ordinary differential equations using Laplace transforms and inverse				
	Laplace transformation.				
Module-3	Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integral	20			
	 Integrals Transforms: Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along infinite bar using Laplace transform. 	30			

Text books:

T1: Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, **Cambridge University Press**

T2: Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications

Reference books:

R1: Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press R2: Complex Variables, A.K. Kapoor, 2014, Cambridge Univ. Press

R3: Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill

R4: First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Υ
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Υ
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment		
Mid Sem Examination Marks	25		
End SemExamination Marks	50		
Two Quizzes	10+10		
Teacher's assessment	5		

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		
Quiz I		\checkmark			
Quiz II					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes			
	a	b	С	d
1	Н	М	L	L
2	М	Н	L	L
3	L	L	Н	М
4	L	L	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e	f	
1	Н	Н	Н	М	Н	Н	
2	Н	Н	Н	М	Н	Н	
3	Н	Н	Н	М	Н	Н	
4	Н	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2						
CD2	Tutorials/Assignments	CO2	CD1 and CD2						
CD3	Seminars	CO3	CD1 and CD2						
CD4	Mini projects/Projects	CO4	CD1 and CD2						
CD5	Laboratory experiments/teaching aids								
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

Week	Lect.	Tentati (Ch.	Topics to be covered	TextBook	COs	Actual	Methodol	Remarks
No.	No.	ve Datel	No.		/Refere	map	Content	ogy used	by faculty
					nces	ped	covered		if any
1-2	L1-L7			Complex Numbers and their, Graphical	T1, T2,	1, 2		PPT	
				Representation. Euler's formula, De	R1, R2			Digi	
				Moivre's theorem, Roots of Complex				Class/C	
				Numbers, Functions of Complex				hock-	
				Variables. Analyticity and Cauchy-				Board	
				Riemann Conditions.					
2-4	L8-			Examples of analytic functions.	T1, T2,	1,2			
	L16			Singular functions: poles and branch	R1, R2				
				points, order of singularity, branch					
				cuts. Integration of a function of a					
				complex variable. Cauchy's Inequality.					
				Cauchy's Integral formula. Simply and					
				multiply connected region. Laurent and					
				Taylor's expansion.					
5	L17-			Residues and Residue Theorem.	T1, T2,	1,2			
	L20			Application in solvingDefinite	R3, R4				
				Integrals.					
6-9	L21-			Fourier Transforms: Fourier Integral	T1, T2	3			
	L35			theorem. Fourier Transform. Examples.					
				Fourier transform of trigonometric,					
				Gaussian, finite wave train & other					

		Generation of D	D'				1
		-	presentation of Dirac				
			as a Fourier Integral.				
		Fourier transfe					
			transform, Convolution				
			perties of Fourier				
		transforms (tra	anslation, change of				
		scale, complex	conjugation, etc.).				
		Three dimensior	nal Fourier transforms				
		with examples.	Application of Fourier				
		Transforms to c	differential equations:				
		One dimensi	ional Wave and				
		Diffusion/Heat F	Flow Equations.				
9-14	L36-	Laplace Transfo	orm (LT) of Elementary	T1,T2	4		
	L50	functions. Prope	erties of LTs: Change of				
		Scale Theorem,	Shifting Theorem. LTs				
		of 1 st and 2nd of	order Derivatives and				
		Integrals of Fund	ctions, derivatives and				
		Integrals of LT	rs. LT of Unit Step				
		function, Dirac I	Delta function, Periodic				
		Functions. Co	onvolution Theorem.				
		Inverse LT. Ap	pplication of Laplace				
		-	2nd order Differential				
		Equations: I	Damped Harmonic				
		-	imple Electrical Circuits,				
			ntial equations of 1st				
		_	of heat flow along				
			g Laplace transform.				

Course code: PH 208 Course title: ELEMENTS OF MODERN PHYSICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L:3T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: IV Branch: PHYSICS Name of Teacher: Dr. S. Lahiri

		Teacher: Dr. S. Laniri Theory: 5	0 Lectures						
Cod	e:	Title: ELEMENTS OF MODERN PHYSICS	L-T-P-C						
PH			[3-1-0-4]						
		e Objectives							
		course enables the students:							
A.		teach about the history of Quantum Mechanics and appreciate the necessity for initiating such	a new						
D	theory								
B.		help them become conversant with the basic mathematical tools of Quantum Mechanics.							
C.		introduce preliminary concepts in nuclear physics and radioactivity.							
D.		venture further into nuclear physics, and establish familiarity with the theories of stellar energy	y and						
	lase	rs.							
ſ	1.011 M	e Outcomes							
		the completion of this course, students will be:							
1	1.	Understanding of concepts leading to the advent of quantum theory.							
	2.	Working out simple examples using Schrodinger equation.							
	3.	Getting a good grasp on the theory and simple numericals on radioactivity.							
	4.	Knowledge on nuclear fission/fusion and working principle of lasers.							
	т.	Knowledge on nuclear fission/fusion and working principle of fasers.							
		 Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions. Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle- application to virtual particles and range of an interaction. 							
Modu	le- 2 a		15						
Modu	le-4	 Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; 	10						

	Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.								
Modu	 Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing. 								
	Referenc								
1.	Concept	s of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.							
2.	Introduc	tion to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill							
3.	Introduc	tion to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.							
4.	Physics	for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learnin	ıg.						
5.	Modern	Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill	-						
6.	Quantun	n Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan							
	Addition	al Books for Reference							
1.	Modern I	Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.							
2.	2. Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2 nd Edn, Tata McGraw-Hill Publishing Co. Ltd.								
3.		Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.							
4.	Basic ide	as and concepts in Nuclear Physics, K.Heyde, 3 rd Edn., Institute of Physics Pub.							
5.		that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill							

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

<u>procoudro</u> Direct Hissessinent	
Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I		\checkmark			
Quiz II					

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Objectives	1	2	3	4
A	Н	М	-	-
В	М	Н	М	L
C	L	М	Н	М
D	М	Н	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						
	а	b	С	d	e	f		
1	Н	Н	М	М	L	Н		
2	Н	Н	М	М	Н	Н		
3	Н	Н	М	М	М	Н		
4	Н	Н	М	М	L	Н		

Week No.	Lect. No.	Tentative Date	Ch No.	Topics to be covered	Text Book / References	mapped	dology	Remarks by faculty if any
1	L1-3			Planck's quantum, Planck's constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment.				
2	L4-6			Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions.	T1, R1			
3	L7- 10			microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle- application to virtual particles and range of an interaction.				
4	L11- 13			Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles;	T1, R1			
5		L14-16		Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization;				

	T	г	Probability and probability current			
			densities in one dimension.			
6		L17-20				
6		L17-20	One dimensional infinitely rigid box-			
			energy eigen values and eigen			
			functions, normalization; Quantum			
			dot as example; Quantum mechanical			
			scattering and tunneling in one			
			dimension-across a step potential &			
			rectangular potential barrier.			
7	L21-		Size and structure of atomic nucleus			
	23		and its relation with atomic weight;			
			Impossibility of an electron being in			
			the nucleus as a consequence of the			
			uncertainty principle.			
8	L24-		Nature of nuclear force, NZ graph,			
	26		Liquid Drop model: semi-empirical			
			mass formula and binding energy,			
			Nuclear Shell Model and magic			
			numbers			
9	L27-		stability of the nucleus; Law of			
	30		radioactive decay; Mean life and			
			half-life; Alpha decay; Beta decay-			
			energy released, spectrum and Pauli's			
			prediction of neutrino; Gamma ray			
			emission, energy-momentum			
			conservation: electron-positron pair			
			creation by gamma photons in the			
			vicinity of a nucleus.			
10	L31-		Fission and fusion- mass deficit,			
10	33		relativity and generation of energy;			
	55		Fission - nature of fragments and			
			emission of neutrons. Nuclear			
			reactor: slow neutrons interacting			
			with Uranium 235; Fusion and			
			thermonuclear reactions driving			
			stellar energy (brief qualitative			
			discussions).			
11	L34-		Einstein's A and B coefficients.			
	36		Metastable states. Spontaneous and			
			Stimulated emissions. Optical			
			· · ·			
			Three-Level and Four-Level Lasers.			
			Ruby Laser and He-Ne Laser. Basic			
			lasing.			
			Ruby Laser and He-Ne Laser. Basic			

Course code: PH 209 **Course title: ANALOG SYSTEMS AND APPLICATIONS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s):** Credits: 4 L: 3 T: 1 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level: IV **Branch: PHYSICS** Name of Teacher: Dr. D. K. Singh

- (Theory: 50 Lect	tures
Code: PH 209	Title: Analog Systems and Applications	L-T-P-C [3-1-0-4]
Course Obj	ective :	[3-1-0-4]
 To p sup The amp Coup pos Ligh imp A fe 	ective : rovide a pedagogic introduction of the physics of solid state electronic devices and their application ply circuits and their operational principles are also introduced. fundamentals of bipolar junction transistor, its biasing methodology are dealt with extensively inclu plifiers built around it. pling and cascading amplifier sections, providing feedback as a means to enhancing stability of amp itive feedback as a handle to turn the amplifier into oscillator are the key ideas to be introduced. It is thrown on integrated circuit operational amplifiers, their remarkable features and parameters. So portant and basic op-amp circuits are introduced and treated using the concept of virtual ground. w digital to analog and analog to digital data conversion techniques are introduced to develop some lerstanding about the use of op-amps in data conversion.	ding lifiers and
 The Stud to a Stud turn The to a Under 	 Outcome: students get acquainted with the basic building blocks of a simple data acquisition system. ents would develop a sufficiently wide understanding of the op-amp as a composite amplifier unit and chieve various signal processing requirements. ents learn to cascade amplifiers to achieve desired voltage gains and also learn to play with feedback n ing the amplifier into an oscillator. comprehensive understanding of the transistor as a basic building block of all amplifiers would enable th ppreciate underlying marvel in the three terminal device. Students would be able to design amplifiers are erstanding the basic physics behind the operation of electronic devices, their characteristics and apple the understanding of simple building blocks of electronic power supply circuits. Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step 	etwork fo ne student ound it.
	Junction. Current Flow Mechanism in Forward and Reverse Biased Diode. Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre- tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C- filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell.	
Module-2	 Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β. Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. 	10
	60	1

Module-3	Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response.	10
	Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance,	
	Output Impedance, Gain, Stability, Distortion and Noise.	
	Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift	
	oscillator, determination of Frequency. Hartley & Colpitts oscillators	
Module-4	Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp.	10
	(IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of	
	Virtual ground.	
	Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4)	
	Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator	
Module-5	Conversion: Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D	5
	Conversion (successive approximation)	
Text b	ooks:	
T1: Th	omas L. Floyd. ELECTRONIC. DEVICES. 9 th Edition. Prentice Hall.	
	uis Nashelsky and Robert Boylestad, Electronic Devices and Circuit Theory	
Reference	e books:	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Y
Mini projects/Projects	Y
Laboratory experiments/teaching aids	Y
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	
Quiz I					
Quiz II					

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes							
Course Objectives	1	2	3	4	5		
А	Η	Μ	Μ	L	Η		
В	Μ	Н	Μ	L	Η		
С	L	L	Н	L	L		
D	-	L	L	Н	Η		
Е	Η	М	L	L	Н		

pping between Course Objectives and Course Outcomes

ъл

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes										
	а	b	с	d	e	f	g	h	i	j	k	1
1	Η	М		Η	Η	Η		Н	Μ	Μ		Η
2	Н	Н		Η	Η	Η		Н	Μ	Μ		Η
3	Η	L		Μ	L	М		Н	Μ	Μ		Η
4	Η			Н	Μ	М		Μ	Μ	Μ		Η
5	Μ	Н		Н	Η	Η	Η	Μ	М	М		Н

Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures	-	-			
CD7	Industrial visits/in-plant training	-	-			
CD8	Self- learning such as use of NPTEL materials and internets	-	-			
CD9	Simulation	-	-			

Week		Tentativ		Topics to be	TextBook /	COs	Actual	Method	Remarks
No	No.	е	No.	covered	References	mapped	Content	ology	by faculty
		Date					covered	used	if any
1	L1		1		T1, R1				
	L2				T1				
	L3				T1				
	L4				T1, R1				
	L5				T1				
	L6				T2, R1				
	L7				T2, R1				
	L8				T2				
	L9				T2				
	L16-18				T2				
	L19				T2				
	L10				Т3				
	L11				Т3				
	L12				Т3				
	L13				Т3				
	L14				Т3				

· · · ·	1 1		 1		. <u> </u>
L15		T3			
L16		T3			
L17		T3			
L18		T3			
L19		T3			
L20		T3			
L21					
L22					
L23					
L24					
L25					
L26					
L27					
L28					
L29					
L30					
L31					
L32					
L33					
L34					
L35					
L36					
L37					
L38					
L39					
L40					
L41					
L42					
L43					
L44					
L45					
L46					
L47					
L48					
L49					
L50					
200				I	

Course code: PH 210 Course title: MATHEMATICAL PHYSICS-II LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: IV Branch: PHYSICS Name of Teacher: Dr. Madhu Priya

		L-T-P-C
	MATHEMATICAL PHYSICS-II LAB	[0-0-4-2]
Sci	lab/C ⁺⁺ based simulations experiments based on Mathematical Physics problems like	
Course	e Objectives:	
1.	To introduce Scilab and teach students to use it for various calculations.	
2.	To train students to do best curve fitting through data points using Scilab.	
3.	To teach to use Scilab for solving linear equations.	
4.	To solve ordinary differential equations and partial differential equations using Scilab.	
5.	To familiarize students with Scicos / Xcos.	
Course	e Outcomes :Students should be able to	
1.	Write programs in Scilab.	
2.	Use graphical methods to solve problems like determination of resistance using Ohm's law, etc.	
3.	Numerically solve coupled equations arising in various physical systems.	
4.	Obtain numerical solutions of first order and higher order ordinary differential equations arising	
	in problems like radioactive decay, harmonic oscillators, and partial differential equations like	
	diffusion equation, using Scilab.	
5.	Use Scicos / Xcos to simulate dynamical systems.	

I. Solve differential equations:

 $dy/dx = e^{-x} \text{ with } y = 0 \text{ for } x = 0$ $dy/dx + e^{-x}y = x^{2}$ $d^{2}y/dt^{2} + 2 dy/dt = -y$ $d^{2}y/dt^{2} + e^{-t}dy/dt = -y$

2. Dirac Delta Function:

Evaluate $\frac{1}{\sqrt{2\pi\sigma^2}} \int e^{\frac{-(x-2)^2}{2\sigma^2}} (x+3) dx$, for $\sigma = 1, 0.1, 0.01$ and show it tends to 5.

3. Fourier Series:

Program to sum $\sum_{n=1}^{\infty} (0.2)^n$ Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

 $\int_{-1}^{+1} P_n(\mu) P_m(\mu) d\mu = \delta_{n,m}$ Plot $P_n(x), j_v(x)$ Show recursion relation

- Calculation of error for each data point of observations recorded in experiments done in 6. previous semesters (choose any two).
- 7. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- **Evaluation of trigonometric functions e.g. sin** θ , Given Bessel's function at N points find its value at 8. an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.
- Compute the n^{th} roots of unity for n = 2, 3, and 4. 9.
- Find the two square roots of -5+12j. 10.
- Integral transform: FFT of e^{-x^2} 11.
- Solve Kirchoff's Current law for any node of an arbitrary circuit using Laplace's transform. 12.
- Solve Kirchoff's Voltage law for any loop of an arbitrary circuit using Laplace's transform. 13.
- Perform circuit analysis of a general LCR circuit using Laplace's transform. 14.

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd 1. ed., 2006, Cambridge University Press
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications 2.
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and 3. Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer a.
 - b. ISBN: 978-3319067896
- A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., 4. Cambridge University Press
- 5. Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company 6.
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing 7.
- https://web.stanford.edu/~boyd/ee102/laplace_ckts.pdf 8.
- 9. ocw.nthu.edu.tw/ocw/upload/12/244/12handout.pdf

Assessment Tool	% Contribution			
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)			
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)			

Course code: PH 211 Course title: ELEMENTS OF MODERN PHYSICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: IV Branch: PHYSICS Name of Teacher: Dr. S. Lahiri

ELEMENTS OF MODERN PHYSICS LAB

L-T-P-C [0-0-4-2]

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 3. To determine work function of material of filament of directly heated vacuum diode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser source using diffraction of single slit.
- 12. To determine the wavelength of laser source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating

Reference Books

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- **3.** A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011,Kitab Mahal

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 212 Course title: ALOG SYSTEMS AND APPLICATIONS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0T:0P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: IV Branch: PHYSICS Name of Teacher: Dr. D. K. Singh

	L-T-P-C
ANALOG SYSTEMS AND APPLICATIONS LAB	[0-0-4-2]
1. To study V-I characteristics of PN junction diode, and Light emitting diode.	
2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.	
3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.	
4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.	
5. To study the various biasing configurations of BJT for normal class A operation.	
6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.	
7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.	
8. To design a Wien bridge oscillator for given frequency using an op-amp.	
9. To design a phase shift oscillator of given specifications using BJT.	
10. To study the Colpitt's oscillator.	
11. To design a digital to analog converter (DAC) of given specifications.	
12. To study the analog to digital convertor (ADC) IC.	
13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain	
14. To design inverting amplifier using Op-amp (741,351) and study its frequency response	
15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response	
16. To study the zero-crossing detector and comparator	
17. To add two dc voltages using Op-amp in inverting and non-inverting mode	
18. To design a precision Differential amplifier of given I/O specification using Op-amp.	
19. To investigate the use of an op-amp as an Integrator.	
20. To investigate the use of an op-amp as a Differentiator.	
21. To design a circuit to simulate the solution of a $1^{st}/2^{nd}$ order differential equation.	
Reference Books:	
1. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.	
2. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4 th edition, 2000, Prentice Hall.	
3. Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.	
4. Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson	

Assessment Tool	% Contribution			
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)			
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)			

Semester V

COURSE INFORMATION SHEET

Course code: PH 301 Course title: QUANTUM MECHANICS AND APPLICATIONS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L: 3 T:1P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: V Branch: PHYSICS Name of Teacher: Dr. S. K. Mukherjee

	1	Theory: 50 Lec	
Cod		Title: QUANTUM MECHANICS AND APPLICATIONS	L-T-P-C
	301		[3-1-0-4
	se Obje		
<u>This c</u>	1	nables the students to:	_
1.		e wave functions associated with moving quantum systems and interpret their dynamical variables.	
ļ		ne the basics of crystallography and define various types of imperfections in crystals.	_
2.		ne eigenstates and eigenvalues and demonstrate Heisenberg's uncertainty principle. Explain	
	elasti	c and plastic deformation in solids and summarize the strain hardening mechanisms.	
3.	and e	Schrödinger equations associated with quantum mechanical systems. Define ceramics xplain its types and applications.	
4.		rate the eigenstates and eigenvalues of hydrogen-like atoms. Define polymers and composites ategorize them on the basis of their applications.	
5.	Demo	onstrate the behaviour of atoms in electric and magnetic fields. Define Nanotechnology and outline arious properties of nano materials and their fabrication techniques.	
	se Outc the com	omes apletion of this course, students will be able to:	
1. 2.	a funct	ate wavefunction for any quantum mechanical system and predict its position, momentum and energy tion of time. formulate the Heisenberg & Dirac formulation of quantum mechanics n various types of imperfections in crystals.	
3.	constru station wit lin formul	act Schrodinger equations for any quantum mechanical system in terms of linear combinations of hary states, and interpret Gaussian wave-packet, measure the position and time of a particle nited accuracy.solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac lation. analyze the mechanisms behind elastic and plastic deformation is solids and compare different hening techniques.	-
4.	solve s states of	equare well potential and harmonic oscillator problem and explain the existence of bound demonstrate angular momentum operators associated with spherical and symmetrical systems. Arize ceramics and its types and relate their applications with properties.	-
5.	Justify	the discrete energy levels of hydrogen-like atoms and explain scattering theory, formulate and sc ing equation. classify polymers and composites based on their properties and applications.	D
6.	Demo of diff princip	nstrate atomic phenomena like, Zeeman effect, Stark effect, etc., and illustrate the existence ferent series of spectral lines in the atomic spectra of hydrogen-like atoms apply the Variational ble and WKB Approximation to solve the real problems. Classify nanomaterials, their fabrication ques and co relate the effects of confinement to nanoscale on their properties.	
lodule	e-1 T i	me dependent Schrodinger equation	6
	t L	Fime dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. inearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle.	

Module-2	Time independent Schrodinger equation	10					
	Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a						
	linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger						
	equation in terms of linear combinations of stationary states; Application to spread of Gaussian						
	wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum						
	space wavefunction; Position-momentum uncertainty principle.						
Module-3	General discussion of bound states in an arbitrary potential	12					
	continuity of wave function, boundary condition and emergence of discrete energy levels;						
	application to one-dimensional problem-square well potential; Quantum mechanics of simple						
	harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite						
	polynomials; ground state, zero point energy & uncertainty principle.						
Module-4	Quantum theory of hydrogen-like atoms	10					
	time independent Schrodinger equation in spherical polar coordinates; separation of variables for						
	second order partial differential equation; angular momentum operator & quantum numbers;						
	Radial wavefunctions from Frobenius method; shapes of the probability densities for ground &						
	first excited states; Orbital angular momentum quantum numbers l and m; s, p, d, shells.						
Module-5	Atoms in Electric & Magnetic Fields	12					
	Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum.						
	Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton. Normal and						
	Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). Pauli's						
	Exclusion Principle. Symmetric & Antisymmetric Wave Functions. Periodic table. Fine structure.						
	Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector						
	Model. Spin-orbit coupling in atoms L-S and J-J couplings. Hund's Rule. Term symbols. Spectra						
	of Hydrogen and Alkali Atoms (Na etc.).						
Text l	books:						

- 1. A Text book of Quantum Mechanics, P.M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- 2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- 3. Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- 4. Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- 5. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- 6. Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- 7. Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press

Reference books:

- 1. Quantum Mechanics, Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- 2. Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
- 3. Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	
Quiz I		\checkmark			
Quiz II					

Indirect Assessment -

Student Feedback on Faculty

Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes							
Outcome #	а	a b c d e f							
1	Н	Н	Н	L	М	L			
2	Н	Н	М	L	L	L			
3	Н	М	М	L	L	L			
4	Н	М	М	L	L	L			
5	Н	Н	H	L	Н	L			

Course Outcome #	Course Objectives						
Outcome #	а	b	с	d	e		
1	Н	М	М	М	L		
2	М	Н	М	М	L		
3	М	М	Н	L	L		
4	М	М	Н	L	L		
5	М	М	L	L	Н		

	Mapping Between COs and Course D	elivery (CD)	nethods
CD	Course Delivery methods	Course Outcome	Course Delivery Method
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8
CD3	Seminars	CO3	CD1, CD2 and CD8
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

Lecture wise Lesson planning Details.Week No.Lect.Tentati ModulTopics to be coveredTextCosActualMethodology Re									Remarks
	Lect. No.	ve Date	No.	n opies to be covered	Book / References	mapped	Content covered	used	by faculty if any
1	L1		I	TimedependentSchrodingerequationanddynamicalevolutionofquantum state	T2	CO-1		PPT Digi Class/Chal k-board	
	L2			Properties of Wave Function. Interpretation of Wave Function, Conditions for Physical Acceptability of Wave Functions.	T2	CO-1		PPT Digi Class/Chal k-Board	
2	L3			Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions.	T1	CO-1		PPT Digi Class/Chal k-Board	
3	L4- L5			Position, momentum and Energy operators; commutator of position and momentum operators;	T1	CO-1		PPT Digi Class/Chal k-Board	
4	L6			Expectationvalues ofpositionandmomentum.WaveFunctionof aParticle.		CO-1		PPT Digi Class/Chal k-Board	
5	L7		II	Hamiltonian, stationary states and energy eigenvalues;	Т3	CO-2		PPT Digi Class/Chal k-Board	
5	L8-9			expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions;	Τ3	CO-2		PPT Digi Class/Chal k-Board	
6	L10- 11			General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states;		CO-2		PPT Digi Class/Chal k-Board	

6	L12		Application to spread of Gaussian wave- packet for a free		CO-2	PPT Digi Class/Chal k-Board
	1.12		particle in one dimension;			
6	L13		wave packets, Fourier transformsandmomentumspacewavefunction		CO-2	PPT Digi Class/Chal k-Board
7	L15- 16		Position-momentum uncertainty principle	T1, T2, T3	CO-2	PPT Digi Class/Chal k-Board
7	L17- 18	III	continuity of wave function,	T1	CO-3	PPT Digi Class/Chal k-Board
7	L19- 20		boundary condition and emergence of discrete energy levels		CO-3	PPT Digi Class/Chal k-Board
8	L21- 22		application to one- dimensional problem- square well potential		CO-3	PPT Digi Class/Chal k-Board
8	L23- 24		Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method		CO-3	PPT Digi Class/Chal k-Board
8	L25- 26		Hermite polynomials	T2, T3	CO-3	PPT Digi Class/Chal k-Board
9	L27- 28		ground state, zero point energy & uncertainty principle	T1, T3	CO-3	PPT Digi Class/Chal k-Board
9	L29- 30	IV	time independent Schrodinger equation in spherical polar coordinates;		CO-4	PPT Digi Class/Chal k-Board
9	L31- 32		separation of variables for second order partial differential equation		CO-4	PPT Digi Class/Chal k-Board
10	L33- 34		angular momentum operator & quantum numbers		CO-4	PPT Digi Class/Chal k-Board
10	L35- 36		Radial wavefunctions from Frobenius method	T2	CO-4	PPT Digi Class/Chal k-oard
11	L37		shapes of the	T2	CO-4	PPT Digi Class/Chal

			probability densities for ground & first excited states			k -Board
11	L38		Orbital angular momentum quantum numbers l and m; s, p, d, shells		CO-4	PPT Digi Class/Chal kBoard
11	L39- 40	V	Electronangularmomentum.Spacequantization.ElectronSpinandSpinAngularMomentum.		CO-5	PPT Digi Class/Chal k-Board
12	L41- 42		Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.		CO-5	PPT Digi Class/Chal k-Board
12	L43- 44		NormalandAnomalousZeemanEffect.PaschenBackandStarkEffect(QualitativeDiscussiononly).Pauli'sExclusionPrinciple.		CO-5	PPT Digi Class/Chal k-Board
13	L45- 46		Antisymmetric Wave Functions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States.		CO-5	PPT Digi Class/Chal k-Board
13	L47- 49		Totalangularmomentum.VectorModel.Spin-orbitcoupling in atoms L-Sand J-Jcouplings.Hund'sRule.symbols.		CO-5	PPT Digi Class/Chal k-Board
14	L50		Spectra of Hydrogen and Alkali Atoms (Na etc.)	T2	CO-5	PPT Digi Class/Chal k-Board

Course code: PH 302 Course title: SOLID STATE PHYSICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: V Branch: PHYSICS Name of Teacher: Dr. S. K. Rout

Theory: 50 Lectures

Course Objectives

This course enables the students:

1.	A To become familiar with the concepts of crystal structure and understand how crystal structure affects X-ray
2.	diffraction.

- 3. To understand how vibrations of atoms can be quantized and how this is manifested in physical properties like specific heat.
- 4. To acquire an understanding of the magnetic and dielectric properties of matter.
- 5. To get familiarized with ferroelectricity and understand formation of band gap and classification of solids into
- 6. .metals, semiconductors and insulators on the basis of band gap.
- 7. To develop a basic understanding of superconductivity.

Course Outcomes

After the completion of this course, students will be:

Ī	1.	Able to differentiate between different crystal structures and predict the X-ray pattern for a particular crystal
		structure.
	2.	Able to apply the concept of phonons to understand the differences between the predictions of classical and
		quantum theories regarding specific heat of solids.

- 3. Able to explain the different theories of magnetism and the principles underlying the dielectric properties of matter.
- Able to describe ferroelectricity and the formation of ferroelectric domains and other related phenomena.
 Able to distinguish materials based on their band structure and associate the band structure with their electrical properties.

Code:	Title: SOLID STATE PHYSICS	L-T-P-C
PH 302		[4-0-0-4]
Module-1	Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors.	10
	Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal	
	Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic	
	and Geometrical Factor	
Module-2	Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic	10
	Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids.	
	Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T ³ law	
Module-3	Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical	10
	Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of	
	Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains.	
	Discussion of B-H Curve. Hysteresis and Energy Loss.	
	Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO modes	
Module-4	Ferroelectric Properties of Materials: Structural phase transition, Classification of crystals,	10
	Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law,	
	Ferroelectric domains, PE hysteresis loop.	
	Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N	

	type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & Hall coefficient.				
Module	Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation)				
Te	kt Books:				
1.	Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.				
2.	2. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning				
3.	Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India				
R	eference Books:				
1.	Elements of Solid State Physics, J.P. Srivastava, 4 th Edition, 2015, Prentice-Hall of India				
2.	Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill				
3.	Solid-state Physics, H. Ibach and H. Luth, 2009, Springer				
4.	4. Solid State Physics, Rita John, 2014, McGraw Hill				
5.	Solid State Physics, M.A. Wahab, 2011, Narosa Publications				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark				
End Sem Examination Marks	\checkmark			\checkmark	\checkmark
Quiz I					
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	f
1	Н	Н	Н	L	М	L

2	Н	Н	Н	L	L	L
3	Н	Н	М	L	М	L
4	Н	Н	М	L	М	L
5	Н	Н	Н	L	М	L

Course Outcome #		Course Objectives					
	А	В	C	D	Е		
1	Н	L	М	М	М		
2	L	Н	М	L	М		
3	L	М	Н	М	М		
4	L	L	М	Н	L		
5	L	М	М	L	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week				Topics to be covered	Text	COs	Actual	Methodology	Remark
No.	No.	e Date	le. No.		Book / Refere	mapped	Content covered	used	s by faculty if
					nces				any
1	L1		Ι	Introduction to Solids	T1, R1	1, 2		PPT Digi	
								Class/Chalk-	
								Board	
1	L2			Amorphous and Crystalline	T1, T2			PPT Digi	
				Materials.				Class/Chalk-	
								Board	
1	L3			Lattice TranslationVectors.	T1, T2			PPT Digi	
				Lattice with a Basis – Central and				Class/Chalk-	
				Non-Central Elements.				Board	
2	L4			Unit Cell. Miller Indices.	T1, T2			PPT Digi	
								Class/Chalk-	
								Board	
2	L5			Reciprocal Lattice.	T1, T2			PPT Digi	
								Class/Chalk-	
								Board	
2	L6			Types of Lattices.	T1, T2			PPT Digi	
								Class/Chalk-	
								Board	

3	L7		Brillouin Zones.	T1, T2	
3	L/		Brinoum Zones.	11, 12	PPT Digi Class/Chalk-
2	LO		$\mathbf{D}^{*}(\mathbf{f}) = \mathbf{f} \mathbf{Y}$	T1 T2	Board
3	L8		Diffraction of X-rays by Crystals.	T1, T2	PPT Digi
			Bragg's Law.		Class/Chalk-
2	LO		Atomio en 1 Commetrical Foster	T1 T2	Board
3	L9-		Atomic and Geometrical Factor	T1, T2	PPT Digi
	L10				Class/Chalk-
	T 1 1			T 1 T 2	Board
4	L11	II	Lattice Vibrations and Phonons	T1, T3	PPT Digi Class/Chalk-
					Board
4	L12-		Linear Monoatomicand Diatomic	T1, T3	
4				11, 13	PPT Digi Class/Chalk-
	13		Chains.		Board
5	L14-		A constinut and Ontional Dhamans	T1, T3	
3	L14- 15		Acoustical and Optical Phonons	11, 15	PPT Digi Class/Chalk-
	15				Board
5	L16		Qualitative Description of the	e T1, T3	PPT Digi
5	LIU			5 11, 15	Class/Chalk-
			Phonon Spectrum in Solids.		Board
6	L17		Dulong and Petit's Law	T1, T3	PPT Digi
0	LI/		Duiong and Petit's Law	11, 15	Class/Chalk-
					Board
6-7	L18-		Einstein and Debye theories of	T1, T3	PPT Digi
0-7	20		specific heat of solids. T^3 law	11, 13	Class/Chalk-
	20		specific ficat of solids. 1 Taw		Board
	L21		Dia-, Para-, Ferri- and	1 T1, T3	PPT Digi
	1221		Ferromagnetic Materials		Class/Chalk-
			_		
			Classical Langevin Theory of dia-		Board
			and Paramagnetic Domains.		
	L22		Quantum Mechanical Treatment	t T1, T3	PPT Digi
			of Paramagnetism.		Class/Chalk-
	1.00			T 1 T 2	Board
	L23		Curie's law, Weiss's Theory of	T1, T3	PPT Digi
			Ferromagnetism		Class/Chalk-
	1.24		Ferromagnetic Domains	T1 T2	Board
	L24		Ferromagnetic Domains Discussion of B-H Curve.	. 11, 15	PPT Digi Class/Chalk-
			Discussion of B-H Curve.		Board
	L25		Hysteresis and Energy Loss.	T1, T3	PPT Digi
			Trysteresis and Energy Loss.	11, 13	Class/Chalk-
					Board
	L26		Polarization. Local Electric Field	T1, T3	PPT Digi
	120		at an Atom. Depolarization Field.	11, 13	Class/Chalk-
					Board
	L27		Electric Susceptibility	T1. T3	PPT Digi
			Polarizability. ClausiusMosott		Class/Chalk-
			Equation.		Board
	1.20		*	T1 T2	
	L28		•	2 T1, T3	PPT Digi
			Polarizability. Normal and	4	Class/Chalk-
			Anomalous Dispersion.		Board
	L29		Cauchy and Sellmeir relations	. T1, T3	PPT Digi

		Langevin-Debye equation.		Class/Chalk-
		Complex Dielectric Constant.		Board
L30		Optical Phenomena. Application:	Т1 Т3	PPT Digi
200		Plasma Oscillations, Plasma		Class/Chalk-
		Frequency, Plasmons, TO modes		Board
L31	III		T1, T2	PPT Digi
LJI	111	Materials	11, 12	Class/Chalk-
		Waterials		Board
L32		Structural phase transition,	T1 T2	PPT Digi
		Classification of crystals,	1,1,2	Class/Chalk-
				Board
L33		Piezoelectric effect, Pyroelectric	T1, T2	PPT Digi
		effect, Ferroelectric effect,	,	Class/Chalk-
				Board
L34-		Electrostrictive effect, Curie-	T1, T2	PPT Digi
L35		Weiss Law,		Class/Chalk-
				Board
L36			T1, T2	PPT Digi
		hysteresis loop		Class/Chalk-
				Board
L37	IV	Elementary band theory	T1, T2	PPT Digi
				Class/Chalk-
				Board
L38-		Kronig Penny model.	T1, T2	PPT Digi
L39				Class/Chalk-
I 40			T1 T2	Board
L40		Band Gap. Conductor,	11, 12	PPT Digi Class/Chalk-
		Semiconductor(P and N type) and		
		insulator		Board
L41-		Conductivity of Semiconductor,	T1, T2	PPT Digi
L42		mobility, Hall Effect.		Class/Chalk-
L 42			T 1 T 2	Board
L43-		Measurement of conductivity (04	T1, T2	PPT Digi
44		probe method) & Hall coefficient		Class/Chalk-
L45	V	Superconductivity: Experimental	T1 T2	Board PPT Digi
	v	Results.	11, 12	Class/Chalk-
		ixesuito.		Board
L46		Critical Temperature. Critical	T1, T2	PPT Digi
		magnetic field.Meissner effect.		Class/Chalk-
				Board
L47		Type I and type II	T1, T2	PPT Digi
		Superconductors,		Class/Chalk-
				Board
L48-		London's Equation and	T1, T2	PPT Digi
49		Penetration Depth.		Class/Chalk-
				Board
L50		Isotope effect. Idea of BCS	T1, T2	PPT Digi
		theory (No derivation)		Class/Chalk-
				Board

Course code: PH 308 Course title: QUANTUM MECHANICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0 T:0 P:4 Class schedule per week: 0x Class: I.M.Sc. Semester / Level: V Branch: PHYSICS Name of Teacher:

	L-T-P-C
QUANTUM MECHANICS LAB	[0-0-4-2]
Use C/C ⁺⁺ /Scilab for solving the following problems based on Quantum Mechanics like	
1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the	
hydrogen atom: $\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E\right] \text{ where } V(r) = -\frac{e^2}{r}$	
Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wave functions. Remember that the ground state energy of the hydrogen atom is -13.6 eV . Take = 3.795 (eVÅ) ^{1/2} , hc = 1973 (eVÅ) and m = 0.511x10 ⁶ eV/c ² .	
Solve the s-wave radial Schrodinger equation for an atom:	
$\frac{d^2 y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{h^2} [V(r) - E]$	
where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential	
$V(r) = -\frac{e^2}{r}e^{-r/a}$	
Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take $e = 3.795 (eVÅ)^{1/2}$, $m = 0.511x10^6 eV/c^2$, and $a = 3 Å$, $5 Å$, $7 Å$. In these units $\hbar c = 1973$ (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.	
3. Solve the s-wave radial Schrodinger equation for a particle of mass m: $\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E\right]$ For the anharmonic oscillator potential $V(r) = \frac{1}{2} kr^2 + \frac{1}{3} br^3$	
for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose $m = 940 \text{ MeV/c}^2$, $k = 100 \text{ MeV fm}^{-2}$, $b = 0$, 10, 30 MeV fm ⁻³ In these units, $ch = 197.3$ MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.	
Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule: $\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2\mu}{\hbar^2} \left[V(r) - E\right]$	
Where μ is the reduced mass of the two-atom system for the Morse potential $V(r) = D(e^{-2\alpha r'} - e^{-\alpha r'}), \qquad r' = \frac{r - r_o}{r}$	
Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.	
Take: $m = 940 \times 10^{6} \text{eV/C}^{2}$, $D = 0.755501 \text{ eV}$, $\alpha = 1.44$, ro = 0.131349 Å	

Laboratory based experiments:

- Study of Electron spin resonance- determine magnetic field as a function of the resonance
- Study of Zeeman effect: with external magnetic field: Hyperfine
- To show the tunneling effect in tunnel diode using I-V
- Ouantum efficiency of

Reference Books:

- 1. Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw- Hill Publication □ □ Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn., 2007, Cambridge University Press.
- An introduction to computational Physics, T.Pang, 2nd Edn., 2006, Cambridge Univ. Press
 Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer.
- 3. Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co.
- 4. A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn.,
- 5. Cambridge University Press
- 6. Scilab Image Processing: L.M.Surhone.2010 Betascript Publishing ISBN:978-6133459274

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution			
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)			
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)			

Course code: PH 309 Course title: SOLID STATE PHYSICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2L:0 T:0 P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: V Branch: PHYSICS Name of Teacher:

	SOLID STATE PHYSICS LAB	L-T-P-C [0-0-4-2]
	 Measurement of susceptibility of paramagnetic solution (Quinck`s Tube Method) To measure the Magnetic susceptibility of Solids. To determine the Coupling Coefficient of a Piezoelectric crystal. 	
	 To measure the Dielectric Constant of a dielectric Materials with frequency To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR) To determine the refractive index of a dielectric layer using SPR To study the PE Hysteresis loop of a Ferroelectric Crystal. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis. To measure the resistivity of a semiconductor (Ge) with temperature by four- probe method (room temperature to 150 °C) and to determine its band gap. To determine the Hall coefficient of a semiconductor sample. 	
2. 3.	<u>Reference Books</u> Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4 th Edition, reprinted 1985, Heinemann Educational Publishers. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Ed., 2011, Kitab Mahal Elements of Solid State Physics, J.P. Srivastava, 2 nd Ed., 2006, Prentice-Hall of India.	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Semester VI

COURSE INFORMATION SHEET

Course code: PH 315 Course title: ELECTROMAGNETIC THEORY Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4 L:3T:1P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI Branch: PHYSICS Name of Teacher:

	-	Theory: 50 Le	ctures
Code		Title: ELECTROMAGNETIC THEORY	L-T-P-C
<u>PH 315</u>			[3-1-0-4]
		Objectives	
		urse enables the students:	
	1.	To teach Maxwell's equations and how they modified some of the existing relations.	
	2.	Provide understanding about Electromagnetic waves and their propagation in unbounded media.	
	3.	Discuss the theory of electromagnetic waves in bounded media.	
	4.	To provide in-depth study of polarization of radiations and of polarizing materials.	
	5.	Introduction of rotatory polarization and waveguides.	
	Course	Outcomes	
	After th	ne completion of this course, students will be:	
	a.	Expertise on the usage of Maxwell's equations.	
	b. m	Ability to solve problems related to propagation of electromagnetic radiation in unbounded edia.	l
	с.	Gaining insights into the behaviour of electromagnetic waves in bounded media.	
	d.	Knowledge about the principles and applications of polarization.	
	e.	Learning about basic principles of waveguides and optical fibres.	
Module-1	Potent betwe Poynt	well Field Equations: Review of Maxwell's equations. Displacement Current. Vector and Scalar tials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface en Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and ing Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field y Density, Momentum Density and Angular Momentum Density	10
Aodule-2	dielec	Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic tric medium, transverse nature of plane EM waves, refractive index and dielectric constant,	10
		impedance. Propagation through conducting media, relaxation time, skin depth. Wave	
		gation through dilute plasma, electrical conductivity of ionized gases, plasma frequency,	
<u> </u>		tive index, skin depth, application to propagation through ionosphere	10
/lodule-3	Reflect Reflect Brews	Wave in Bounded Media: Boundary conditions at a plane interface between two media. ction & Refraction of plane waves at plane interface between two dielectric media-Laws of ction & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, ster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. lic reflection (normal Incidence)	10
Iodule-4	Polar	ization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization.	10
	Form	gation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's ula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Ization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices.	

	Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates:						
	Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light						
Module-5	Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific	10					
	rotation. Laurent's half-shade polarimeter. Wave Guides: Planar optical wave guides. Planar						
	dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue						
	equations. Phase and group velocity of guided waves. Field energy and Power transmission.						
	Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only).						
	Single and Multiple Mode Fibres (Concept and Definition Only).						
	ference Books:						
1. In	troduction to Electrodynamics, D.J. Griffiths, 3 rd Ed., 1998, Benjamin Cummings.						
2. El	lements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.						
3. In	troduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning						
4. Fu	Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill						
5. El	lectromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning						
6. Ei	ngineering Electromagnetic, Willian H. Hayt, 8 th Edition, 2012, McGraw Hill.						

- 7. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer Additional Books for Reference
- 1. Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.
- 2. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- 3. Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I		\checkmark			
Quiz II					

Indirect Assessment –

5. Student Feedback on Faculty

6. Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	Н	Н	М	Н
В	Н	Н	Н	L	L
C	Н	Н	Н	L	L
D	М	М	М	Н	Н
E	Н	М	М	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes							
	а	b	с	d	e	f		
1	Н	М	Н	М	Н	Н		
2	Н	М	Н	М	М	Н		
3	Н	М	Н	М	М	Н		
4	Н	Н	Н	М	М	Н		
5	Н	Н	Н	М	М	Н		

Week	Lect.	Tentati	veCh.	Topics to be covered	Text	Cos	Actual	Methodolog	Remarks
No.	No.	Date	No.		Book / Refere nces		Content covered	yused	by faculty if any
1	L1- L3			MaxwellFieldEquations:Review of Maxwell's equations.DisplacementCurrent.VectorandScalarPotentials.Gauge Transformations: Lorentzand Coulomb Gauge.		1			
2	L4- L6			Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector.		1			
3	L7- L9			Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density	2	1			
4	L10- L12			Plane EM waves through vacuum andisotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.		2			
5	L12- L15			Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma		2			
6	L16- L18			electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere	,	2			
7	L19- L22			Boundary conditions at a plane interface between twomedia. Reflection & Refraction of plane	T1,T2	3			

1	,		1	1	1	
		waves at plane interface between				
		two dielectric media-Laws of				
		Reflection & Refraction.				
8	L23-		r T1,T2	3		
	L26	perpendicular & paralle				
		polarization cases, Brewster'	5			
		law. Reflection & Transmission				
		coefficients. Total interna				
		reflection, evanescent waves				
		Metallic reflection (norma	1			
		Incidence)				
9	L27-	Description of Linear, Circula	r T1,T2	4		
	L29	and EllipticalPolarization				
		Propagation of E.M. Waves in				
		Anisotropic Media. Symmetric	c			
		Nature of Dielectric Tensor				
		Fresnel's Formula.				
10	L30-		. T1,T2	4		
- •	L30 L32	Light Propagation in Uniaxia				
	202	Crystal. Double Refraction				
		Polarization by Double				
		Refraction. Nicol Prism				
		Ordinary & extraordinary				
		refractive indices.	/			
11	1.00		T 1 T 2			
11	L33-	Production & detection of Plane,	T1,T2	4		
	L35	Circularly and Elliptically				
		Polarized Light. Phase				
		Retardation Plates: Quarter	-			
		Wave and Half-Wave Plates.				
		Babinet Compensator and it	5			
		Uses. Analysis of Polarized	1			
		Light				
12	L36-	Optical Rotation. Biot's Laws for	T1,T2	5		
	L39	Rotatory Polarization. Fresnel's				
		Theory of optical rotation				
		Calculation of angle of rotation.				
		Experimental verification o	f			
		Fresnel's theory. Specific	2			
		rotation. Laurent's half-shade	e			
		polarimeter.				
13	L40-	Planar optical wave guides	. T1,T2	5		
	L43	Planar dielectric wave guide				
		Condition of continuity a	t			
		interface. Phase shift on total				
		reflection. Eigenvalue equations.				
		Phase and group velocity of				
1		·	1	1		
		guided waves. Field energy and				
		guided waves. Field energy and Power transmission.				

Course code: PH 316 Course title: STATISTICAL MECHANICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 4L:3 T:1 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI Branch: PHYSICS Name of Teacher:

Code PH 316	Title: STATISTICAL MECHANICS	L-T-P-C [3-1-0-4]
Course	Objectives:	1
	To learn to use classical statistics to compute the macroscopic properties of the system by using the knowledg of microscopic properties of the particles.	ge
2.	To understand the theory of radiation by using the statistical properties of particles obeying classical mechani	cs.
	To predict the laws of radiations assuming that the photons behave quantum mechanically and follow Bose- Einstein statistics.	
4.	To investigate various physical systems and phenomena arising due to the particles following Bose-Einstein s	statistics.
5.	To study thermodynamic properties of various systems following Fermi-Dirac statistics.	
Course	Outcomes: Students will be able to	
1.	Understand the connection between statistics and thermodynamics.	
2.	Apply the concept of classical statistics to understand the properties of radiations and the failure of classical the	heory.
3.	Appreciate the correctness of Bose-Einstein statistics in explaining the properties of radiations.	
4.	Identify the systems following Bose-Einstein statistics and predict their macroscopic behavior.	
5.	Compute thermodynamic properties of the systems which follow Fermi-Dirac statistics.	
Module-1 Module-2	 Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation 	10 10 10
	Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh- Jean's Law. Ultraviolet Catastrophe.	
Module-3	1	10
Module-4		10
Module-5		10
Text be		
	tistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2 nd Ed., 1996, Oxford University Press. nce books:	
	tistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill	
	istical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall	
R3: The	rmodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 19	86,

Narosa.

R4: Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer

R5: An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Υ
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark			
End Sem Examination Marks	\checkmark	\checkmark		\checkmark	\checkmark
Quiz I					
Quiz II				\checkmark	

Indirect Assessment –

7. Student Feedback on Faculty

8. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	
1	Η	М	L	L	L	
2	М	Н	L	L	L	
3	L	L	Н	М	L	
4	L	L	М	Н	L	
5	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Н	М	Н	Н	
2	Н	Н	Н	М	Н	Н	
3	Н	Н	Н	М	Н	Н	
4	Н	Н	Н	М	Н	Н	
5	Н	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods Course Outcom		Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2							
CD2	Tutorials/Assignments	CO2	CD1 and CD2							
CD3	Seminars	CO3	CD1 and CD2							
CD4	Mini projects/Projects	CO4	CD1 and CD2							
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2							
CD6	Industrial/guest lectures									
CD7	Industrial visits/in-plant training									
CD8	Self- learning such as use of NPTEL materials and internets									
CD9	Simulation									

Week	Lect.	Tenta	Ch	Topics to be covered	Text	COs	Actual	Method	Remarks
No.	No.	tive	•		Book /	mapped	Content	ology	by
		Date	No		Refere		covered	used	faculty if
					nces				any
1-3	L1-			Macrostate & Microstate,		1		PPT	
	L10			5 1	R2			Digi	
				Ensemble, Phase Space, Entropy				Class/C	
				and Thermodynamic Probability,				hock	
				Maxwell-Boltzmann				-Board	
				Distribution Law, Partition					
				Function, Thermodynamic					
				Functions of an Ideal Gas,					
				Classical Entropy Expression,					
				Gibbs Paradox, Sackur Tetrode					
				equation, Law of Equipartition					
				of Energy (with proof) -					
				Applications to Specific Heat					
				and its Limitations,					
				Thermodynamic Functions of a					
				Two-Energy Levels System,					
				Negative Temperature.					
3-5	L11-			Properties of Thermal	T1,R1,	2			
	L20			Radiation. Blackbody Radiation.	R2, R3				
				Pure temperature dependence.					
				Kirchhoff's law. Stefan-					
				Boltzmann law:					

	Г	Thermodynamic proo	F			
		Radiation Pressure. Wien				
		Displacement law. Wien				
		1				
		Distribution Law. Saha Ionization Formula. Rayleigh				
		Jean's Law. Ultraviol	et			
		Catastrophe.				
		Inequality. Cauchy's Integra				
		formula. Simply and multiply				
		connected region. Laurent				
		 and Taylor's expansion.				
6-8	L21-	Spectral Distribution of Blac		3		
	L30	Body Radiation. Planck				
		Quantum Postulates. Planck				
		Law of Blackbody Radiation				
		Experimental Verification	l.			
		Deduction of (1) Wien's				
		Distribution Law, (2) Rayleigh-				
		Jeans Law, (3) Stefan	L-			
		Boltzmann Law, (4) Wien's				
		Displacement law from	n			
		Planck's law.				
8-10	L31-		7, T1, R3,	4		
	L40	•	a R4, R5			
		strongly Degenerate Bose Ga	· ·			
		Bose Einstein condensation	-			
		properties of liquid H				
		(qualitative description),			
		Radiation as a photon gas and				
		5	of			
		photon gas. Bose derivation of				
		Planck's law.				
11-14	L41-	Fermi-Dirac Distribution Law		5		
	L50	Thermodynamic functions of				
		Completely and strong				
		Degenerate Fermi Gas, Ferm				
		Energy, Electron gas in a Metal,				
		Specific Heat of Metal				
		Relativistic Fermi gas, Whi				
		Dwarf Stars, Chandrasekha	r			
		Mass Limit.				

Course code: PH 322 Course title: ELECTROMAGNETICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2L:0 T:0 P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: VI Branch: PHYSICS Name of Teacher:

Name of Teacher:	
ELECTROMAGNETICS LAB	
L-T-	-
[0-0-	4-2]
Course Objectives: This course enables the students	
a. Developing a feel for polarization and interference of light.	
b. To help in studying reflection and refraction in microwaves.	
c. To equip with insights into the working of a basic dipole antenna.	
d. Complementing the theoretical knowledge about Stefan's and	
Boltzmann Laws.	
Course Outcomes: After the completion of this course, students will	
i. Gaining visual experience of reflection, refraction and polarization.	
ii. Understanding interference of light waves.iii. Comprehending the working principle of diodes.	
m. Comprehending the working principle of diodes.	
1. To verify the law of Malus for plane polarized light.	
2. To determine the specific rotation of sugar solution using Polarimeter.	
3. To analyze elliptically polarized Light by using a Babinet's compensator.	
4. To study dependence of radiation on angle for a simple Dipole antenna.	
5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.)	
by studying the diffraction through ultrasonic grating	
6. To study the reflection, refraction of microwaves	
 To study and remeeting, remeeting of interference in microwaves. To study Polarization and double slit interference in microwaves. 	
 To determine the refractive index of liquid by total internal reflection using Wollaston's air-film. 	
9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian	
eyepiece.	
10. To study the polarization of light by reflection and determine the polarizing angle for air-glass	
interface.	
11. To verify the Stefan's law of radiation and to determine Stefan's constant.	
12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.	
Reference Books	
1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.	
2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4 th Edition, reprinted	
 1985, Heinemann Educational Publishers 3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal 	
 A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer 	
Course Assessment tools & Evaluation procedure	
Course Assessment wors & Evaluation procedure	

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 323 Course title: STATISTICAL MECHANICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: VI Branch: PHYSICS Name of Teacher:

STATISTICAL MECHANICS LAB

L-T-P-C [0-0-4-2]

Course Objectives:

- i. To learn to simulate evolution of a system of particles under different initial conditions.
- ii. To learn to compute the partition function of ideal gases satisfying classical or quantum statistics using $C/C^{++}/Scilab$.
- iii. To learn to plot radiation laws like Planck's law, Rayleigh-Jeans law in different temperature regimes.
- iv. To learn to calculate and plot specific heat in different temperature regimes using $C/C^{++}/Scilab$.
- v. To plot classical and quantum distribution functions using $C/C^{++}/Scilab$.

Course Outcomes: Using programs in C/C^{++} /Scilab students should be able to:

- i. Calculate the equilibrium properties and study transient behavior of a system of interacting particles.
- ii. Calculate the partition function of ideal gases.
- iii. Compare laws of radiations in various temperature regimes.
- iv. Compare specific heat predicted by various laws at different temperatures.
- v. Compare distribution functions predicted by classical and quantum statistics.

Use C/C⁺⁺/Scilab/other numerical simulations for solving the problems based on Statistical Mechanics like

Computational analysis of the behavior of a collection of particles in a box that satisfy Newtonian mechanics and interact via the Lennard-Jones potential, varying the total number of particles N and the initial conditions:

Study of local number density in the equilibrium state (i) average; (ii) fluctuations

Study of transient behavior of the system (approach to equilibrium)

Relationship of large N and the arrow of time

Computation of the velocity distribution of particles for the system and comparison with the Maxwell velocity distribution

Computation and study of mean molecular speed and its dependence on particle mass

Computation of fraction of molecules in an ideal gas having speed near the most probable speed

Computation of the partition function $Z(\beta)$ for examples of systems with a finite number of single particle levels (e.g., 2 level, 3 level, etc.) and a finite number of non-interacting particles N under Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics:

Study of how $Z(\beta)$, average energy $\langle E \rangle$, energy fluctuation ΔE , specific heat at constant volume Cv, depend upon the temperature, total number of particles N and the spectrum of single particle states.

Ratios of occupation numbers of various states for the systems considered above Computation of physical quantities at large and small temperature T and comparison of various statistics at large and small temperature T. Plot Planck's law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature. Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature and low temperature and compare them for these two cases. Plot the following functions with energy at different temperatures Maxwell-Boltzmann distribution Fermi-Dirac distribution **Bose-Einstein distribution Reference Books:** 1. Elementary Numerical Analysis, K.E.Atkinson, 3rd Edn. 2007, Wiley India Edition Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press. 2. Introduction to Modern Statistical Mechanics, D. Chandler, Oxford University Press, 3. 1987 Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and 4. Gerhard L. Salinger, 1986, Narosa. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer 5. 6. Statistical and Thermal Physics with computer applications, Harvey Gould and Jan Tobochnik, Princeton University Press, 2010. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: 7. Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer 8. ISBN: 978-3319067896 Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444 9. 10. Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

PE-I

COURSE INFORMATION SHEET

Course code: PH 303 Course title: ADVANCED MATHEMATICAL PHYSICS Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:3 T:0 P:0C:3 Class schedule per week: Class: I.M.Sc. Semester / Level: PE I Branch: PHYSICS Name of Teacher:

Code PH 303	Title: ADVANCED MATHEMATICAL PHYSICS	L-T-P-C [3-0-0-3]
	e Objectives course enables the students:	
1.	To learn algebra of linear transformations which is the background for problem formulation in qu	antum
	mechanics.	
2.	To introduce matrix operations and classification of different types of matrices.	
3.	To learn transformation properties of tensors in cartesian coordinates.	
4.	To learn algebra and classification of tensors.	
Cours	e Outcomes	
After	the completion of this course, students will be:	
1.	Use the definition and properties of linear transformations and matrices of linear transformations, the concepts of change of basis, homomorphism and isomorphism of vector spaces.	
2.	Find the eigenvalues and corresponding eigenvectors of a given matrix, determine whether a give diagonalizable and classify matrices as hermitian/skew-hermitian, singular/non-singular, etc.	
3.	Use tensor calculus to represent various vector operations like scalar and cross product of vectors gradient, divergence and curl of tensor fields, etc.	, calculate
4.	Perform tensor operations like sum and product of two tensors and classify tensors as symmetric symmetric.	and anti-
Module-1	Linear Vector Spaces: Abstract Systems. Binary Operations and Relations. Introduction to Grou Fields. Vector Spaces and Subspaces. Linear Independence and Dependence of Vectors. Basis an Dimensions of a Vector Space. Change of basis. Homomorphism and Isomorphism of Vector Space Transformations. Algebra of Linear Transformations. Non-singular Transformations. Representa Linear Transformations by Matrices.	d aces. Linear
Module-2	Matrices: Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Ma Upper-Triangular and Lower-Triangular Matrices. Transpose of a Matrix. Symmetric and Skew- Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew-Hermitian Matrices. Singular a Singular matrices. Orthogonal and Unitary Matrices. Trace of Matrix. Inner Product	
Module-3	Eigen-values and Eigenvectors. Cayley- Hamiliton Theorem. Diagonalization of Matrices. Soluti Coupled Linear Ordinary Differential Equations. Functions of a Matrix	ons 10 of
Module-4	Cartesian Tensors: Transformation of Co-ordinates. Einstein's Summation Convention. Relation between Direction Cosines. Tensors. Algebra of Tensors. Sum, Difference and Product of Two T Contraction. Quotient Law of Tensors. Symmetric and Anti-symmetric Tensors. Invariant Tensor Kronecker and Alternating Tensors. Association of Antisymmetric Tensor of Order Two and Vector Algebra and Calculus using Cartesian Tensors : Scalar and Vector Products, Scalar and V Products. Differentiation. Gradient, Divergence and Curl of Tensor Fields. Vector Identities. Ten Formulation of Analytical Solid Geometry : Equation of a Line. Angle Between Lines. Projection on another Line. Condition for Two Lines to be Coplanar. Foot of the Perpendicular from a Point Rotation Tensor (No Derivation). Isotropic Tensors. Tensorial Character of Physical Quantities.	ensors. rs : ectors. ector Triple sorial n of a Line c on a Line.
	Inertia Tensor. Stress and Strain Tensors : Symmetric	

	Nature. Elasticity Tensor. Generalized Hooke's Law
Module-5	General Tensors: Transformation of Co-ordinates. Minkowski Space. Contravariant & Covariant 10
	Vectors. Contravariant, Covariant and Mixed Tensors. Kronecker Delta and Permutation Tensors. Algebra
	of Tensors. Sum, Difference & Product of Two Tensors. Contraction. Quotient Law of Tensors. Symmetric
	and Anti-symmetric Tensors. Metric Tensor.
Ref	ference Books:
1. Ma	athematical Tools for Physics, James Nearing, 2010, Dover Publications
2. Ma	athematical Methods for Physicists, G.B. Arfken, H.J. Weber, and F.E. Harris, 1970, Elsevier.
3. Me	odern Mathematical Methods for Physicists and Engineers, C.D. Cantrell, 2011, Cambridge University Press
4. Int	roduction to Matrices and Linear Transformations, D.T. Finkbeiner, 1978, Dover Pub.
5. Lii	near Algebra, W. Cheney, E.W.Cheney & D.R.Kincaid, 2012, Jones & Bartlett Learning
6. Ma	athematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole
7. Ma	athematical Methods for Physicis & Engineers, K.F.Riley, M.P.Hobson, S.J.Bence, 3 rd Ed., 2006,

Cambridge University Press

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

<u>procedure</u> Direct Assessment	
Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	
Quiz I		\checkmark			
Quiz II					

Indirect Assessment –

9. Student Feedback on Faculty

10. Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4
A	L	М	-	L
В	М	Н	-	М
С	-	М	Н	Н
D	-	М	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course	Program Outcomes						
Outco me #	а	b	с	d	e	f	
1	Н	Н	Н	М	Н	М	
2	Н	Н	Н	М	Н	М	
3	L	Н	Н	М	М	М	
4	L	Н	Н	М	М	М	

sed by
faculty if any
-

	L29	Linear Ordinary]
	L29	5			
		-			
	1.20	Functions of a Matrix	4		
9	L30-	Transformation of Co-	4		
	L34	ordinates. Einstein's			
		Summation			
		Convention.Relation			
		between Direction			
		Cosines. Tensors.			
		Algebra of Tensors.			
		Sum, Difference and			
		Product of Two Tensors.			
		Contraction. Quotient			
		Law of Tensors.			
		Symmetric and Anti-			
		symmetric Tensors.			
10	L35-	Invariant Tensors :	4		
	L39	Kronecker and			
		Alternating Tensors.			
		Association of			
		Antisymmetric Tensor of			
		Order Two and Vectors.			
		Vector Algebra and			
		Calculus using Cartesian			
		Tensors : Scalar and			
		Vector Products, Scalar			
		and Vector Triple			
		Products.			
		Differentiation.			
11	L40-	Gradient, Divergence	4		
	L44	and Curl of Tensor			
		Fields. Vector Identities.			
		Tensorial Formulation of			
		Analytical Solid			
		Geometry : Equation of a			
		Line. Angle Between			
		Lines. Projection of a			
		Line on another Line.			
		Condition for Two Lines			
		to be Coplanar. Foot of			
		the Perpendicular from a			
		Point on a Line.			
12	L45-	Rotation Tensor (No	4		
	L49	Derivation). Isotropic			
		Tensors. Tensorial			
		Character of Physical			
		Quantities. Moment of			
		Inertia Tensor. Stress			
		and Strain Tensors :			
		Symmetric Nature.			
		Symmetric Nature.			

		Elasticity Tensor. Generalized Hooke's Law			
13	L50- L54	TransformationofCo-ordinates.MinkowskiSpace.Contravariant&CovariantVectors.Contravariant,CovariantandMixedTensors.KroneckerKroneckerDeltaPermutationTensors.	5		
14	L55- L59	AlgebraofTensors.Sum,Difference∏ of Two Tensors.Contraction.QuotientLawofTensors.SymmetricandAntisymmetricsymmetricTensors.Metric Tensor.	5		

Course code: PH 304 Course title: Nano Materials and Applications Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: L:3T:0P:0C:3 Class schedule per week: Class: I.M.Sc. Semester / Level: PE I Branch: PHYSICS Name of Teacher:

Code		Title: Nano Materials and Applications	P-C						
PH 3		Theory: 40 Lectures [3-0-							
	a.	To become familiar with length scales in physics and their relevance for nanoscience.							
Γ	b.	To be familiarized with the top down and bottom up processes for synthesis of nanomaterials.							
	c.	To become familiar with the various methods of characterization of nanomaterials.							
	d.	To become acquainted with optical properties of nanostructures and the role of quasiparticles.							
	e.	To develop an understanding of the quantization of charge transport in nanostructures and application of nanomaterials.							
Course	e Outo	comes : After the completion of this course, students will be:							
1.	Ab	e to quantify the change in the energy levels as materials are confined in one, two or three dimensions.							
2.	Ab	e to describe the various methods of nanomaterial synthesis.							
3.	Ab	e to compare and choose from the different characterization tools available for nanomaterial characterization	on.						
4.	Ab	e to relate the optical properties with the concept of quasiparticles.							
5.		e to correlate the discrete nature of charge and energy states with the quantization of electron transport in ostructures.							
Module-	-1	NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures	10						
		(nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at							
		nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation-							
		Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D							
		nanostructures and its consequences.							
Module-	-2	SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top down and Bottom up approach,							
		Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition	10						
		(PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition							
		(CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through							
		colloidal methods. MBE growth of quantum dots							
Module-	3	CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy Scanning Electron Microscopy	8						
viouuic-	5	Transmission Electron Microscopy Atomic Force Microscopy Scanning Tunneling Microscopy	0						
Module-	.1	OPTICAL PROPERTIES: Coulomb interaction in nanostructures. Concept of dielectric constant for	12						
wiodule-	-	nanostructures and charging of nanostructure. Quasi-particles and excitons. Excitons in direct and	14						
		indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons,							
		charging effects. Radiative processes: General formalization-absorption, emission and luminescence.							
		Optical properties of heterostrctures and nanostructures.							
Module-	.5	ELECTRON TRANSPORT : Carrier transport in nanostructures. Coulomb blockade effect,	10						
viouue	5	thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects. APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin	10						
		films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT							
		based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and							
		optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).							
	Refer	ence books:							
1.	C.P.	Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).							
2.		Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)							
3.		Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning							
	Priva	te Limited).							

- 1. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- 2. M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- 3. Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, 2011,
- Cambridge University Press.
- 4. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I					
Quiz II				\checkmark	

Indirect Assessment –

11. Student Feedback on Faculty

12. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes								
Outcome #	а	b	с	d	e	f			
1	Н	Н	Н	L	М	L			
2	Н	Н	М	L	L	L			
3	Н	М	Н	L	L	L			
4	Н	М	М	М	L	L			
5	Н	Н	Н	L	Н	L			

Course	Course Objectives							
Outcome #	а	b	с	d	e			
1	Н	М	М	М	L			
2	М	Н	М	М	L			
3	М	М	Н	L	L			
4	М	М	М	Н	L			
5	М	М	L	М	Н			

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	CourseDeliveryMethod						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8						
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8						
CD3	Seminars	CO3	CD1, CD2 and CD8						
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8						
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
	Self- learning such as use of NPTEL materials and								
CD8	internets								
CD9	Simulation								

				5					
Week	Lect.	Tentative	Module	Topics to be covered	Tex t	Cos	Actual	Methodology	Remarks
	No.	Date			Book /	mapped	Content	used	by
No.			No.		Referenc es		covered		faculty if any
1	L1		I	Length scales in physics. Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods),		CO-1		PPT Digi Class/Chal k-Board	
	L2-L4			Band structure and density of states of materials at nanoscale, Size Effects in nano systems,		CO-1		PPT Digi Class/Chal k-Board	
2	L5-L7			Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step potential box,		CO-1		PPT Digi Class/Chal k-Board	
2	L8- L10			quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.		CO-1		PPT Digi Class/Chal k-Board	
3	L11- L13		II	Top down and Bottom up approach, Photolithography. Ball milling. Gas phase	R	CO-2		PPT Digi Class/Chal k-Board	

			condensation. Vacuum deposition. Physical vapor deposition (PVD):					
3	L14- 16		Thermal evaporation, E- beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD).	R	CO-2		PPT Digi Class/Chal k-Board	
4	L17- L18		Sol-Gel. Electro deposition. Spray pyrolysis.	R	CO-2		PPT Digi Class/Chal k-Board	
4-5	L19- L20		Hydrothermalsynthesis.Preparationthroughcolloidalmethods.MBEgrowth of quantum dots	R	CO-2		PPT Digi Class/Chal k-Board	
5-6	L21- 24	III	X-Ray Diffraction. Optical Microscopy, Scanning Electron Microscopy	R	CO-3		PPT Digi Class/Chal k-Board	
6-7	L25- 28		TransmissionElectronMicroscopyAtomicForceMicroscopyScanningTunnelingMicroscopy	R	CO-3		PPT Digi Class/Chal k-Board	
7	L29- 31	IV	Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure.	R	CO-4		PPT Digi Class/Chal k-Board	
8	L32- 34		Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals.	R	CO-4		PPT Digi Class/Chal k-Board	
9	L35- L37		Quantitative treatment of quasi-particles and excitons, charging effects Radiative processes: General formalization-absorption, emission and luminescence	R	CO-4		PPT Digi Class/Chal k-Board	
10	L38- 40		Optical properties of heterostrctures and nanostructures.	R	CO-4		PPT Digi Class/Chal k-Board	
11	L41- 44	V	Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects. APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices	R	CO-5	Τ3	PPT Digi Class/Chal k-Board	

		(LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors.	
13.	L45- 47	NanomaterialDevices:RCO-5T3PPT Digi Class/Chal k-BoardQuantumdotsaddk-Boardk-Boardheterostructurelasers, opticalswitchingand opticalk-Boardopticaldatastorage.kMagneticquantumwell; magnetickdatastorage.k	
14.	L48- 50	MicroElectromechanicalRCO-5T3PPT Digi Class/Chal k-BoardSystems(MEMS),NanoK-Board	

Course code: PH 310 Course title: ADVANCED MATHEMATICAL PHYSICS LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0 T:0 P:4C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE I Branch: PHYSICS Name of Teacher:

ADVANCED MATHEMATICAL PHYSICS LAB

Course Objectives:

1. To perform computer simulations in C/C++ /Scilab for solving problems like matrix multiplication, matrix diagonalization, etc.

L-T-P-C [0-0-

4-2]

- 2. To use C/C++ /Scilab programming to calculate eigenvalues and corresponding eigenvectors of a matrix.
- 3. To do simulations for lagrangian formulation in constrained classical systems.
- 4. To learn to compute geodesics for various spaces and obtain ground state energy level and wave function of a quantum system.
- 5. Multiply and diagonalize matrices of rank 3 using computer program.
- 6. Find eigenvalues and eigenvectors of 3x3 matrices with real or complex elements.
- 7. Write programs in C/C++ /Scilab for obtaining lagrangian and calculation of Euler-Lagrange equations for conservative systems.
- 8. Find the shortest distance between two points in curved spaces and solve quantum systems for their lowest energy levels and wave-functions computationally.

Scilab/ C⁺⁺ based simulations experiments based on Mathematical Physics problems like

- 1. Linear algebra:
 - \square Multiplication of two 3 x 3 matrices.
 - · Eigenvalue and eigenvectors of

(2	1	1)		(1	-i	3 + 4i		(2	-i	2i	
1	3	2	;	+i	2	4	;	(+i	4	3)	
13	1	4)		$\begin{pmatrix} 1\\+i\\3-4i \end{pmatrix}$	4	3 /	/	-2i	3	5/	

2. Orthogonal polynomials as eigenfunctions of Hermitian differential operators.

3. Determination of the principal axes of moment of inertia through diagonalization.

4. Vector space of wave functions in Quantum Mechanics: Position and momentum differential operators and their commutator, wave functions for stationary states as eigenfunctions of Hermitian differential operator.

5. Lagrangian formulation in Classical Mechanics with constraints.

- 6. Study of geodesics in Euclidean and other spaces (surface of a sphere, etc).
- 7. Estimation of ground state energy and wave function of a quantum system.

Reference Books:

- 1. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB:
- Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014Springer ISBN: 978-3319067896
- 3. Scilab by example: M. Affouf, 2012, ISBN: 978-1479203444
- 4. Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 311 Course title: Nano Materials and Applications Lab Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: L:0 T:0 P:4C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE-I Branch: PHYSICS Name of Teacher:

Nano Materials and Applications Lab

L-T-P-C [0-0-4-2]

- 1. Preparation of thin film using Anodic Vacuum Arc technique
- 2. Preparation of nano particles using ball milling
- 3. Nano crystalline or ultra-nano crystalline thin film preparation using Microwave Plasma Enhanced Chemical Vapor Deposition
- 4. Synthesis of Gold nano particle using chemical route
- 5. Measurement of thickness of deposited thin film, optical/weight. Quartz crystal.
- 6. Particle size analysis of broad nano peaks of XRD or GXRD.
- 7. Optical analysis of given nanomaterials sample
- 8. Measurement of nano hardness of given thin film
- 9. Raman analysis of given nano sample
- 10. Determination of the surface area of nano materials by the BET method Brunauer–Emmett– Teller (BET) technique.
- 11. Measurement of Contact angle of hydrophobic and hydrophilic thin film or powder.
- 12. Synthesis of ZnO nano particle using chemical route

Reference Books

- 1. Coating Technology Hand book, by D. Satas, A. A. Tracton, Marcel Dekker, 2001.
- 2. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004)
- 3. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- 4. Surface Analysis- The principle Techniques, J. C. Vickerman, John Wiley and Sons, 1997.
- 5. The Materials Science of Thin Films by M. Ohring, Academic Press 1992.
- 6. Nanomaterials by A. K. Bandyopadhyay, New Age Publ., 2009.

Course Assessment tools & Evaluation procedure

Course Assessment tools & Lyandation procedure										
Assessment Tool	% Contribution									
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)									
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)									

Course code: PH 305 Course title: Computational Physics Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L: 3 T: 0 P:0 C: 3 Class schedule per week: Class: I.M.Sc. Semester / Level: PE II Branch: PHYSICS Name of Teacher:

Course Code: PH 305	Title: COMPUTATIONAL PHYSICS	L-T-P-C 3-0-0-3
Course Ob	jectives	
	e enables the students:	
A.	To learn about the basics of Fortran programming	
В.	Learn about control statements in Fortran	
C.	To learn about preparing codes	
D.	Learn about Latex and Gnuplot	
Course Ou	tcomes	
After the c	ompletion of this course, students will be:	
1.	Able to write simple programs in Fortran	
2.	Able to use control statements	
3.	Preparing complex codes to solve physical problems	
4.	Having good grasp on Latex and Gnuplot	
Module 1	Scientific Programming: Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.	
Module 2	Control Statements: Types of Logic (Sequential, Selection, Repetition), BranchingStatements (Logical IF, Arithmetic IF, Block IF, Nested Block IF), Looping Statements (DO-ENDDO, DO-WHILE), Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN and CALL Statements, Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.	[10]
Module 3	Exercises on syntax on usage of Fortran, Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write codes in C.	[7]
	To print out all natural even/ odd numbers between given limits. To find maximum, minimum and range of a given set of numbers. Calculating Euler number using exp(x) series evaluated at x=1	

Module 4	Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.	[10]
Module 5	Visualization: Introduction to graphical analysis and its limitations. Introduction toGnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot	[10]

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	
Quiz I		\checkmark			
Quiz II					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Course Objectives	1	2	3	4
Α	Н	Н	Н	-
В	L	Н	Н	-
С	L	Н	Н	-
D	-	-	-	H

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	a	b	c	d	e	f	
1	-	L	L	М	L	Μ	
2	-	L	L	М	L	Μ	
3	•	Н	Н	М	М	Μ	
4	-	Н	Н	М	L	М	

Lecture wise Lesson plan								
Week No.	Lect. No.	Tent ativ e Date	Ch. No.	Topics to be covered	Text Book / Refere nces	COs mapped	Actual Content covered	Remarks by faculty if any
1	L1- L3			Some fundamental Linux Commands (Internal and External commands). Basics of Fortran, Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program.		1		
2	L4- L6			Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements, Executable and Non- Executable Statements, Layout of programs, Format of writing Program, Examples from physics problems.	T1, T2	1		
3	L7- L9			Types of Logic (Sequential, Selection, Repetition), Branching Statements, Looping Statements, Jumping Statements		2		
4	L10- L12			Subscripted Variables (Arrays), Functions and Subroutines, I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.		2		
5	L13- L15			Exercises on syntax on usage of Fortran, Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write codes in Fortran.	T1, T2	3		
6	L16- L18			To print out all natural even/ odd numbers between given limits. To find maximum, minimum and range of a given set of numbers. Calculating Euler number using exp(x) series evaluated at x=1	T1, T2	3		
7	L19- L21			Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages.	T4	4		
8	L22- L24			Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.	T4	4		

9	L25- L27	Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data		5		
10	L28- L30	Basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file	Т3	5		
11	L31- 33	physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot		5		

Course code: 306 Course title: Materials Science and Nanotechnology Pre-requisite(s): Co- requisite(s): Credits: L:3 T:0 P:0C:3 Class schedule per week: Class: I.M.Sc. Semester / Level: PE II Branch :PHYSICS Name of Teacher:

After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c c summarize ceramics and its types and relate their applications with properties. d d classify polymers and composites based on their properties and applications. e e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. f Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [4] Module 2 Elastic and Plastic deformation Elastic deformation Single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [4] Module 3 Ceramics Ceramics, advanced ceramics, mechanical properties of ceramics, types and applications. [4]
Course Objectives [1. Outline the basics of crystallography and define various types of imperfections in crystals. 2. Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms. 3. Define ceramics and explain its types and applications. 4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes a explain various types of imperfections in crystals. b. analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c lassify polymers and composites based on their properties and applications. c classify polymers and composites based on their properties and applications. c lassify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. [Module 1 Imperfections in solids and elastic deformation function, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [Module 3 Ceramics [[Caramics [[Module 4 Polymers and composites in ceramics, mechanical properties of ceramics, types and applications. [
This course enables the students to: 1. Outline the basics of crystallography and define various types of imperfections in crystals. 2. Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms. 3. Define ceramics and explain its types and applications. 4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes Ifter the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation inscrew dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation [f Belie to deformation on
1. Outline the basics of crystallography and define various types of imperfections in crystals. 2. Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms. 3. Define ceramics and explain its types and applications. 4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes Attent the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify polymers and composites based on their properties. d classify polymers and composites based on their properties. d classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation [1] Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector,dislocation d
2. Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms. 3. Define ceramics and explain its types and applications. 4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and corelate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation Elastic deformation, Yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation, grain growth, introduction to fract
3. Define ceramics and explain its types and applications. 4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics Ceramics Module 4 Polymers and compo
4. Define polymers and composites and categorize them on the basis of their applications. 5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics [7] Ceramics structures, imperfections in ceramics, mechanical pr
5. Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. Course Outcomes After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics [Ceramics [Ceramics [
The second seco
Course Outcomes After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation Elastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications. Module 4 Polymers and composites
After the completion of this course, students will be able to: a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c c summarize ceramics and its types and relate their applications with properties. d d classify polymers and composites based on their properties and applications. e c Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. for confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [4] Module 2 Elastic adeformation Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [4] Module 3 Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [4] Module 4 Polymers and composites [7]
a explain various types of imperfections in crystals. b analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c summarize ceramics and its types and relate their applications with properties. d classify polymers and composites based on their properties and applications. e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects Module 2 Elastic and Plastic deformation Elastic deformation Introduction, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics Ceramics [Module 4 Polymers and composites f
b. analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. c. summarize ceramics and its types and relate their applications with properties. c. summarize ceramics and its types and relate their applications with properties. d. classify polymers and composites based on their properties and applications. e. Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. fill Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [3] Module 2 Elastic and Plastic deformation Elastic deformation Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [4] Module 3 Ceramics [7] Module 4 Polymers and composites [7]
different strengthening techniques.csummarize ceramics and its types and relate their applications with properties.dclassify polymers and composites based on their properties and applications.eClassify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties.Module 1Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defectsModule 2Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear
csummarize ceramics and its types and relate their applications with properties.d. classify polymers and composites based on their properties and applications.eClassify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties.Module 1Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defectsModule 2Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.Module 3Ceramics Ceramics structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.Module 4Polymers and composites
d. classify polymers and composites based on their properties and applications. e e. Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. for confinement to nanoscale on their properties. Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [4] Module 2 Elastic and Plastic deformation Elastic deformation in solids and elastic deformation grain, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [7] Module 3 Ceramics Ceramics, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [7]
e Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Imperfections in solids and elastic deformation [4] Module 1 Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [4] Module 2 Elastic and Plastic deformation [7] Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [7] Module 3 Ceramics [7] Module 4 Polymers and composites [7]
of confinement to nanoscale on their properties.Module 1Imperfections in solids and elastic deformation Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects[4]Module 2Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.[7]Module 3Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.[7]Module 4Polymers and composites[7]
Module 1 Imperfections in solids and elastic deformation [4] Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects [4] Module 2 Elastic and Plastic deformation [5] Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [7] Module 3 Ceramics [7] Module 4 Polymers and composites [7]
Introduction to crystallography, types of imperfections, point defects, edge dislocation, screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defectsImage: Comparison of the com
screw dislocation, mixed dislocation, Burger's vector, dislocation density, surface defects, grains, grain boundary, volume defects[1]Module 2Elastic and Plastic deformation Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.[1]Module 3Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.[1]Module 4Polymers and composites[1]
grains, grain boundary,volume defects[1]Module 2Elastic and Plastic deformation[1]Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.[1]Module 3Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.[1]Module 4Polymers and composites[1]
Module 2Elastic and Plastic deformation[1]Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.[1]Module 3Ceramics ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.[1]Module 4Polymers and composites[1]
Elastic deformation, Hooke's law, atomic view of elasticity, anelasticity, elastic moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.IModule 3Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.['
moduli.plastic deformation, yield point phenomena, slip, slip systems, resolved shear stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep.[7]Module 3Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications.[7]Module 4Polymers and composites[7]
stress, plastic deformation of single crystals and polycrystalline materials, strain hardening, annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. Module 3 Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [' Module 4 Polymers and composites ['
annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [/] Module 3 Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [/] Module 4 Polymers and composites [/]
annealing, recovery, recrystallization, grain growth, introduction to fracture, fatigue, creep. [/] Module 3 Ceramics Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [/] Module 4 Polymers and composites [/]
Module 3 Ceramics [' Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. [' Module 4 Polymers and composites ['
Ceramic structures, imperfections in ceramics, mechanical properties of ceramics, types and applications of ceramics, advanced ceramics and their applications. Image: Ceramics and their applications of ceramics, types and composites Module 4 Polymers and composites ["
applications of ceramics, advanced ceramics and their applications. Module 4 Polymers and composites ['
Module 4 Polymers and composites ['
FORTHEL SUBCIDE DOLVIDEL CLYSTATIOUV INECDATICAL DEDAVIOUS OF DOLVIDES IVDES OF
polymers and their applications, advanced polymers and their application, general
properties, types, and applications of composites, fibre reinforced composites, various types
of fibres - plastic, glass, carbon, etc, influence of fibre length & orientation.
Module 5 Nanotechnology [5]
Basic concepts of nanotechnology, nanomaterials (nanoparticles, nanoclusters, quantum
dots) nanoscale, effect of nano scale on material, properties: thermal, mechanical,
electrical, magnetic and optical properties. introduction to nanomaterials fabrication
techniques: top-down process (ball milling, lithography), bottom-up process (sputtering
techniques, chemical routes).
Text books:
1. W. D. Callister, Materials Science and Engineering: An Introduction, John Wiley, 6th Edition, 2003.

W. F. Smith, Principles of Materials Science and Engineering, McGraw Hill International, 1986.

- 3. Introduction to Nanotechnology, Charles P. Poole, Jr., Frank J. Owens, John Wiley & Sons, 2013. **Reference books:**
- 1. The Structure and Properties of Materials, Wiley Eastern Vol. –I, Moffatt, Pearsall and Wulff
- 2. Vol. –III, Hayden, Moffatt and Wulff
- 3. Physical Properties of Materials, M. C. Lovell, A. J. Avery, M. W. Vernon, ELBS

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Two Quizzes	10+10
Teacher's assessment	5

Assessment Compoents	C01	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		\checkmark
Quiz I		\checkmark			
Quiz II					

Indirect Assessment –

Student Feedback on Faculty

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes					
Outcome #	a	b	С	d	e	f	
1	Н	Н	Н	L	М	L	
2	Н	Н	М	L	L	L	
3	Н	М	М	L	L	L	
4	Н	М	М	L	L	L	
5	Н	Н	Н	L	Н	L	

Course		Course Objectives				
Outcome #	a	b	с	d	e	
1	Н	М	М	М	L	
2	М	Н	М	М	L	
3	М	М	Н	L	L	
4	М	М	Н	L	L	
5	М	М	L	L	Н	

	Mapping Between COs and Course Delivery (CD) metho						
CD	Course Delivery methods	Course Outcome	CourseDeliveryMethod				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8				
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8				
CD3	Seminars	CO3	CD1, CD2 and CD8				
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8				
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures		<u>.</u>				
CD7	Industrial visits/in-plant training						
	Self- learning such as use of NPTEL materials and						
CD8	internets						
CD9	Simulation						

Lecture wise Lesson planning Details.

Week	Lect.	Tenta	Module	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	tive	No.		Book /	mappe	Content	used	by
		Date			Refere nces	d	covered		faculty if any
1	L1		I	Introduction to materials		CO-1		PPT Digi	
1			1	science and relevance of		0-1		Class/Chalk	
				nanotechnology, course				-Board	
				objectives and grading					
				schemes.					
	L2-			Introduction to	T1	CO-1		PPT Digi	
	L4			crystallography				Class/Chalk	
								-Board	
2	L5-7		1	Types of imperfections,		CO-1		PPT Digi	
				point defects, edge				Class/Chalk	
				dislocation, screw				-Board	
				dislocation, mixed					
				dislocation, Burger's					
				vector					
2	L8			Dislocation density,	T1	CO-1		PPT Digi	
				surface defects, grains,				Class/Chalk	
				grain boundary				-Board	
3	L9-		II	Elastic deformation,	T1	CO-2		PPT Digi	
	L10			Hooke's law, atomic view				Class/Chalk	
				of elasticity, anelasticity,				-Board	
2	X 11			elastic moduli	T 1	<u> </u>			
3	L11- 12			Plastic deformation, yield	11	CO-2		PPT Digi Class/Chalk	
	12			point phenomena, slip, slip					
				systems, resolved shear				-Board	
1	1.12		4	stress	T1	CO-2			
4	L12- L14					0-2		PPT Digi Class/Chalk	
	L14			single crystals and polycrystalline materials				-Board	
				porycrystannie materials				-Duald	

4-5	L15- 18		Strain hardening, T1 annealing, recovery, recrystallization, grain growth, introduction to	CO-2	PPT Digi Class/Chalk -Board
5-6	L19- 22	III	fracture, fatigue, creepCeramicstructures,imperfections in ceramics,mechanical propertiesofceramics.	CO-3	PPT Digi Class/Chalk -Board
6-7	L23- 25		Types and applications of ceramics, advanced ceramics and their applications.	CO-3	PPT Digi Class/Chalk -Board
7	L25- 28	IV	Polymerstructure,T1polymercrystallinity,mechanicalbehaviourpolymers,typespolymersandtheirapplications,advancedpolymersandtheirapplication	CO-4	PPT Digi Class/Chalk -Board
8	L29- 31		General properties, types, and applications of composites, fibre reinforced composites, various types of fibres - plastic, glass, carbon, etc, influence of fibre length & orientation.	CO-4	PPT Digi Class/Chalk -Board
9	L33- 34	V	Basic concepts of nanotechnology, nanomaterials (nanoparticles, nanoclusters, quantum dots) nanoscale, effect of nano scale on material, properties: thermal, mechanical, electrical, magnetic and optical properties	CO-5 T3	PPT Digi Class/Chalk- Board
9	L35- 40		Introductiontonanomaterialsfabricationtechniques:top-downprocess(ball milling,lithography),bottom-upprocess(sputteringtechniques,chemicalroutes).chemical	CO-5 T3	PPT Digi Class/Chalk- Board

		COURSE INFORMATION SHEET	
Cou	rse coo	de: PH 307	
requ	uisite(s	le: EXPERIMENTAL TECHNIQUES Pre-): Intermediate Physics and Mathematics Co-	
	uisite(s dits:	L:3 T:0 P:0C:3	
		dule per week:	
	ss sche	•	
		Level: PE II	
		HYSICS	
		eacher: Dr. Dilip K. Singh	
Cod		Title: EXPERIMENTAL TECHNIQUES	P-C
PH	307	[3-0-	0-3]
Cours	se Obj	ectives	
		enables the students:	
1.	The co	ourse on Experimental techniques is designed to cater need of understanding of basic instrumentation to le	aners.
2.	Modu	le-1 contains information about various measurement parameters like precession, accuracy and curve fitting	ng.
3.		2 nd Module knowledge about variety of signals, frequency response of systems and noise measurements nsferred.	would
4.	Modul	le-3 contains information about working, efficiency and applications of Transducers and sensors.	
		^h module contains knowledge about working and construction of digital multimeter, impedance bridges a	-0 bd
5.	meter.		lu Q=
6		orking, construction and efficiency of variety of vacuum pumps and techniques of vacuum level measure	nont
6.		pic of 5 th module.	nem
Cours	se Out	comes	
After	r	npletion of this course, students will be:	-
	1.	The course intends to impart knowledge of basic instrumentation tools and techniques to physics undergraduates, so that they can conceive / design experiments to test physic principles.	
	2.	Leaners would gain knowledge of accuracy, precession and types of errors.	
	3.	Students would also gain knowledge of type of signals, variety of noise types and methods of grounding	┨ │
		/ shielding.	
	4.	Course intends to impart knowledge of variety of transducers / sensors required for industrial	
		instrumentation.	
	5.	Working and design of digital multimeters and bridges is planned to be covered in this course.	
	6.	Knowledge about variety of vacuum pumps and vacuum measurement techniques will enrich the	
		learners about vacuum techniques: one of the basic experimental skill required to understand working /	
		experiments of variety of branches of physics and engineering like low-temperature physics	
		(cryogenics), ion-beam physics, semiconductor growth and devices and nuclear instrumentation.	

Module -1	Measurements: Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and	8	
	curve fitting. Guassian distribution		
Module-2	Signals and Systems: Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise Shielding and Grounding: Methods of safety grounding. Energy coupling. Grounding. Shielding: Electrostatic shielding. Electromagnetic Interference	8	
Module-3	Transducers & industrial instrumentation (working principle, efficiency, applications):	14	

	Static and dynamic characteristics of measurement Systems. Generalized performance of	
	systems, Zero order first order, second order and higher order systems. Electrical, Thermal and	
	Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers.	
	Transducers as electrical element and their signal conditioning. Temperature transducers: RTD,	
	Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75)	
	and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance	
	change transducer: Linear variable differential transformer (LVDT), Capacitance change	
	transducers. Radiation Sensors: Principle of Gas filled detector, ionization chamber, scintillation	
	detector	
Module-4	Digital Multimeter: Comparison of analog and digital instruments. Block diagram of digital	10
	multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement.	
	Impedance Bridges and Q-meter: Block diagram and working principles of RLC bridge.	
	Q-meter and its working operation. Digital LCR bridge.	
Module-5	Vacuum Systems: Characteristics of vacuum: Gas law, Mean free path. Application of vacuum.	10
	Vacuum system- Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump,	
	Pumping speed, Pressure gauges (Pirani, Penning, ionization).	

Text books:

T1: Thomas L. Floyd. ELECTRONIC. DEVICES. 9th Edition. Prentice Hall.

T2: Louis Nashelsky and Robert Boylestad, Electronic Devices and Circuit Theory

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark				
End Sem Examination Marks	\checkmark	\checkmark		\checkmark	\checkmark
Quiz I	\checkmark	\checkmark			
Quiz II				\checkmark	\checkmark
Assignment					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Objectives and Outcomes							
Mapping between Course Objectives and Course Outcomes							
Course Objectives	1	2	3	4	5	6	
А	Н	Η	Н	Н	Η	Н	
В	Н	Η	L	L	L	L	
С	Н	L	Н	L	L	L	
D	Н	L	L	Н	L	L	
E	Н	L	L	L	Н	L	
F	Н	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	f
1	Н	Н	Н	Н	Н	Н
2	Н	Н	Н	М	Н	Н
3	Н	Н	Н	М	Н	Н
4	Н	Н	Н	М	Н	Н
5	Н	Н	Н	М	Н	Н
6	Н	Η	Н	М	Н	Н

Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures	CO6	CD1 and CD2			
CD7	Industrial visits/in-plant training	-	-			
CD8	Self- learning such as use of NPTEL materials and internets	-	-			
CD9	Simulation	-	-			

Lecture wise Lesson planning Details.

Week	Lect.	Tentati	Ch.	Topics to be covered	Text	Cos	Actual	Meth	Remark
No.	No.	ve	No		Book /	map	Content	odol	s by
		Date			Referen	ped	covered	ogy	faculty
					ces			used	if any
1	L1		1	Measurements: Accuracy and	T1, T2				
				precision. Significant figures.					
	L2			Error and uncertainty analysis.	T1, T2				
	L3		1	Types of errors: Gross error,	T1, T2				
				systematic error, random error.					
	L4			Statistical analysis of data	T1, T2				
				(Arithmetic mean,					
	L5		1	deviation from mean, average	T1, T2				
				deviation,					
	L6		1	standard deviation,	T1, T2				

L7		chi-square) and curve fitting.	T1, T2	T T T
L8		Guassian distribution.	T1, T2	
L9	2	Signals and Systems: Periodic and	,	
	_	aperiodic signals.	11, 12	
L10			T1, T2	
		function and frequency response of		
		first and second order systems.		
L11		-	T1, T2	
		measurement system.	11, 12	
L12		S/N ratio and Noise figure. Noise in	T1, T2	<u>+</u>
		frequency domain.	11, 12	
L13		Sources of Noise: Inherent	T1 T2	+ +
		fluctuations, Thermal noise,	. 11, 12	
L14				
		Shot noise, 1/f noise	T1, T2	
L15		Shielding and Grounding: Methods of safety grounding.		
		Energy coupling. Grounding.	T 1 T 2	
L16		Shielding: Electrostatic shielding.	11,12	
		Electromagnetic Interference.	m1 m2	
L17	3	Transducers & industrial		
		instrumentation (working		
		principle, efficiency, applications):		
		Static and dynamic characteristics of		
		measurement Systems.		
L18		Generalized performance of systems,	T1, T2	
L19		Zero order first order systems	T1, T2	
L20		Second order and higher order	T1, T2	
		systems.		
L21		Electrical, Thermal and Mechanical	T1, T2	
		systems.		
L22		Calibration. Transducers and	T1, T2	
		sensors.		
L23		Characteristics of Transducers.		
		Transducers as electrical element		
		and their signal conditioning.		
L24		I ·	T1, T2	
		Thermistor, Thermocouples		
L25		Semiconductor type temperature	T1, T2	
		sensors (AD590, LM35, LM75) and		
		signal conditioning.		
L26		Linear Position transducer: Strain	T1, T2	
		gauge		
L27		Piezoelectric. Inductance change	T1, T2	
		transducer		
L28		Linear variable differential	T1, T2	
		transformer (LVDT), Capacitance		
		change transducers.		
L29		Radiation Sensors:	T1, T2	
L30		Principle of Gas filled detector,		
		,,		<u> </u>

		ionization chamber, scintillation			
		detector.			
L31	4	Digital Multimeter: Comparison of	T1, T2		
		analog and digital instruments.			
L32					
L33		Block diagram of digital multimeter	T1, T2		
L34					
L35		Principle of measurement of I, V, C.	T1, T2		
L36			T1, T2		
L37		Accuracy and resolution of	T1, T2		
		measurement.			
L38		Impedance Bridges and Q-meter:	T1, T2		
		Blockdiagram and working	-		
		principles of RLC bridge.			
L39		Q-meter and its working operation.	T1, T2		
L40		Digital LCR bridge.	T1, T2		
L41	5	Vacuum Systems: Characteristics of	T1, T2		
		vacuum:			
L42		Gas law, Mean free path.	T1, T2		
L43		Application of vacuum.	T1, T2		
L44		Vacuum system-	T1, T2		
L45		Chamber, Mechanical pumps,	T1, T2		
L46		Diffusion pump	T1, T2		
L47		Turbo Modular pump,	T1, T2		
L48		Pumping speed	T1, T2	1	
L49		Pressure gauges (Pirani)	T1, T2	1 1	
L50		Penning, ionization gauge.	T1, T2		

Course code: PH 312 Course title: Computational Physics Lab Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0 T:0 P:4 C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE II Branch: PHYSICS Name of Teacher: Dr. Madhu Priya

Computational Physics Lab

L-T-P-C [0-0-4-2]

- 1. Working with basic Linux commands.
- 2. Defining variables and using arithmetic/logical operators in FORTRAN.
- 3. Using control statements in FORTRAN.
- 4. Exercises on usage of FORTRAN.
- 5. Preparing reports/articles with Latex.
- 6. Writing equations and incorporating figures in Latex.
- 7. Plotting data files and simple functions using Gnuplot.
- 8. Writing codes in Gnuplot.

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 313 Course title: Materials Science and Nanotechnology Lab Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0 T:0 P:4 C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE II Branch: PHYSICS Name of Teacher: Dr. Madhu Priya

Materials Science and Nanotechnology Lab

L-T-P-C [0-0-4-2]

- 1. Nano crystalline or ultra nano crystalline thin film preparation using Microwave Plasma Enhanced Chemical Vapor Deposition
- 2. Particle size analysis of broad nano peaks of XRD or GXRD.
- 3. Optical analysis of given nanocrystalline sample
- 4. Preparation of nano particles using ball milling
- 5. Measurement of nano hardness of given thin film
- 6. Raman analysis of given nano sample
- 7. Preparation of thin film using Anodic Vacuum Arc technique
- 8. Measurement of thickness of deposited thin film
- 9. Determination of the surface area of nano materials by the BET method Brunauer–Emmett–Teller (BET) technique.
- 10. 10. Meaurment of Contact angle of hydrophobic and hydrophilic nano thin film or powder.
- 11. Synthesis of ZnO nano particle using chemical route

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 313 Course title: EXPERIMENTAL TECHNIQUES LAB Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: L:0 T:0 P:4C:2 Class schedule per week: 0x Class: I.M.Sc. Semester / Level: PE II Branch: PHYSICS Name of Teacher:

EXPERIMENTAL TECHNIQUES LAB

L-T-P-C [0-0-4-2]

- 1. Determine output characteristics of a LVDT & measure displacement using LVDT
- 2. Measurement of Strain using Strain Gauge.
- 3. Measurement of level using capacitive transducer.
- 4. To study the characteristics of a Thermostat and determine its parameters.
- 5. Study of distance measurement using ultrasonic transducer.
- 6. Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75)
- 7. To measure the change in temperature of ambient using Resistance Temperature Device (RTD).
- 8. Create vacuum in a small chamber using a mechanical (rotary) pump and measure the chamber pressure using a pressure gauge.
- 9. Comparison of pickup of noise in cables of different types (co-axial, single shielded, double shielded, without shielding) of 2m length, understanding of importance of grounding using function generator of mV level & an oscilloscope.
- 10. To design and study the Sample and Hold Circuit.
- 11. Design and analyze the Clippers and Clampers circuits using junction diode
- 12. To plot the frequency response of a microphone.
- 13. To measure Q of a coil and influence of frequency, using a Q-meter.

Reference Books:

- 1. Electronic circuits: Handbook of design and applications, U. Tietze and C. Schenk, 2008, Springer
- 2. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1990, Mc-Graw Hill
- 3. Measurement, Instrumentation and Experiment Design in Physics & Engineering, M. Sayer and A. Mansingh, 2005, PHI Learning.

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

PE-III

COURSE INFORMATION SHEET

Course code: PH 317 Course title: Nonconventional Sources of Energy Pre-requisite(s): Student should have knowledge of Solid State Physics Co- requisite(s): Knowledge of Basic Mathematics Credits: L:3 T:0 P:0C:3 Class schedule per week: 3 Class: I.M.Sc. Semester / Level: III Branch: Physics Name of Teacher:

	Title: Nonconventional Sources of Energy							
Cours	se Obj	ectives : This course enables the students:						
	1.	To show the energy status in India and world, and environmental aspects of the conventional and non- conventional sources of energy.						
	2.	To illustrate the basics of solar thermal and solar cell.						
	3.	To explain the concepts of wind energy and tidal energy.						
	4.	To illustrate thebio mass, geo thermal energy and hydro energy.						
	5.	To explain the facts about thermoelectric generators, thermionic generators, magneto hydro dynamics generators, batteries and fuel cells.						

Course Outcomes : After the completion of this course, students will be able to:

		······································
ī	1.	Define the energy scenario in Indiaand World and the need of non-conventional energy sources.
	2.	Explain the various method for converting the solar radiation to heat and electricity.
	3.	Illustrate the generation of electricity by wind turbine and also explain the potential of tidal and ocean energies in the generation of power.
	4.	Explain the process of generation of bio energy and basic concepts of geo thermal energy and hydro energy.
	5.	Define the concepts of thermoelectric generators, thermionic generators, magneto hydro dynamics generators, batteries and fuel cells.

Code	Title: Nonconventional Sources of Energy	L-T-P-C
PH 317		[3-0-0-3]
Module-1	Energy Sources : World energy status, current energy scenario in India, environmental aspects of energy utilization, Classification of energy, Energy Resources, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean energy, Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. Energy conservation and storage.	10
Module-2	Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.	10
Module-3	Wind Energy: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Ocean Energy, Potential against Wind and Solar, Wave Characteristics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.	10
Module-4	Biomass energy, resources, conversion, gasification, liquefaction, production, energy farming, Geothermal Energy: Geothermal Resources, Geothermal Technologies. small hydro resources. Layout, water turbines, classifications, generators, status.	10
Module-5	Direct Energy conversion: Thermoelectric effects, generators, Thermionic generators, magneto hydro dynamics generators, Fuel cells, photovoltaic generators, electrostatic mechanical generators, Thin film solar cells, nuclear batteries.	10

Text books:

1. Solar cells: Operating principles, technology and system applications by Martin A Green, Prentice Hall Inc, Englewood Cliffs, NJ, USA, 1981.

Reference books:

- 2. Non conventional Energy Resources, B. H. Khan, Tata McGraw Hill, 2010
- 3. Non conventional energy Sources and Utilization, R. K. Rajput, S Chand Publ., 2014

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Quiz I and Quiz II	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks					
Quiz I					
Quiz II					

Indirect Assessment -

Student Feedback on Faculty

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Outcomes							
Course	1	2	3	4	5		
Objectives							
А	Н	L	L	L	L		
В	М	Н	Μ	Μ	L		
С	М	М	Н	L	L		
D	Μ	L	L	Н	L		
Е	М	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes								
Outcome #	a	b	с	d	e	f				
1	L	L	М	Н	L	Н				
2	М	Н	М	Н	Н	Н				
3	М	Н	М	Н	Н	Н				
4	М	Н	М	Н	Н	Н				
5	М	Н	М	Н	Н	Н				

	Mapping Between COs and Course Delivery (CD) methods								
СD	Course Delivery methods		Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2					
CD2	Tutorials/Assignments		CO2	CD1 and CD2					
CD3	Seminars		CO3	CD1 and CD2					
CD4	Mini projects/Projects		CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2					
CD6	Industrial/guest lectures		-	-					
CD7	Industrial visits/in-plant training		-	-					
CD8	Self- learning such as use of NPTEL materials and internets		-	-					
CD9	Simulation		-	-					

Lecture wise Lesson planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Method	Remark
k		e	No.		Book /	map	Content	ology	s by
No.	No.	Date			Refere	ped	covered	used	faculty
					nces				if any
	L1			World energy status, current	R1				
				energy scenario in India,					
				environmental aspects of					
				energy utilization,					
				Classification of energy,					
				Energy Resources, need of					
				renewable energy, non-					
				conventional energy sources.					
	L2,			An overview of developments	R 1				
	L3			in Offshore Wind Energy,					
				Tidal Energy, Wave energy					
				systems, Ocean energy,					
	L4,			Thermal Energy Conversion,	R1				
	L5			solar energy, biomass,					
				biochemical conversion,					
				biogas generation, geothermal					
				energy tidal energy,					
				Hydroelectricity. Energy					
				conservation and storage.					
	L6-			Solar energy, its importance,	R1, R2				
	L10			storage of solar energy, solar	T1				
				pond, non-convective solar					
				pond, applications of solar					
				pond and solar energy, solar					
				water heater, flat plate					
				collector, solar distillation,					
				solar cooker, solar green					
				houses, solar cell					

L11-	absorption air conditioning.R1, R2
L15	Need and characteristics of T1
	photovoltaic (PV) systems, PV
	models and equivalent circuits,
	and sun tracking systems
L16-	Wind Energy: FundamentalsR1, R2
L19	of Wind energy, Wind
	Turbines and different
	electrical machines in wind
	turbines, Power electronic
	interfaces, and grid
	interconnection topologies.
L20-	Ocean Energy, PotentialR1, R2
L22	against Wind and Solar, Wave
	Characteristics, Wave Energy
	Devices.
L23-	
L25	Statistics, Tide Energy
	Technologies, Ocean Thermal
	Energy, Osmotic Power,
	Ocean Bio-mass.
L26-	Biomass energy, resources, R1, R2
L30	conversion, gasification,
	liquefaction, production,
	energy farming,
L31-	Geothermal Energy:R1, R2
L33	Geothermal Resources,
	Geothermal Technologies.
L34,	small hydro resources. Layout, R1, R2
L35	water turbines, classifications,
	generators, status.
L36-	Direct Energy conversion:R1, R2
L38	Thermoelectric effects,
	generators, Thermionic
	generators, magneto hydro
	cells D1 D2
L39,	photovoltaic generators,R1, R2
L40	electrostatic mechanical
	generators, Thin film solar
	cells, nuclear batteries.

Course code: PH 318 Course title: Introduction to Nuclear and Particle Physics Pre-requisite(s): Intermediate Physics and Mathematics Co- requisite(s): Credits: 3 L:3 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE III Branch: PHYSICS Name of Teacher:

Course objectives Students will try to learn;

Title: Introduction to Nuclear and Particle Physics

	he fundamental principles governing nuclear and particle physics and have a working knowledge of their pplication to real life problems.	•							
2. A	About the subatomic physics, including radioactivity, experimental techniques, nuclear structure, particle interactions, and particle collisions and decays.								
3. S	Skills needed to explain how radiation detector function and use for the measurement of radioactivity.								
4. A	bout the different types of nuclear reactors in use and how they produce nuclear energy for the useful put	rposes.							
5. C	lassification of elementary particles and their decay modes.								
Cours	se outcomes								
	successful completion of the course student will be able to;								
	Inderstand the fundamental principles and concepts governing classical nuclear and particle physics and hyperbolic knowledge of their application to real -life problems.	nave a							
2. E	xplain why nuclear radiations are emitted by radionuclides with very heavy atoms, and understand the na roperties of the radiations.	ature and							
	xplain how charged and uncharged ionizing radiations interact with matter and the effects of the interacti	ons on the							
	naterial through which they traverse.	ons on the							
	lassify and explain the function of different nuclear reactors.								
	lassify elementary particles and their possible decay modes								
Code	Title: Introduction to Nuclear and Particle Physics	L-T-P-C							
PH 318		[3-0-0-3]							
Module-1	General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts	20							
	about mass, radii, charge density (matter density), binding energy, average binding energy and its								
	variation with mass number, main features of binding energy versus mass number curve, N/A plot,								
	angular momentum, parity, magnetic moment, electric moments, nuclear excites states.								
	Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its								
	various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model								
	(degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell								
	structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual								
	interaction, concept of nuclear force.	1.7							
Module-2	Radioactivity decay: (a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow	15							
	factor, Geiger Nuttall law, α -decay spectroscopy. (b) α -decay: energy kinematics for α -decay,								
	positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission &								
	kinematics, internal conversion.								
	Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction,								
Module-3	Coulomb scattering (Rutherford scattering). Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula),	12							
Module-5	energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric	12							
	effect, Compton scattering, pair production, neutron interaction with matter.								
	Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for								
	ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of								
	photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon								
	detection (concept of charge carrier and mobility), neutron detector.								
Module-4	Particle Accelerators: Accelerator facility available in India: Van-de Graaff generator	5							

	(Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.
Module-5	Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries 8 and
	Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number,
	Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.
	Text Books:
а	a. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
t	c. Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
С	2. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
Ċ	d. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
	Reference Books
	1. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
	2. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

<u>procedure</u> Direct rissessment					
Assessment Tool	% Contribution during CO Assessment				
Mid Sem Examination Marks	25				
End Sem Examination Marks	50				
Quizzes	10+10				
Teacher's assessment	5				

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark		
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes					
Course Objectives	1	2	3	4	5
А	Н	Н	Μ	Н	Н
В	М	Н	Н	М	М
С	М	Η	Η	М	М
D	М	Η	Η	Н	Μ
E	М	Μ	Η	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	Н	Н	Н	Н	Н
2	М	Н	Н	Н	Н	Н
3	Н	Н	М	Н	Н	Н
4	М	М	Н	Н	Н	Н
5	М	Н	Н	Н	Н	Н

	Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2		
CD2	Tutorials/Assignments	CO2	CD1 and CD2		
CD3	Seminars	CO3	CD1 and CD2		
CD4	Mini projects/Projects	CO4	CD1 and CD2		
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2		
CD6	Industrial/guest lectures	-	-		
CD7	Industrial visits/in-plant training	-	-		
CD8	Self- learning such as use of NPTEL materials and internets	-	-		
CD9	Simulation	-	-		

Lecture wise Lesson planning Details.

Week	Lect.	Tentat	Ch	Topics to be covered	Text	COs	Actual	Methodolo	Remarks
No.	No.	ive	No.		Book /	mappe	Content	gy	by faculty
		Date			Refere	d	covered	used	if any
					nces				-
	1-5		1.	quantitative facts about mass, radii,	T1, T2			PPT Digi	
				charge density (matter density),				Class/Chock-	
				binding energy, average binding				Board	
				energy and its variation with mass					
				number					
	6-10			main features of binding energy	T1, T2			PPT Digi	
				versus mass number curve, N/A plot,				Class/Chock -Board	
				angular momentum, parity, magnetic				Doard	
				moment, electric moments, nuclear					
	11 17			excites states.	T1 T2				
	11-15			Liquid drop model approach, semi empirical mass formula and				PPT Digi Class/Chock	
				significance of its various terms,				-Board	
				condition of nuclear stability, two					
				nucleon separation energies, Fermi					
				gas model (degenerate fermion gas,					
				nuclear symmetry potential in Fermi					
				gas)					
	16-20			evidence for nuclear shell structure,	T1, T2			PPT Digi	
				nuclear magic numbers, basic	,			Class/Chock	
				assumption of shell model, concept				-Board	
				of mean field, residual interaction,					
				concept of nuclear force.					
	21-25		2.	(a) Alpha decay: basics of α -decay	T1, T2			PPT Digi	
				processes, theory of α - emission,				Class/Chock	
				Gamow factor, Geiger Nuttall law, a-				-Board	
				decay spectroscopy. (b) α -decay:					

	energy kinematics for α -decay, positron emission		
26-30	electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.	T1, T2	PPT Digi Class/Chock -Board
	Nuclear Reactions: Types of Reactions,		
31-35	Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).		PPT Digi Class/Chock -Board
36-37 3.	Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter		PPT Digi Class/Chock -Board
38-42	photoelectric effect, Compton scattering, pair production, neutron interaction with matter. Gas detectors: estimation of electric field		PPT Digi Class/Chock -Board
43-47	mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.		PPT Digi Class/Chock -Board
48-52 4.	Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.	T4, R1	PPT Digi Class/Chock -Board
53-55 5.	Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum	T4, R2	PPT Digi Class/Chock -Board
56-60	angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons	T4, R2	PPT Digi Class/Chock -Board

Course code: PH 319 Course title: Nuclear Hazard and Waste Managements Pre-requisite(s): Intermediate Physics Co- requisite(s): Modern Physics Credits: 3L:3 T:0 P:0 Class schedule per week: 5 Class: I.M.Sc. Semester / Level: PE III Branch: PHYSICS Name of Teacher:

Title: Nuclear Hazard and Waste Managements

Course objectives

This course will describe:

- 1. What must be considered and achieved to satisfy the International Atomic Energy Agency (IAEA) Nuclear Energy Basic Principles in the area of radioactive waste management.
- 2. A framework for the design of programmes relating to radioactive waste management technology
- 3. A basis for the development of guidelines on radioactive waste management decommissioning and environmental remediation.

Course outcomes

After successful completion of the course student will be able to;

- 1. Know about the rules of IEAE and basic principles of Nuclear Energy
- 2. Get some knowledge relating to radioactive waste management technology
- 3. Understand guidelines on radioactive waste management decommissioning and environmental remediation

Code	Title: Nuclear Hazard and Waste Managements	L-T-P-C
PH 319		[3-0-0-3]
Module-1	Radiation interaction fundamentals, Alpha particle, Beta particle, Gamma ray, Table of nuclides	12
	Half-life., Radioactive decay.	
	Radioactive waste, Classification of Radioactive Wastes, High-level Waste (HLW), Intermediate-	
	level Waste (ILW), Low-level Waste (LLW).	
	Who is Responsible for Radioactive Wastes, Pertinent Legislation in the US Regarding Radioactive	
	Hazards and Wastes: Examples.	
Module-2	Splitting the Atom for Energy, Status of Nuclear Power World-wide, Commercial Nuclear Power	12
	Generation, Nature of HLW as a Function of Time, Fast Reactors, The Nuclear Fuel Cycle, Options	
	in the Fuel Cycle that Impact Waste Management, Once-Through Fuel Option, The Reprocessing	
	Fuel Cycle (RFC), Advanced Fuel Cycle (AFC), Important Characteristics of Actinides.	
Module-3	Separations Technologies for the Nuclear Fuel Cycle, PUREX Process, DIAMEX Process, TRUEX	12
	Process, TRAMEX Process, TALSPEAK Process, Stereospecific Extractants, Non-aqueous	
	Processes, Volatility Processes, Molten Salt Processes, Electrochemical Separations using Non-	
	Aqueous Processes, Advanced Fuel Cycle Concepts and Partitioning and Transmutation (P&T).	
Module-4	Transmutation of Minor Actinides, Transmutation of the Long-lived Fission Products, Partitioning	12
	Schemes for the Minor Actinides and Long-lived Fission Products, Aqueous Chemical Processing,	
	Improved PUREX Process - Removal of Np, I, and Tc, UREX and UREX+ Processes, Non-	
	Aqueous Chemical Processing, Transmutation Devices for the Advanced Fuel Cycle.	
Module-5	Strategies for Implementation of an Advanced Fuel Cycle, Generation IV Nuclear Energy Systems,	12
	Advanced Fuel Cycle Development to Support Generation IV Energy Systems, The Advanced Fuel	
	Cycle Initiative (AFCI), Areas of Scientific Concerns in the AFCI, Future of P&T	
	Radioactive Waste Regulations, Nuclear Waste Policy Act	
Text Book		
	and Human Induced Hazards and Environmental Waste Management Volume 2 e-ISBN: 978-1-8482	6-300-0
	8-1-84826-750-3 No. of Pages: 370	
Ref. book	: generated Padioactive Westersfor a Nuclear Power Plant Assident Oasd 2016 nos no. 7305 r	

R1: Management of Radioactive Waste after a Nuclear Power Plant Accident Oecd 2016 nea no. 7305 nuclear energy agency organisation for economic co-Operation and development.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark		
Quiz II				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	С	d	e	f
1	Н	Н	Н	L	М	L
2	М	Н	Н	L	L	L
3	Н	М	М	М	М	М
4	М	Н	М	М	Н	М
5	Н	Н	Н	L	Н	L

Course Outcome #		Course Objectives					
	А	В	С	D	E		
1	Н	М	М	М	М		
2	L	Н	L	L	М		
3	L	М	Н	М	М		
4	Н	L	Н	Н	L		
5	Н	М	М	L	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Lecture wise Lesson planning Details

Wee	kLect.	Tentati	Modul	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	ve Date	e. No.		Book / Refere nces	mapped	Content covered		by faculty i any
1	L1		Ι	Radiation interaction fundamentals, Alpha particle, Beta particle,	T1			PPT Digi Class/Chal k-Board	
1	L2			Gamma ray, Table of nuclides Half-life.,	T1			PPT Digi Class/Chal k-Board	
1	L3-L4			Radioactive decay. Radioactive waste,	T1			PPT Digi Class/Chal k-Board	
2	L5			Classification of Radioactive Wastes, High-level Waste (HLW), Intermediate-level Waste (ILW),	T1			PPT Digi Class/Chal k-Board	
2	L6-L8			Low-level Waste (LLW).Who is Responsible for Radioactive Wastes,	T1			PPT Digi Class/Chal k-Board	
2	L9-L10			Pertinent Legislation in the US Regarding Radioactive Hazards and Wastes: Examples.	T1			PPT Digi Class/Chal k-Board	
3	L11- L13			Splitting the Atom for Energy, Status of Nuclear Power World- wide	T1			PPT Digi Class/Chal k-Board	
3	L14- L16			Commercial Nuclear Power Generation, Nature of HLW as a Function of Time	T1			PPT Digi Class/Chal k-Board	
3	L17- L18			Fast Reactors, The Nuclear Fuel Cycle, Options in the Fuel Cycle that Impact Waste Management, Once-Through Fuel Option	T1			PPT Digi Class/Chal k-Board	
4	L19- L20		II	The Reprocessing Fuel Cycle (RFC), Advanced Fuel Cycle (AFC), Important Characteristics of				PPT Digi Class/Chal k-Board	

		Actinides		
		rectifices		
4	L21-	Separations Technologies for the	T1	PPT Digi
	22	Nuclear Fuel Cycle		Class/Chal
				k-Board
5	L23-	PUREX Process, DIAMEX	T1	PPT Digi
	24	Process, TRUEX Process		Class/Chal
				k-Board
5	L25-	Non-aqueous Processes, Volatility	T1	PPT Digi
	L26	Processes, Molten Salt Processes		Class/Chal
				k-Board
6	L27-	Electrochemical Separations using	T1	PPT Digi
	L28	Non-Aqueous Processes		Class/Chal
			T	k-Board
6-7	L29-	Advanced Fuel Cycle Concepts and	T1	PPT Digi
	L30	Partitioning and Transmutation		Class/Chal
		(P&T).		k-Board
	L31-	Transmutation of Minor Actinides,	T1	PPT Digi
	L32	Transmutation of the Long-lived		Class/Chal
		Fission Products		k-Board
	L33-	Partitioning Schemes for the Minor	T1	PPT Digi
	L35	Actinides and Long-lived Fission		Class/Chal
		Products		k-Board
	L36-	Aqueous Chemical Processing,	T1	PPT Digi
	L38	Improved PUREX Process -		Class/Chal
		Removal of Np, I, and Tc, UREX		k-Board
		and UREX+ Processes		
	L39-	Non-Aqueous Chemical Processing,	T1	PPT Digi
	L40	Transmutation Devices for the		Class/Chal
		Advanced Fuel Cycle.		k-Board
	L41-	Strategies for Implementation of an	T1	PPT Digi
	L43	Advanced Fuel Cycle, Generation		Class/Chal
		IV Nuclear Energy Systems		k-Board
	L44-	Advanced Fuel Cycle Development	T1	PPT Digi
	L44- L46	• •		Class/Chal
		to Support Generation IV Energy Systems		k-Board
	L47-	•	T1	
	L47- L48	Advanced Fuel Cycle Initiative (AFCI), Areas of Scientific		PPT Digi Class/Chal
	L40	Concerns in the AFCI		k-Board
	L 40		T1	
	L49-	Future of P&T	T1	PPT Digi
	L50	Radioactive Waste Regulations, Nuclear Waste Policy Act.		Class/Chal k-Board
		Inucical waster olicy Act.		K-DUalu

PE-IV

COURSE INFORMATION SHEET

Course code: PH 320 Course title: Atmospheric Physics Pre-requisite(s): Co- requisite(s): Intermediate Physics Credits: 3 L:3T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE IV Branch: PHYSICS Name of Teacher:

Code PH 320	Title: Atmospheric PhysicsL-T-P-C[3-0-0-3]	
1.	To explains the various component of the Earth system specially atmosphere and to understand the physics associated with atmospheric phenomenon.	
2.	To understand the dynamics associated with the atmospheric motion	
3.	To appreciate the basic laws associated with the solar radiation and remote sensing	
4.	To understand the basic instruments based on the remote sensing	
5.	To enlighten atmospheric aerosols and related laws to govern its role in atmosphere	
Cours	e Outcomes: After the completion of this course, students will	
1.	Be able to explain thermal structure of earth, composition of atmosphere and various atmospheric phenomenon	n
2.	Be able to explain the dynamics of atmospheric motion	
3.	Be able to appreciate the laws of atmospheric radiation balance and basic laws of remote sensing.	
4.	Get familiar with instruments based on remote sensing	
5.	Acquire knowledge of atmospheric aerosols and its impact	
Module-1 Module-2	 General features of Earth's atmosphere: Thermal structure of the Earth's Atmosphere, Ionosphere, Composition of atmosphere, Hydrostatic equation, Potential temperature, Atmospheric Thermodynamics, Greenhouse effect and effective temperature of Earth, Local winds, monsoons, fogs, clouds, precipitation, Atmospheric boundary layer, Sea breeze and land breeze. Instruments for meteorological observations Atmospheric Dynamics: Scale analysis, Fundamental forces, Basic conservation laws, The Vectorial form of the momentum equation in rotating coordinate system, scale analysis of equation of motion, Applications of the basic equations, Circulations and vorticity 	8
Module-3	Atmospheric radiation and remote sensing Fundamental laws of radiation: Planks law, Stefan's Boltzmann law, Wien's displacement law, Kirchhoff's law; Spectral distribution of solar radiation and atmosphere interaction, path radiance, turbulance, cloud effect; Outgoing long-wave radiation, Radiation budget, Atmospheric windows, Emissivity, Absorption spectra of atmospheric gases, optical depth, atmospheric correction techniques for remote sensing data, SST extraction	8
Module-4	Atmospheric Radar and Lidar: Radar equation and return signal, Signal processing and detection, Various type of atmospheric radars, Application of radars to study atmospheric phenomena, Lidar and its applications, Application of Lidar to study atmospheric phenomenon. Data analysis tools and techniques	8
Module-5	Atmospheric Aerosols: Classification and properties of aerosols, Production and removal mechanisms, Concentrations and size distribution, Absorption and scattering of solar radiation, Rayleigh scattering and Mie scattering, Lambert's and Beer's laws, Radiative and health effects, Air pollution/pollutants, Effect of boundary layer dynamics on air pollutants	8
T1: A Unive R2: A Spyro	ference Books: tmospheric Science : An Introductory Survey ,Second Edition -John M.Wallace and Peter V. Hobbs, ersity of Washington tmospheric chemistry and physics: from air pollution to climate change, Second edition- John H. Seinfeld, is N. Pandis, a wiley-interscience publication, john wiley & sons, inc. n Introduction to dynamic meteorology – James R Holton: Academic Press, 2004	

R3: An Introduction to dynamic meteorology - James R Holton; Academic Press, 2004

R4: Radar for meteorological and atmospheric observations – S. Fukao and K. Hamazu, Springer Japan, 2014 R5: Fundamentals of Remote Sensing, George Joseph and Jeganathan, c. (2017). 3rd Edition, Universities Press, ISBN 978 93 86235 46 6

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	Y
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment						
Mid Sem Examination Marks	25						
End Sem Examination Marks	50						
Quiz	10+10						
Teacher's assessment	5						

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark		\checkmark	\checkmark
Quiz I				\checkmark	
Quiz II					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	Н	Н	Н	Μ
В	Н	Н	Μ	L	Μ
С	М	L	Н	Н	Μ
D	Н	М	Н	Н	Н
Е	М	М	М	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
Outcome #	1 2 3 4 5						
1	Н	Н	М	М	Н	Н	
2	Н	Н	М	М	Н	Н	
3	Н	Н	М	М	Н	Н	
4	Н	Н	М	М	Н	Н	
5	Н	Н	М	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	CourseDelivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures	-	-					
CD7	Industrial visits/in-plant training	-	-					
	Self- learning such as use of NPTEL materials and							
CD8	internets	-	-					
CD9	Simulation	-	-					

Lecture wise Lesson planning Details.

T1: Atmospheric Science : An Introductory Survey ,Second Edition -John M.Wallace and Peter V. Hobbs, University of Washington

R1: Atmospheric chemistry and physics: from air pollution to climate change, Second edition- John H. Seinfeld, Spyros N. Pandis, a wiley-interscience publication, john wiley & sons, inc.

R2: An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004

R3: Radar for meteorological and atmospheric observations – S. Fukao and K. Hamazu, Springer Japan, 2014 R4: Fundamentals of Remote Sensing, George Joseph and Jeganathan, c. (2017). 3rd Edition, Universities Press, ISBN 978 93 86235 46 6

Week	Lect	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Method	Remarks	by
No.	No.	Date	No		Book /	mapped	Content	ology	faculty	if
					Refere		covered	used	any	
					nces				-	
1	L1-			Thermal structure of the Earth's	T1,R2					
	L2			Atmosphere, Ionosphere,	,					
				Composition of atmosphere,	,					
				Hydrostatic equation, Potential	-					
				temperature, Atmospheric	;					
				Thermodynamics,						
	L3-			Greenhouse effect and effective	T1,R2					
	L4			temperature of Earth, Local	-					
				winds, monsoons, fogs, clouds,						
				precipitation,						
	L5-			Atmospheric boundary layer,	T1					
	L6			Sea breeze and land breeze.						
	L7-			Instruments for meteorological	T1,R3,					
	L8			observations	R4					
	L9-			Scale analysis, Fundamental	R2					
	L12			forces, Basic conservation laws,						
				The Vectorial form of the						
				momentum equation in rotating						
				coordinate system,						
	L13-			scale analysis of equation of	R2					
	L16			motion, Applications of the						
				basic equations, Circulations	5					
				and vorticity						
	L17-			Fundamental laws of radiation:	R1,R4					
	L20			Planks law, Stefan's Boltzmann						

r	
	law, Wien's displacement law,
	Kirchhoff's law; Spectral
	distribution of solar radiation
	and atmosphere interaction, path
	radiance, turbulance, cloud
	effect; Outgoing long-wave
	radiation,
L21-	Radiation budget, Atmospheric R1,R4
L24	windows, Emissivity,
	Absorption spectra of
	atmospheric gases, optical
	depth, atmospheric correction
	techniques for remote sensing
	data, SST extraction
L25-	Radar equation and return R3, R4
L28	signal, Signal processing and
	detection, Various type of
	atmospheric radars, Application
	of radars to study atmospheric
	phenomena,
L31-	Lidar and its applications, R3, R4
L32	Application of Lidar to study
	atmospheric phenomenon. Data
	analysis tools and techniques
L33-	Classification and properties of T1,R1
L36	aerosols, Production and
	removal mechanisms,
	Concentrations and size
	distribution, Absorption and
	scattering of solar radiation,
	Rayleigh scattering and Mie
	scattering, Lambert's and Beer's
	laws,
L37-	Radiative and health effects, Air T1,R1
L40	pollution/pollutants, Effect of
	boundary layer dynamics on air
	pollutants

Course code: PH 321 Course title: Advanced Experimental Techniques Pre-requisite(s): Co- requisite(s): Intermediate Physics Credits: L:3T:0P:0C:3 Class schedule per week: Class: I.M.Sc. Semester / Level: PE IV Branch: PHYSICS Name of Teacher:

Code	Title: Advanced Experimental Techniques	T-P-C			
PH 321	[3-	0-0-3]			
2. \$ 3. 1 4. 1	To provide knowledge of various types of experimental techniques used to analyze all types of materials. Students learn to analyze gaseous, liquid, amorphous and crystalline materials. They learn to analyze elemental composition, thickness of the thin film, elemental depth profiling, etc. They will know how to generate vacuum to prepare different types of materials. To understand the use and applications of vacuum systems				
Cou	rse Outcomes:				
1. 5	tudent will be able to judge that which techniques will be useful to analyze the given materials.				
2.	They can design novel experiments to take up scientific problems.				
3. 1	They will be able to collect, critically analyze and interpreted the data.				
	They can generate good quality of data and will be able to take up the industrial problems of any field.				
	tudents learn about basics of vacuum and various pumps and their applications in R&D.	i			
Module-1	X-ray Diffraction Methods:	10			
	Classification of crystal system, Bragg's law and Laue conditions, Powder methods, crystal size analysis,				
	Rietvold method of structural analysis, X-ray fluorescence spectroscopy, applications of emission spectra				
	for compounds and alloys, Applications of absorption spectra for solid solutions and transitional metal				
N 1 1 0	compounds, Neutron spectroscopy. X-Ray Reflectivity	15			
Module-2					
	Optical microscopy, metallurgical microscope, TEM, SEM and AFM, Atomic absorption spectrophotometer and its application to environmental analysis, UV-visible spectroscopy and its				
	application, IR-spectroscopy and its application, AES, XPS, Introduction to RBS, SIMS, and its				
	application, Respectoscopy and its application, res, ris, introduction to RDS, shifts, and its applications. Basic principles of ESR, Instrumentations and applications, Principle of Mossbauer				
	spectroscopy, Isomer shift, Quadruple splitting and hyperfine interaction, applications-in determination				
	of phases and diffusion studies.				
Module-3	Thermochemical analysis	5			
	Thermo analytical techniques, Instrumentation and applications of TGA, DTA, DSC.				
Module-4	Electrochemical Techniques	10			
	Electrochemical Instrumentation, Coulometry, polarography, cyclic voltametry, application to oxidation-				
	reduction reaction, Principle of Corrosion, types and prevention				
Module-5	Vacuum Technology & Thin film Deposition Technique	10			
	Application to Vacuum Technology, Types of vacuum pumps, different technique of thin film deposition				
	CVD, PVD, MBE, MOCVD				
	rences:				
	lid State Physics- Structure and Properties of Materials M. A. Wahab, Narosa 2015.				
	ectroscopy, Vol. I, II and III, ed. By Straughan and Walker, John Wiley.				
	rface Analysis – The Principal Techniques, Edited by J. C. Vickerman, John Willey & Sons				
	trumental Methods of Chemical Analysis By G. W. Ewing, Mcgraw –Hill Book Company				
J. V8	cuum Science and Technology by V.V. Rao, T.B. Gosh, K.L. Chopra, Allied Publishers, 17-Oct-1998				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Y
Mini projects/Projects	Y
Laboratory experiments/teaching aids	Y
Industrial/guest lectures	Y
Industrial visits/in-plant training	Y
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Y

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teacher's assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark	\checkmark		
End Sem Examination Marks		\checkmark		\checkmark	\checkmark
Quiz I					
Quiz II					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	Н	Н	Н	М
В	Н	Н	М	L	М
С	М	L	Н	Н	М
D	Н	Μ	Н	Н	Н
Е	Н	Μ	М	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes						
Outcome #	1	2	3	4	5	6		
1	Н	Н	М	М	Н	Н		
2	Н	Н	М	М	Н	Н		
3	Н	Н	М	М	Н	Н		
4	Н	Н	М	М	Н	Н		
5	Н	Н	М	М	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	CourseDelivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures	-	-					
CD7	Industrial visits/in-plant training	-	-					
	Self- learning such as use of NPTEL materials and							
CD8	internets	-	-					
CD9	Simulation	-	-					

Lecture wise Lesson planning Details.

T1: Atmospheric Science : An Introductory Survey ,Second Edition -John M.Wallace and Peter V. Hobbs, University of Washington

R1: Atmospheric chemistry and physics: from air pollution to climate change, Second edition- John H. Seinfeld, Spyros N. Pandis, a wiley-interscience publication, john wiley & sons, inc.

R2: An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004

R3: Radar for meteorological and atmospheric observations – S. Fukao and K. Hamazu, Springer Japan, 2014

R4: Fundamentals of Remote Sensing, George Joseph and Jeganathan, c. (2017). 3rd Edition, Universities Press, ISBN 978 93 86235 46 6

Wee	Lect	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Method	Remarks
k	No.	Date	No		Book /	mapped	Content	ology	by
No.					Refere		covered	used	faculty if
					nces				any
3	L1-			Module I	R1				
	L10								
3	L11-			Module 2	R2,34,5				
	L25								
1	L26-			Module 3	R2,3,4,5				
	L30								
2	L31-			Module 4	R1,4				
	L40								
3	L41-			Module 5	R5				
	50								

Course code: PH 324 Course title: Nonconventional Sources of Energy Lab Pre-requisite(s): Student should have knowledge of Solid State Physics Co- requisite(s): Knowledge of Basic Mathematics Credits: L:0 T:0 P:4C:2 Class schedule per week: 3 Class: I.M.Sc. Semester / Level: III Branch: Physics Name of Teacher:

	Nonconventional Sources of Energy Lab
	L-T-P-C
	[0-0-4-2]
Li	st of Experiments:
1.	Measurement of solar cell characteristic of wafer based Si solar cell
2.	Fabrication of DSSC and Measurement of solar cell characteristic
3.	Conversion of vibration to voltage using piezoelectric materials
4.	Conversion of thermal energy into voltage using thermocouple
5.	Effect of Load on Wind Turbine Output by using wind experiment kit
6.	Solar thermal energy convertor: Solar water heater efficiency, Solar room heater efficiency,
	solar cooker max temp. determination
7.	Solar thermal energy convertor: Solar water heater efficiency, Solar room heater efficiency,
	solar cooker max temp. determination Parabolic type solar collector
8.	Concentrating type solar collector (Reflector or solar Scheffler dish by tracking system).
9.	Fuel cells efficiency determination
10.	Light efficiency measurement and comparison of sources (like: incandescent bulb, tube, CFL,
	LED, etc)
11.	Wind mill blade design parameters and torque relationship
12.	Experiments in Power Electronics for interconnection of various subsystems:
	dc-dc convertors, ac-dc / dc to ac convertors for PV systems, wind generators, etc.
10	
13.	Data acquisition for obtaining parameters of water waves

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Course code: PH 325 Course title: Atmospheric Physics Lab Pre-requisite(s): Intermediate Physics Co- requisite(s): Credits: L:0 T:0 P:4C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE IV Branch: PHYSICS Name of Teacher:

Atmospheric Physics Lab

L-T-P-C [0-0-4-2]

- 1. Monitoring and estimation of Respirable Suspended Particulate Matter in the ambient air by respirable dust sampler.
- 2. Monitoring and estimation of NO_x in the ambient air by NO_x analyzer.
- 3. Monitoring and estimation of SO_x in the ambient air by High Volume Sampler.
- 4. Monitoring and estimation of CO in the ambient air by CO analyzer.
- 5. Monitoring and analysis of CO_2 in the ambient air by CO_2 monitor.
- 6. Statistical analysis for one month data of atmospheric parameters (Temperature, Relative humidity, pressure, wind speed)
- 7. Computational analysis for few months data of atmospheric parameters i.e. Temperature, Relative humidity, pressure, wind speed (find daily variation, diurnal variation, wind rose)
- 8. Estimation and analysis of aerosol optical with satellite data
- 9. Estimation of analysis of aerosol related properties from AERONET data of any site
- 10. Estimation and analysis of Sea surface temperature with satellite data
- 11. Estimation and analysis of Outgoing longwave radiation with satellite data
- 12. Calculation of color temperature by Planck law.

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Course code: PH 326 Course title: Advanced Experimental Techniques Lab Pre-requisite(s): Co- requisite(s): Intermediate Physics Credits: L:0 T:0 P:4C:2 Class schedule per week: Class: I.M.Sc. Semester / Level: PE IV Branch: PHYSICS Name of Teacher:

Advanced Experimental Techniques Lab

L-T-P-C [0-0-4-2]

- 1. To find corrosion rate using tafel plot
- 2. To do plasma nitriding coating using nitriding system
- 3. To understand the working of magnetron coating unit and deposit thin film.
- 4. To deposit nanocrystalline coating
- 5. To deposit hard coating and determine hardness of thin film
- 6. To deposit thin film using anodic vacuum arc coating
- 7. Determination of elemental and structural analysis using EDX and SEM
- 8. structural and particle size determination using XRD
- 9. Band gap determination using UV-visible spectrometer
- 10. To study the polarizattion vs electric field of ferroelectric materials
- 11. Phase transition study of barium titanate

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

I.M.Sc. VII / M.Sc. I Semester

COURSE INFORMATION SHEET

Course code: PH 401 Course title: Mathematical Methods in Physics Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 3L:3 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS

Name of Teacher:

Coc	de: 401	Title: Mathematical Methods in Physics	L-T-P-C [3-0-0-3]					
Co	ourse	Objectives: The objectives of the course are						
Γ	1.	I. To train the students to solve problems related to complex variables which contain real a						
		parts.						
Ī	2.	To teach the use of different special functions in solving physical problems.						
Ī	3.	To provide an understanding of Integral Transform and Probability.						
Ī	4.	To teach about an understanding of Tensors.						
ľ	5.	To give the basic knowledge of Group theory.						
Co	ourse O	utcomes: After completion of the course students should be able to						
	1.	The students will be able to solve different physical problems which contain complex v						
	2.	They will be familiarized with different special functions like Associated Legendre Pol	ynomials,					
		Polynomials, etc. and their solutions in solving different physical problems.						
	3.	This module will be helpful to obtain knowledge of Fourier and Laplace Transforms in	÷					
		different problems of Mechanics and Electronics etc. The module will also impart some	e basic					
		knowledge of Probability.						
	4.	Students will be able to learn about the concept and uses of Tensors.						
	5.	Useful to obtain the basic knowledge of Group theory and its applications.						
			-					
M	odule-1	Complex variables	[6]					
		Analytic functions, Cauchy-Riemann conditions, Cauchy's Integral theorem and						
		Integral formula, Laurent expansion, Singularities, Evaluation of residues,						
М	odule-2	Residue theorem. Special Functions	[8]					
111	odule-2	Associated Legendre Polynomials, Recurrence relations, Rodrigue's formula,	٥					
		Orthogonality of Legendre Polynomials, Hermite Polynomials, Green's function.						
M	odule-3	Integral Transform	[10]					
1,1	ouule 5	Laplace Transform, Inversion, Applications of Laplace Transform; Fourier						
		Transform, Inversion, Fourier Sine and Cosine transform, Convolution Theorem,						
		Fourier transforms of derivatives, Applications of Fourier Transform.						
		Probability						
		Elementary probability theory, simple properties, random variables, binomial and						
		normal distribution, centre limit theorem						
M	odule-4	Tensors	[8]					
		Covariant, Contravariant and Mixed tensors, Tensors of rank 2, Algebra of						
		tensors: Sum, Difference & Product of Two Tensors, Contraction, Quotient Law						
		of Tensors, Pseudotensors, dual tensors, Tensors in General Coordinates, Tensor						
		derivative operators, Jacobians, Inverse of Jacobians. Diad and Triad.						
M	odule-5	Introductory group theory	[8]					

	Review of sets, Mapping and Binary Operations, Relation, Types of Relations, Groups: Elementary properties of groups, uniqueness of solution, Subgroup,			
	Centre of a group, Co-sets of a subgroup: SU(2), O(3).			
Text books				
T1: Hans J. Weber George B. Arfken, Mathematical Methods for Physicists, (2005), Academic Press.				
T2: L. A. Pipes, Applied Mathematics for Engineering and Physics (1958) McGraw-Hill.				

T3: Elements of Group Theory for Physicists by A. W. Joshi, 1997, John Wiley.

Reference books:

R1: Charlie Harper, Introduction to Mathematical Physics (2003), Prentice-Hall India.

R2: Erwin Kreyszig, Advanced Engineering Mathematics (1999), Wiley.

R3: N. P. Bali, A. Saxena and N.C. S. W. Iyengar, A Text Book of Engineering Mathematics (1996), Laxmi Publications (P) Ltd.

R4: Group Theory and its Applications to Physical Problems by Morton Hamermesh, 1989, Dover

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Υ
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Direct Assessment					
Assessment Tool	% Contribution during CO Assessment				
Assignment	10				
Seminar before a commitee	10				
Three Quizes	30 (10+10+10)				
End Sem Examination Marks	50				

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes				
	a	b	с	d	e
1	Н	L	L	L	L
2	L	Н	L	L	L
3	L	L	Н	L	L
4	L	L	L	Н	L
5	L	L	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	Н	Н	М	Н	Н
2	Н	Н	Н	М	Н	Н
3	Н	Н	Н	М	Н	Н
4	Н	Н	Н	М	Н	Н
5	Η	Н	Η	М	Η	Н

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	Lect.	Tentati	Ch.	Topics to be covered	Text	COs	Actual	Methodo	Remarks
No.	No.	ve	No.		Book /	mappe	Content	logy	by
		Date			Refere	d	covered	used	faculty if
					nces				any
1-2	L1-L6			Analytic functions, Cauchy-	T1, R1	1		PPT	
				Riemann conditions, Cauchy's	5			Digi	
				Integral theorem and Integral	L			Class/	
				formula, Laurent expansion,	,			Chock	
				Singularities, Evaluation of	2			-Board	
				residues, Residue theorem.				Doura	
3-5	L7-			Associated Legendre Polynomials		2			
	L14			Recurrence relations, Rodrigue's	5 T2, R2				
				formula, Orthogonality of Legendre					
				Polynomials, Hermite Polynomials,	,				
				Green's function.					
5-7	L15-			Laplace Transform, Inversion,		3			
	L20			Applications of Laplace					
				Transform; Fourier Transform,	,				
				Inversion, Fourier Sine and Cosine					
				transform, Convolution Theorem,					
				Fourier transforms of derivatives,	,				
	X 0.1			Applications of Fourier Transform.					
7-8	L21-				T2, R2	3			
	L24			simple properties, random					
				variables, binomial and normal	L				
0.11				distribution, central limit theorem		<u> </u>			
9-11	L25-				T1, T2	4			
	L32			Mixed tensors, Tensors of rank 2,					

	Algebra of tensors:Sum,Difference & Product of TwoTensors, Contraction, QuotientLaw of Tensors, Pseudo tensors,dual tensors, Tensors in GeneralCoordinates, Tensor derivativeoperators, Jacobians, Inverse ofJacobians. Diad and Triad.
11-14	Review of sets, Mapping and Binary Operations, Relation, Types of Relations, Groups: Elementary properties of groups, uniqueness of solution, Subgroup, Centre of a group, Co-sets of a subgroup: SU(2), O(3).

Course code: PH 402 Course title: Electrodynamics Pre-requisite(s): Electricity and Magnetism Co- requisite(s): Credits: 3L:3 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Code: **Title: Electrodynamics** L-T-P-C PH 402 [3-0-0-3] **Course Objectives** This course enables the students: Introducing the mathematical tools used in electrodynamics. 1. Review of electrostatics and magnetostatics in matter. 2. Providing easy headway into the covariant formulation of Maxwell's equations. 3. Teaching basic principles of waveguides and transmission lines. 4. Rendering insights into fields generated by oscillating sources, and their applications. **Course Outcomes** After the completion of this course, students will be: Ability to use basic mathematical tools to solve problems in electrodynamics. Gaining proficiency in electrostatics and magnetostatics. 1. 2. Obtaining command on four-vector and tensor notations. 3. Learning about TM, TE and TEM modes in waveguides. 4. Understanding radiations by moving charges. [8] Module1 The concept of a scalar potential. Poisson's and Laplace's equations for scalar potential. Green's theorem, Electrostatic field energy density. Solutions of Laplace's equation in rectangular, spherical and cylindrical coordinates using the method of separation of variables, Method of images, Multipole expansion of potential due to a localized charge distribution. Module-2 Electrostatics in matter; Polarization and electric displacement vector. Electric field at the boundary [8] of an interface, Linear dielectrics. Magnetostatics, Biot-Savart Law, Ampere's Law, Scalar and Vector potentials, Magnetic moment of a current distribution. Macroscopic magnetostatics, Magnetization. M and H vectors, Boundary conditions. Electromagnetic induction, Faraday's Law, Maxwell's equations, Maxwell's equations in matter, Module-3 [8] Conservation of charge, Poynting's theorem, Solutions of Maxwell's Equations, Covariant formulation of electrodynamics, Inhomogeneous wave equations and their solutions. Module-4 Electromagnetic waves in matter, Reflection and refraction at a plane interface between dielectrics, [8] Fresnel's equations. Phase velocity and group velocity, spreading of a pulse propagating in a dispersive medium, propagation in a conductor, skin depth. Transmission lines and wave guides; Dynamics of charged particles in static and uniform electromagnetic fields. Module-5 EM Field of a localized oscillating source. Fields and radiation in dipole and quadrupole [8] approximations. Antenna; Radiation by moving charges, Lienard-Wiechert potentials, total power radiated by an accelerated charge, Lorentz formula. **References:** 1. Introduction to Electrodynamics by D. J. Griffiths 2. Classical Electrodynamics by J. D. Jackson 3. Lectures on Electromagnetism by A. Das

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	C01	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	\checkmark
Quiz 1	\checkmark				
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty

Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	М	-	М	L
В	Н	Н	-	L	-
C	Н	М	Н	Н	М
D	Н	L	-	Н	L
E	Н	L	М	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program	Program Outcomes				
	a	b	С	d	e	f
1	Н	Н	Н	Н	Н	Н
2	Н	Н	Н	Н	Н	Н
3	Н	Н	Н	Н	Н	Н
4	Н	Н	Н	Н	Н	Н
5	Н	Н	Н	Н	Н	Н

Week No.		Ch. No.	-	pped	Actual Content covered	dology used	
1	L1-L4		The concept of a scalar potential. Poisson's and Laplace's equations for scalar potential. Green's theorem, Electrostatic field energy density. Solutions of Laplace's equation in rectangular coordinates	1			

2	L5-L8		1,T3 1	
		cylindrical coordinates using the method of separation of variables,		
		Method of images, Multipole expansion		
		of potential due to a localized charge		
		distribution.		
3	L9-		1,T3 2	
5	L12	electric displacement vector. Electric	1,15 2	
		field at the boundary of an interface,		
		Linear dielectrics. Magnetostatics, Biot-		
		Savart Law, Ampere's Law,		
4	L13-	Scalar and Vector potentials, T1	1,T3 2	
	L16	Magnetic moment of a current		
		distribution. Macroscopic		
		magnetostatics, Magnetization. M and		
		H vectors, Boundary conditions.		
5	L17-	Electromagnetic induction, Faraday's T1	1,T3 3	
	L20	Law, Maxwell's equations, Maxwell's		
		equations in matter, Conservation of		
		charge, Poynting's theorem,		
6	L21-	Solutions of Maxwell's Equations, T1	1,T3 3	
	L24	Covariant formulation of		
		electrodynamics, Inhomogeneous wave		
_	1.07	equations and their solutions.	1 570 4	
7	L25-	Electromagnetic waves in matter, T1	1,T3 4	
	L28	Reflection and refraction at a plane		
		interface between dielectrics, Fresnel's		
		equations. Phase velocity and group		
		velocity, spreading of a pulse		
8	L29-	propagating in a dispersive medium, propagation in a conductor, skin T1	1.T3 4	
0	32	propagation in a conductor, skin T1 depth. Transmission lines and wave	1,15 4	
	32	guides; Dynamics of charged particles		
		in static and uniform electromagnetic		
		fields.		
9	L33-	EM Field of a localized oscillating T1	1,T3 5	
, ,	L35- L36	source. Fields and radiation in dipole	1,15 5	
		and quadrupole approximations.		
10	L37-		1,T3 5	
10	L37- L40	Lienard-Wiechert potentials, total	1,15 5	
		power radiated by an accelerated		
		charge, Lorentz formula.		
		charge, Estenie formata.		

Course title: Classical Dynamics (or similar papers) Or Mechanics and Fisetricity & Magnetism at UG level Co-requisit(s): Cass: LMSs. Credits: L.3 T.O P.O Class schedule per weck: Cass: LMSs. Cass: LMSs. Kes Stands: PHYSICS Title: Classical Mechanics This course canables the students: [3-0-0-3] Course Objectives Title: Classical Mechanics. B. To define the concepts of Langrangian Mechanics. D. To interpret the concepts of Langrangian Mechanics. D. To integret the concepts of Langrangian Mechanics. D. To integret the concepts of Langrangian Mechanics. E. To origon the foromulate the concepts of Langrangian mechanics. D. To integret the concepts of Langrangian mechanics. E. To organic the formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the lagrangian mechanics and solve the problems with the help of Lagrangian mechanics. 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the lagrangian mechanics.			: PH 403	
Co-reguistic(s): Credits: 1:3 7:0 P:0 Class schedule per week: Class: LMSc. Semester / Level: YIL/1 Branch: PHYSICS Name of Teacher: [1:4]-P-C Code: Title: Classical Mechanics [1:4]-P-C Pit 403 [1:6]-Code: [3:4-0-3] Consee Objectives This course: combles the students: [3:6]-Consee Objectives D. To interpret the concepts of Langrangian Mechanics. [3:6]-Consee Objectives [3:6]-Consee Objectives D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. [3:6]-Consee Objectives [3:6]-Consee Objectives Course Outcomes [3:6] [3:6]-Consee of coupled oscillators. [3:6] Course Outcomes [3:6] [3:6]-Consee of reference. [3:6] 3: Solve the problems of generating function, canonical transformation & Poisson brackets. [4:6] [5] 3: Solve the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. [5] [10] Module-1 Constrains, classification of constraints, generalized coordinates, principal of virtual work, D [10] Module-2 Robue transformation, contical transformation & Poisson brackets, integrals, differentia				
Credits: L:3 T:0 P:0 Class schedule per week: Class: IMSc. Semester/Level: VII/I Branch: PIVSICS Image: Ima		-		evel
Class schedule per werk: Class: IMXS: Semester / Level: VII / I Branch: PII VSICS Name of Teacher: Code: Tradeher: Code: Tradeher: Code: Tradeher: Code: Tradeher: Code: Tradeher: Code: Tradeher: Code: Tradeher: A. To define the concepts of Langrangian Mechanics. A. To define the concepts of Langrangian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 5. Solve the quaditors of rigid body dynamics and demonstrate the examples of non- inertial frames of reference. 5. Solve the genuitation of reference. 5. Solve the genuitation of costilator and to examinc the two coupled pendulums, and double pendulum related problems. Module-1 Constrains, classification of costination, generalized coordinates, principal of virtual work, D Alember's principal, Lagrange's equations of motion, properties of kinetic energy function, theorem on total energy, onservation, concerd of symmetry, invariance under Galliean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's Jaw, subhilly of orbits, viral dherem, scattering in a central force field. Module-2 Hamilton's function, Conditions for connocial transformation and problem. Poisson Brackets , is definitions, Haw, subhilly of orbits. Viral dherem, scattering in a central force, of PB under canonical transformation for corbits				
Class: 1.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher: Code: PI 403 Code: PI 403 Code: Code: Course Objectives This course enables the students: A. To define the concepts of Iangrangian Mechanics. B. To interpret the concepts of Iangrangian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. To o illustrate the dynamics of a rigid body and non-incrtial frames of reference. E. To formulate the concepts of coupled oscillators. Course Obtectives After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of this course, students will be able to: After the completion of reference. 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demostrate the examples of non- inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Module-1 Module-2 Hamilton's function, constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized moment, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Gailean transformation, velocity dependent potential. Module-3 Module-4 Module-4 Hamilton's function and Hamiltonian of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equati				
Semester / Level: YU/1 Branch: PHYSICS Name of Teacher: Code: Title: Classical Mechanics II: 403 [3-0-0-3] Conce Objectives This course enables the students: A: To define the concepts of Langrangian Mechanics. B: To interpret the concepts of Langrangian Mechanics. D: To splain generating function, canonical transformation & Poisson brackets. D: To ithustrate the dynamics of a rigid body and non-inertial frames of reference. E: To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1: Improve the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics. 2: Compare the formulation of dismitlonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics. 3: Solve the problems of reference. 5: Solve the problems of reference. 5: Solve the problems. Module-1 Constraints, classification of constraints, generalized coordinates, integrals of motion, Jacobi integrals and energy generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean			1	
Brane of Teacher: IL-T.P-C Code: Title: Classical Mechanics L-T.P-C Course Objectives This course enables the students: [3-0-0-3] Course Objectives To interpret the concepts of Langrangian Mechanics. [3-0-0-3] C. To explain generating function, canonical transformation & Poisson brackets. [3-0-0-3] D. To integret the concepts of coupled oscillators. [3-0-0-3] E. To formulate the concepts of coupled oscillators. [3-0-0-3] Compace Objectives [3-0-0-3] Alter the completion of this course, students will be able to: [3-0-0-3] Alter the completion of Hamiltonianand Lagrangian mechanics and solve the problems with the help of Lagrangian mechanics. [3-0-0-3] 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics [3-0-0-3] 3. Solve the problems of generating function, canonical transformation & Poisson brackets. [4-0-0-3] 4. Formulate the equations of oclearity generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. [10] 4. Module-1 Hamilton's function and Hamiltonio of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equat				
Name of Teacher: Title: Classical Mechanics L-T-P-C Code: Thic Classical Mechanics L-1-P-C PII 403 To define the concepts of Largrangian Mechanics. Image: Classical Mechanics.				
Code: Title: Classical Mechanics L-T-P-C [3-0-0-3] PH 403 [3-0-0.3] [3-0-0.3] Course Objectives This course enables the students: [3-0-0.3] This course enables the students: [3-0-0.3] [3-0] C. To explain generating function, canonical transformation & Poisson brackets. [3-0] [3-0] D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. [3-0] [3-0] E. To formulate the concepts of coupled oscillators. [3-0] [3-0] Course Outcomes After the completion of this course, students will be able to: [3-0] [3-0] 1. Formulate the Lagrangian mechanics. [3-0] [3-0] [3-0] 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics. [3-0] [4-0] [3-0] [4-0] 3. Solve the equations of roupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. [10] [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D A lembert's principal. Lagrangian gene? equations of two body problem to equivalent one body problem enequation o				
PH 403 [3-0-0-3] Course Objectives This course enables the students: [3-0-0-3] A To define the concepts of Langrangian Mechanics. B [3-0] B To interpret the concepts of Hamiltonian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. [3-0] D To interpret the concepts of coupled oscillators. [3-0] Course Outcomes After the completion of this course, students will be able to: [3-0] 1 Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. [3-0] 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics [3-1] 3. Solve the problems of generating function, canonical transformation & Poisson brackets. [4] 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non- inertial frames of reference. [10] 5. Solve the problems of generating function, canonical transformation & Poisson brackets. [10] Aduble pendulum related problems. Generating function, theorem on total energy oneralized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorerun on total energy generalized nomenta, cyclic-coor		e of Tea		
Course Objectives Image: Course enables the students: A. To define the concepts of Langrangian Mechanics. A. B. To interpret the concepts of Hamiltonian Mcchanics. C. C. To explain generating function, canonical transformation & Poisson brackets. D. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics. 3. Solve the quations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. 5. Solve the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on toal energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy onservation, concequit of the toby by problem to equivalent one body problem, equation of motion under ce			Title: Classical Mechanics	
This course enables the students: A. To define the concepts of Langrangian Mechanics. B. To interpret the concepts of Hamiltonian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics concepts and solve the problems on present of classical and relativistic mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of presence. 3. Solve the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kep				[3-0-0-3]
A. To define the concepts of Langrangian Mechanics. B. To interpret the concepts of Hamiltonian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 5. Solve the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D [10] Alembert's principal, Lagrange's equations of motion, properties of kinetic energy function, theorem not total energy, generalized momenta, cyclic-coordinates, integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.		•		
B. To interpret the concepts of Hamiltonian Mechanics. C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics of generating function, canonical transformation & Poisson brackets. 2. Compare the formulation of Hamiltonian and Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-intriat frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation of a dratege pendent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, s	This c			
C. To explain generating function, canonical transformation & Poisson brackets. D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D [10] Alembert's principal, Langrang's equations of motion, properties of kinetic energy function, theorem no total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivation of rona orbit, Kepler's law, stability of orbits, virial th			· · · ·	
D. To illustrate the dynamics of a rigid body and non-inertial frames of reference. E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit. Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] </td <td></td> <td></td> <td></td> <td></td>				
E. To formulate the concepts of coupled oscillators. Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics: concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the problems of generating function, generalized coordinates, principal of virtual work, D Alembert's principal, Lagrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem quation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamilton's caprage bracket. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Jacobi identity, invariance of				
Course Outcomes After the completion of this course, students will be able to: 1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non- inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potenii. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential force field. Module-2 Hamiltonian of a charged particle in an electromagnetic field. Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of P		D.	To illustrate the dynamics of a rigid body and non-inertial frames of reference.	
After the completion of this course, students will be able to: I. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. I. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics I. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. I. Formulate the equations of roupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. IIII Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D. Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. III Module-2 Hamilton's function and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. IIII Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical		E.	To formulate the concepts of coupled oscillators.	
After the completion of this course, students will be able to: I. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. I. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics I. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. I. Formulate the equations of roupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. IIII Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D. Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. III Module-2 Hamilton's function and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. IIII Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical				
1. Formulate the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. [10] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [7] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation and problem. Poisson Brackets , its definitions, of a Rigid Body: Rigid body and space reference system, Euler's angles, angular	Cours	se Outo	omes	
Lagrangian mechanics. 2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonia of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identifies, Poisson theorem, Jacobi-Poisson theorem, Jacobi-Poisson theorem, Jacobi-Poisson theorem, Jacobi-Poisson theorem,	After	the con	apletion of this course, students will be able to:	
2. Compare the formulation of Hamiltonianand Lagrangian mechanics and solve the problems of classical and relativistic mechanics 3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, nacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space. Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi-Poisson Brackets , its definitions, identities, poisson theorem, Ja		1.	Formulate the Lagrangian mechanics concepts and solve the problems with the help of	
of classical and relativistic mechanics Image: Constraints of the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D [10] Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian, conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [5] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of i			Lagrangian mechanics.	
3. Solve the problems of generating function, canonical transformation & Poisson brackets. 4. Formulate the equations of rigid body dynamics and demonstrate the examples of non- inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamilton's realectromagnetic field. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [10] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rig		2.	Compare the formulation of Hamiltonian Lagrangian mechanics and solve the problems	
4. Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference. 5. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonis for canonical transformation and problem. Poisson Brackets, its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [10] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial fram			of classical and relativistic mechanics	
inertial frames of reference. inertial frames of reference. 5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [7] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange's method Non-inertial frames of reference, fictitous force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion [8] Module-5 Coupled Osci		3.	Solve the problems of generating function, canonical transformation & Poisson brackets.	
5. Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems. Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamiltonia of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [10] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis		4.	Formulate the equations of rigid body dynamics and demonstrate the examples of non-	
double pendulum related problems. [10] Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field. [5] Module-3 Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [10] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating f			inertial frames of reference.	
Module-1 Constraints, classification of constraints, generalized coordinates, principal of virtual work, D [10] Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. [10] Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field. [7] Module-2 Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian, conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket. [5] Module-4 Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, aif flow on the surface of the earth, projectile motion <		5.	Solve the equations of coupled oscillator and to examine the two coupled pendulums, and	
Alembert's principal, Langrange's equations of motion, properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.[7]Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[5]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, diff				
theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.[7]Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi robisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled osci	Modu	le-1	Constraints, classification of constraints, generalized coordinates, principal of virtual work, D	[10]
integrals and energy conservation, concept of symmetry, invariance under Galilean transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.[7]Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]			Alembert's principal, Langrange's equations of motion, properties of kinetic energy function,	
transformation, velocity dependent potential. Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.[7]Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillators, examples of coupled oscillator: two coupled			theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi	
Two body central force problem: reduction of two body problem to equivalent one body problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.[7]Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillator, kinetic and potential energies of the coupled			integrals and energy conservation, concept of symmetry, invariance under Galilean	
problem, equation of motion under central force and first integrals, differential equation for an orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillator, kinetic and potential energies of the coupled[8]				
Module-2Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.[7]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]			problem, equation of motion under central force and first integrals, differential equation for an	
state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.Image: Complex compl			orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.	
Hamiltonian of a charged particle in an electromagnetic field.[5]Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]	Modu	le-2	Hamilton's function and Hamilton's equation of motion, configuration space, phase space and	[7]
Module-3Generating function, Conditions for canonical transformation and problem. Poisson Brackets , its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.[5]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid 				
its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance of PB under canonical transformation. Lagrange bracket.Image: Image bracket in the image bracket is angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motionImage: Image bracketModule-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupledImage bracket.				
of PB under canonical transformation. Lagrange bracket.[10]Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]	Modu	le-3		[5]
Module-4Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
body, symmetric bodies, moments of inertia for different body system, Euler's equation of motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]	Modu	le-4		[10]
motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force, Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
of the earth, air flow on the surface of the earth, projectile motion[8]Module-5Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled[8]				
Module-5 Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator, differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled [8]				
differential equations for coupled oscillator, kinetic and potential energies of the coupled oscillators, theory of small oscillations, examples of coupled oscillator: two coupled		1 -		
oscillators, theory of small oscillations, examples of coupled oscillator: two coupled	Modu	le-5		[8]
penaulums, aouble penaulum				
			penautums, aoubie penautum	

Reference books:

- 1. Classical Mechanics by H. Goldstein, Pearson Education Asia.
- 2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.
- 3. Classical Mechanics by P. V. Panat, Narosa Publishing Home,, New Delhi.
- Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
 Introduction to Classical Mechanics by R. G. Takwale and P. S. Puranik, Tata Mc-Graw
- Hill Publishing Company Limited, New Delhi.
- 6. Landau and Lifsitz

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Tupping wettern Course Objectives and Course Outcomes						
		Course Outcomes				
Course Objectives	1	2	3	4	5	
Α	Н	Μ	Μ	L	L	
В	Н	Н	Μ	L	L	
С	М	Μ	Η	L	L	
D	L	L	L	Η	L	
Е	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
Outcome #	a	b	С	d	e	f	
1	Н	Η	Н	Н	Н	Н	
2	Н	Н	Н	Н	Н	Н	
3	Н	М	М	Н	Н	М	
4	Н	L	L	M	Н	Μ	
5	Н	М	Н	М	Н	М	

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures	-	-			
CD7	Industrial visits/in-plant training	-	-			
CD8	Self- learning such as use of NPTEL materials and internets	-	-			
CD9	Simulation	-	-			

Week		Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	Date	No.		Book /	mapp	Content	ogy	by
110.	110.	Dute	110.		Refere	ed	covered	used	faculty
					nces	cu	covered	useu	if any
	L1-L3			Constraints, classification					ii uiiy
	LI-LJ			of constraints, generalized					
				coordinates, principal of					
				virtual work, D Alembert's					
				principal, Langrange's					
				equations of motion					
	L4-			properties of kinetic energy	T1				
	L6			function, theorem on total					
				energy, generalized					
				momenta, cyclic-					
				coordinates, integrals of					
				motion, Jacobi integrals					
				and energy conservation,					
				concept of symmetry					
	L7-			invariance under Galilean	T1				
	L10			transformation, velocity	T2				
				dependent potential.					
				Two body central force					
				problem: reduction of two					
				body problem to equivalent					
				one body problem,					
				equation of motion under					
				central force and first					
				integrals, differential					

	equation for an orbit,
	Kepler's law, stability of
	orbits, virial theorem,
	scattering in a central force
	field
L11-	Hamilton's function and T1
L13	Hamilton's equation of T2
	motion
L14	
L14	configuration space, phase T1
	space and state space T2
L15-	Lagrangian and T1
L17	Hamiltonian of relativistic T2
	particles, Relativistic
	Lagrangian and
	Hamiltonian of a charged
	particle in an
	electromagnetic field.
L18,	Generating function, T1
L18, L19	Conditions for canonical T2
L19	
	transformation and
	problem.
L20-	Poisson Brackets, its T1
L22	definitions, identities, T2
	Poisson theorem, Jacobi-
	Poisson theorem, Jacobi
	identity, invariance of PB
	under canonical
	transformation. Lagrange
	bracket.
L23-	Dynamics of a Rigid Body: T1
L23- L27	
L27	Rigid body and space T2
	reference system, Euler's
	angles, angular momentum
	and inertia tensor, principal
	moment of inertia,
	rotational kinetic energy of
	rigid body, symmetric
	bodies, moments of inertia
	for different body system,
	Euler's equation of motion
	for a rigid body by
	Newtonian method and
1.20	Lagrange's method Non-inertial frames of T1
L28-	
L32	reference, fictitious force, T2
	uniformly rotating frames,
	coriolis force, Foucault's
	pendulum, Larmor
	precession, effects of
	Coriolis force on: river
	flow on the surface of the
	earth, air flow on the
	surface of the earth,
	projectile motion.

L32,	Coupled Oscillator: T1
L33	Potential energy and T2
	equilibrium of one
	dimensional oscillator,
L34-	differential equations for T1
L38	coupled oscillator, kinetic T2
	and potential energies of
	the coupled oscillators,
	theory of small oscillations,
L39,	examples of coupled T1
L40	oscillator: two coupled T2
	pendulums, double
	pendulum.

Course code: PH 404 Course title: Quantum Mechanics Pre-requisite(s): Previous papers of Quantum Mechanics Co- requisite(s): Credits: 3L:2 T:1 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Code:

PH 404

Course Objectives

This course enables the students to:

- 1. define Heisenberg & Dirac formulation of quantum mechanics and explain their importance.-Outline the basics of crystallography and define various types of imperfections in crystals.
- 2. demonstrate the linear harmonic oscillator and hydrogen-like atom using Dirac formulation-Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms.

Title: Quantum Mechanics

L-T-P-C

[2-1-0-3]

- 3. explain the angular momentum operators associated with spherical and symmetrical systems-Define ceramics and explain its types and applications.
- 4. illustrate scattering theory and determine the scattering parameters.-Define polymers and composites and categorize them on the basis of their applications.
- 5. formulate the approximation methods to solve real problems which are insolvable analytically-Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques.

Course Outcomes

After the completion of this course, students will be able to:

- 1. formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals.
- 2. solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques.
- 3. demonstrate angular momentum operators associated with spherical and symmetrical systems.-summarize ceramics and its types and relate their applications with properties.
- 4. explain scattering theory, formulate and solve scattering equation-classify polymers and composites based on their properties and applications.
- 5. apply the Variational principle and WKB Approximation to solve the real problems-Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties.

Module-1	Introduction to Dirac and Heisenberg Formulation:	[10]					
	Linear vector space, Dirac Bra-Ket notations. Determination of eigen-values and						
	eigen-functions using matrix representations. Coordinate and momentum						
	representation. Uncertainty principle.						
Module-2	Harmonic Oscillator and Hydrogen atom problem:	[10]					
	Linear harmonic oscillator, Heisenberg and quantum mechanical treatments.						
	Asymptotic behaviour, energy levels, correspondence with classical theory.						
	Spherically symmetric potential in three dimensions, hydrogen atom, wave functions,						
	eigenvalues, degeneracy, etc.						
Module-3	Angular momentum and its addition:	[10]					
	Theory of angular momentum, symmetry, invariance and conservation laws, relation						
	between rotation and angular momentum. Commutation rules, eigenvalues and eigen						
	functions of the angular momentum. Stern-Gerlach experiment, spin, spin operators,						
	Pauli's spin matrices. Spin states of two spin-1/2 particles. Addition of angular						
	momenta, Clebsch-Gordon coefficients. Principle of indistinguishablity of identical						

	particles, Pauli's exclusion principle.					
Module-4	Scattering theory: Scattering Theory, differential and total scattering cross-section	[5]				
	laws, partial wave analysis and application to simple cases; Integral form of					
	scattering equation, Born approximation validity and simple applications.					
Module-5	Approximation Methods: Variational Principle, WKB approximation, solution	[5]				
	near a turning point, connection formula, tunnelling through barrier. boundary					
	conditions in the quasi classical case.					
Text b	ooks:					
1.	J. J. Sakurai, Modern Quantum Mechanics , Addison-Wesley Publishing Compan	y, 1994.				
2.	Nouredine Zettili, Qunatum Mechanics: Concepts and Application, Wiley Publications 2	016.				
3.	R. Shankar, Principles of Quantum Mechanics, Plenum Press, 1994.					
Refere	nce books:					
1.	L. I. Schiff, Quantum Mechanics, Tata McGraw Hill, New Delhi					

2. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, Berlin.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

- Student Feedback on Faculty
 Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course	Program Outcomes							
Outcome #	a	b	с	d	e	f		
1	Н	Н	Н	L	М	L		
2	Н	Н	М	L	L	L		
3	Н	М	М	L	L	L		
4	Н	М	М	L	L	L		
5	Н	Н	Н	L	Н	L		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Course Objectives						
Outcome #	а	b	с	d	e			
1	Н	М	М	М	L			
2	М	Н	М	М	L			
3	М	М	Н	L	L			
4	М	М	Н	L	L			
5	М	М	L	L	Н			

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	CourseDelivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tent	Modul	Topics to be covered	Text	Cos	Actual	Methodolog	Remarks
No.	No.	ative Date	e		Book / Refere	mapped	Content covered	yused	by faculty if
			No.		nces				any
1	L1		Ι	Linear vector space	T2	CO-1		PPT Digi Class/Chal k Board	
	L2-L3			Dirac Bra-Ket notations	T2	CO-1		PPT Digi Class/Chal k-Board	
2	L4-6			Determination of eigen-values and eigen-functions using matrix epresentations.		CO-1		PPT Digi Class/Chal k-Board	
3	L7-8			Coordinate and momentum	T1	CO-1		PPT Digi Class/Chal	

			representation			k-Board
3-4	L9- L10		Uncertainty principle	Т3	CO-1	PPT Digi Class/Chal k-Board
4	L11	II	Linear harmonic oscillator	Т3	CO-2	PPT Digi Class/Chal k-Board
4-5	L12- 13		Heisenberg and quantum mechanical treatments.		CO-2	PPT Digi Class/Chal k-Board
5	L14		Asymptotic behaviour, energy levels,	T1	CO-2	PPT Digi Class/Chal k-Board
5	L15		correspondence with classical theory.	T1	CO-2	PPT Digi Class/Chal k-Board
6	L16- 17		Spherically symmetric potential in three dimensions,		CO-2	PPT Digi Class/Chal k-Board
6-7	L18- 19		hydrogen atom, wave functions, eigenvalues, degeneracy, etc.	T1, T2, T3	CO-2	PPT Digi Class/Chal k-Board
7	L20- 21	III	Theory of angular momentum, symmetry, invariance and conservation laws,	T2	CO-3	PPT Digi Class/Chal k-Board
8	L22- 23		relation between rotation and angular momentum.		CO-3	PPT Digi Class/Chal k-Board
8-9	L24- 25		Commutation rules, eigenvalues and eigen functions of the angular momentum.		CO-3	PPT Digi Class/Chal k-Board
9	L26- 27		Stern-Gerlach experiment, spin, spin operators	T1	CO-3	PPT Digi Class/Chal k-Board
10	L28		Pauli's spin matrices. Spin states of two spin-1/2 particles.	T1, T2, T3	CO-3	PPT Digi Class/Chal k-Board
10	L29		Addition of angular momenta, Clebsch- Gordon coefficients.		CO-3	PPT Digi Class/Chal k-Board
10	L30		Principle of indistinguishablity of identical particles,	T1, T2, T3	CO-3	PPT Digi Class/Chal k-Board
11	L31		Pauli's exclusion principle	Т3	CO-3	PPT Digi Class/Chal k-Board

11	L29	IV	Scattering Theory, differential and total scattering cross- section laws		CO-4	PPT Digi Class/Chal k-Board
11	L30		partial wave analysis and application to simple cases		CO-4	PPT Digi Class/Chal k-Board
12	L31		Integral form of scattering equation	T1	CO-4	PPT Digi Class/Chal k-Board
12	L32- 33		Born approximation validity and simple applications	T2	CO-4	PPT Digi Class/Chal k-Board
13	L34	V	Variational Principle, WKB approximation	T2	CO-5	PPT Digi Class/Chal k-Board
13	L35		solution near a turning point	T2	CO-5	PPT Digi Class/Chal k-Board
13	L36		connection formula, tunnelling through barrier		CO-5	PPT Digi Class/Chal k-Board
14	L37		boundary conditions in the quasi classical case	T2	CO-5	PPT Digi Class/Chal k-Board

Course code: PH 405 Course title: Modern Computational Techniques & Programming Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 2L:2 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Code: PH405	Title: Modern Computational Techniques & Programming	L-T-P-C [2-0-0-2]
The idea	bjectives: behind the course is to teach students to solve problem in physics using MAPLE and MATLAB. In	this regard
	ives are to	
	to calculate various errors which arise while solving different equations. hem to solve systems of linear equations.	
	them the concept of interpolation.	
4. Instruc	t them to calculate integrals and differentials using different numerical methods. hem to solve partial differential equations numerically.	
0	Outcomes: After completion of the course, students should be able to te errors while solving equations.	
3. Enrich	vely use methods like matrix inversion, Gauss elimination and LU decomposition to solve linear ec a given set of data points using interpolation methods like cubic spline, Newton's divided difference	•
	ically differentiate and integrate expressions.	
5. Solve e	equations from physics like heat equation, diffusion equation, etc. numerically.	
Module-1	Approximation Methods, Errors and Roots of Equations, Accuracy and precision, Truncation and round-off errors, Bracketing Methods (false position, bisection), Iteration Methods (Newton-Raphson and secant).	[8]
Module-2	Systems of linear algebraic equations Gauss elimination, matrix inversion and LU decomposition methods.	[4]
Module-3	Curve fitting and Interpolation Least squares regression, Linear, multiple linear and nonlinear regressions, Cubic spline. Newton's divided difference and Lagrange interpolating polynomials.	[6]
Module-4	Numerical differentiation and integration, Divided difference method for differentiation, Newton-Cotes formula, Trapezoidal and Simpson's rules, Romberg and Gauss quadrature methods.	[5]
Module-5	Ordinary and Partial differential equations, Euler's method and its modifications, Runge-Kutta methods, Boundary value and Eigen value problems. Finite difference equations, Elliptic equations, Laplace's equation and solutions, Parabolic equations, Solution of the heat conduction equation	[12]
Text boo T1: Ir	oks: htroductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)	
	ce books:	
R1: N	umerical Analysis, V. Rajaraman	
R2: N	umerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).	
	umerical Methods for Scientists and Engineers, Prentice Hall of India (1988).	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Υ

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark		\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	
1	Н	L	L	L	L	
2	L	Н	L	L	L	
3	L	L	Н	L	L	
4	L	L	L	Н	L	
5	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	f
1	Н	Н	Н	М	Н	Н
2	Н	Н	Н	М	Н	Н
3	Н	Н	Н	М	Н	Н
4	Н	Н	Н	М	Н	Н
5	Н	Н	Н	М	Н	Н

Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD9				
CD2	Tutorials/Assignments	CO2	CD1, CD2and CD9				
CD3	Seminars	CO3	CD1, CD2 and CD9				
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD9				
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD9				
CD6	Industrial/guest lectures						
CD7	Industrial visits/in-plant training						
CD8	Self- learning such as use of NPTEL materials and internets						
CD9	Simulation						

Week	Lect.	Tent	Ch	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	ative	No.	-	Book /	map	Content	ogy	by
		Date			Refere	ped	covered	used	faculty if
					nces	-			any
1-3	L1-			Approximation Methods, Errors	T1, R1	1		PPT Digi	_
	L12			and Roots of Equations, Accuracy				Class/Cho	
				and precision, Truncation and				ck	
				round-off errors, Bracketing				-Board	
				Methods (false position, bisection),				Dourd	
				Iteration Methods (Newton-					
				Raphson and secant).					
3-5	L13-			Systems of linear algebraic	T1	2			
	L24			equations Gauss elimination,					
				matrix inversion and LU					
				decomposition methods.					
5-8	L25-			Curve fitting and Interpolation	T1, R2	3			
	LL36			Least squares regression, Linear,					
				multiple linear and nonlinear					
				regressions, Cubic spline.					
				Newton's divided difference and					
				Lagrange interpolating					
				polynomials.					
8-10	L37-			Numerical differentiation and	T1, R1	4			
	L48			integration, Divided difference					
				method for differentiation,					
				Newton-Cotes formula,					
				Trapezoidal and Simpson's rules,					
				Romberg and Gauss quadrature					
				methods.					
10-14	L49-			Ordinary and Partial differential	T1, R3	5			
	L60			equations, Euler's method and its					
				modifications, Runge-Kutta					
				methods, Boundary value and					
				Eigen value problems. Finite					
				difference equations, Elliptic					
				equations, Laplace's equation and					
				solutions, Parabolic equations,					
				Solution of the heat conduction					
				equation					

Course code: PH 406 Course title: Modern Computational Techniques & Programming Lab Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: L:4 T:0 P:0 Class schedule per week: Class: LM.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Title: Modern Computational Techniques & Programming Lab

L-T-P-C [0-0-4-2]

1. Evaluate f(0.8) using Taylor's series for f(x), where $f(x) = 5x^4 - 2x^2 + 3x - 2$

2. Find the truncation error by comparing the following functions with their values calculated using zeroth, first,...,seventh order Taylor's expansion:

a) $sin(\pi/3)$ b) $\frac{1}{1-0.1}$

3. Let $u = \frac{5xy^3}{z^2}$. If $\Delta x = \Delta y = \Delta z = 0.01$ and x = y = z = 2, calculate the maximum relative and absolute errors.

4. Find the roots of the function

 $10\sin(x) = 2x^2 + 1.$

Maple is not able to find an exact (symbolic) solution of the equation. There are two general approaches to obtaining an approximate solution that you might consider in a case like this; graphical and numerical.

5. Solve the following set of linear equation by

- (i) Gauss elimination
- (ii) Matrix inversion and
- (iii) LU decomposition methods.

x + 3y - 2z = 103x + 5y + 6z = 72x + 4y + 3z = 8

6. Fit the given set of data points to a gaussian function of the form $a_0 * exp^{-(x^2-a_1)}$: (-3, 0.0188), (-2.68, 0.1112), (-2.37, 0.5468), (-2.05, 2.2223), (-1.74, 7.3486), (-1.42, 19.8502), (-1.11, 43.9048), (-0.79, 79.6264), (-0.47, 118.49122), (-0.16, 144.6785), (0.16, 144.6785), (0.4737, 118.4912), (0.7895, 79.6264), (1.11, 43.9048), (1.42, 19.8502), (1.74, 7.3486), (2.05, 2.2223), (2.37, 0.5468), (2.68, 0.1112), (3, 0.01877)

Find the values of a_0 and a_1 .

7. Using the table below, find f(x) as a polynomial in x for data points provided below: (-1,5), (2,-6), (5,4), (6, 9), (7,10), (9,13), (11, 16), (13,18)

8. Using the values of x and y provided in the table below, obtain dy/dx and d^2x/d^2y for x = 1.2.

x	Y
1.0	2.7188
1.2	3.3289
1.4	4.0068
1.6	4.9538
1.8	6.0489
2.0	7.4567
2.2	9.2258
2.4	11.8976

9. Evaluate the integral $\int_0^1 \frac{x^3}{e^x - 1}$ using trapezoidal and Simpson's rules correct to five decimal places. Which method gives the most accurate result?

10. A solid of revolution is formed by rotating about the *x*-axis the area between the *x*-axis, the lines x = 0 and x = 1, and a curve through the points with the following coordinates:

x	Y
0.00	1.0000
0.25	0.9900
0.50	9600
0.75	0.9100
1.00	0.8400

11. Solve the following differential equation (overdamped Langevin equation):

$$\gamma \frac{dx}{dt} = -kx + \sqrt{2k_BT} \,\xi(t),$$

where , *T* and *k* are constants, and $\xi(t)$ is a random variable sampled from a normal distribution. Take $k_B = 1$. Start with the initial condition x(t = 0) = 0.

12. Solve Laplace equation in Cartesian coordinates, in a region defined by a parallelepiped of dimensions L_1 , L_2 and L_3 . The equation is

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0.$$

The potential vanishes on 5 faces of the parallelepiped. On the 6th face at $z = L_3$, the potential is a known function f(x, y).

13. Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$

Subject to the initial conditions: $u = sin(\pi x)$ at t = 0 for $0 \le x \le 1$ and u = 0 at x = 0 and x = 1 for t > 0.

14. Consider a system of 100 identical particles interacting via a Lennard-Jones potential:

$$U_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] ,$$

which is terminated and shifted at $r = r_{cut} = 2.5\sigma$, so that the truncated potential \tilde{U}_{LJ} is defined as,

$$\bar{U}_{LJ}(r) = \begin{cases} U_{LJ}(r) - U_{LJ}(r_{cut}) & \text{if } r < r_{cut} \\ 0 & \text{if } r > r_{cut} \end{cases}$$

All the quantities are defined in terms of reduced Lennard-Jones units with mass m, interaction parameter ϵ and length scale σ having unit values. Using NVT simulations, plot the equilibrium energy of the system against temperature.

References:

- 1. Numerical Mathematical Analysis, J.B. Scarborough, John Hopkins (1966).
- 2. Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)
- 3. Numerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).
- 4. Numerical Methods for Scientists and Engineers, Prentice Hall of India (1988).
- Electromagnetics and Calculation of Fields, Nathan P-Ida and J.P.A. Bastos, Springer-Verlag (1992).

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 407 Course title: Modern Physics Lab Pre-requisite(s): Co- requisite(s): Credits: L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Modern Physics Lab L-T-P-C [0-0-4-2] Name of the Experiment 1. To determine specific charge of electron by Thomson's method/circular trajectory method. (Thomson's experiment) 2. To Verify the inverse Square law using Planck's constant measuring instrument.(Inverse square law) 3. Determination of Planck's constant using Light Emitting Diode (LEDs) (Planck's constant) 4. Verification of energy quantisation by Franck-Hertz Experiment. (Franck-Hertz Experiment) 5. Study of the voltage and current of the solar cells in series and parallel combinations. (Characteristic of Solar cell) 6. To measure the charge of electron and show that it is quantised with the smallest value of $1.6 \times$ 10-19 coulombs (Millikan's oil drop experiment) 7. To study the variation of count rate with applied voltage and thereby determine the plateau, the operating voltage and slope of plateau (G M Counter) 8. To observe the dielectric constant by comparison of electrical conductivity of different materials to that of a metal.(Dielectric constant)

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

I.M.Sc. VIII / M.Sc. II Semester

COURSE INFORMATION SHEET

	COURSE INFORMATION SHEET	
Course cod		
	e: Statistical Physics	
-	ite(s): Mathematical Physics	
-	ite(s): Quantum Physics	
Credits:	4L:3T:1 P:0	
Class sched Class: I.M.	dule per week:	
	Level: VIII / II	
Branch: Pl		
Name of To		
Code:	Title: Statistical Physics	L-T-P-C
		[3-1-0-4]
PH 408 Course Ob	iactivas	
	-	,., ,
	understand the dependence of equilibrium properties of various systems on their microscopic con	stituents
	compute thermodynamic parameters by using classical statistics.	
	learn to use methods of quantum statistics to obtain properties of systems made of microscopic	
par	ticles which either obey Fermi-Dirac statistics or Bose-Einstein statistics.	
3. To	grasp the concepts of first order and second order phase transitions and critical phenomena.	
4. To	understand phase transition arising in Ising model.	
5. To	learn to obtain the properties of out-of-equilibrium systems using concepts from equilibrium	
physics. Co	urse Outcomes: Students should be able to	
1 2	e various ensemble theories to calculate the thermodynamic properties of different systems.	
	npute properties of systems behaving as ideal Fermi gas or ideal Bose gas.	
	ssify transitions as first order or second order.	
	•	. :+
	e student should be able to reproduce the exact solution of Ising model in one dimension and solve	en
	ng mean field theory.	
	derstand the approach required to predict the evolution of non-equilibrium systems.	
Module-1	Formalism of Equilibrium Statistical Mechanics	[8]
	Concept of phase space, Liouville's theorem, basic postulates of statistical mechanics,	
	ensembles: microcanonical, canonical, grand canonical and their partition functions,	
	connection to thermodynamics, fluctuations, applications of various ensembles, equation of	
	state for a non-ideal gas, Van der Waals' equation of state, Meyer cluster expansion, virial	
	coefficients.	
Module-2	Quantum Statistics	[8]
	Formalism of Fermi-Dirac and Bose-Einstein statistics. Applications of the formalism to: (a)	
	Ideal Bose gas, Debye theory of specific heat, properties of black-body radiation, Bose-	
	Einstein condensation, degeneracy, BEC in a harmonic potential. (b) Ideal Fermi gas,	
	properties of simple metals, Pauli paramagnetism, electronic specific heat	F01
Module-3	Phase Transitions and Critical Phenomena	[8]
	First and Second order Phase transitions, Diamagnetism, paramagnetism, and	1
	ferromagnetism, Landau theory, critical phenomena, Critical exponents, scaling hypothesis.	
Module-4	Ising Model : Ising Model, mean-field theory, exact solution in one dimension.	[6]
Module-5	Nonequilibrium Systems: Correlation of space-time dependent fluctuations, fluctuations and	i [10]
	transport phenomena, Diffusion equation, Random walk and Brownian motion, Langevin	
	theory, fluctuation dissipation theorem, Fokker-Planck equation.	
Text book		
	cal Physics, Landau and Lifshitz, Pergamon Press	
Reference		
	cal Physics, R. K. Patharia, Pergamon Press	
	cal Physics, Kerson Huang, John Wiley and Sons	
R3: Statistic	cal Physics, S. K. Ma, World Scientific Publishing, Singapore	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks					
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e		
1	Н	L	L	L	L		
2	L	Н	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Н	L		
5	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes							
	а	b	с	d	e	f			
1	Н	Н	Н	М	Н	Н			
2	Н	Н	Н	М	Н	Н			
3	Н	Н	Н	М	Н	Н			
4	Н	Н	Н	М	Н	Н			
5	Н	Н	Н	М	Н	Н			

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2						
CD2	Tutorials/Assignments	CO2	CD1 andCD2						
CD3	Seminars	CO3	CD1 and CD2						
CD4	Mini projects/Projects	CO4	CD1 and CD2						
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

Week	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Methodol	Remar
No.	No.	ative	No.	_	Book /	mappe	Content	ogy	ks by
		Date			Refere	d	covered	used	faculty
					nces				if any
1-3	L1-			Concept of phase space,	T1	1		PPT Digi	, j
	L8			Liouville's theorem, basic				Class/Cho	
				postulates of statistical				ck	
				mechanics, ensembles:				-Board	
				microcanonical, canonical,				-Doard	
				grand canonical and their					
				partition functions, connection					
				to thermodynamics,					
				fluctuations, applications of					
				various ensembles, equation of					
				state for a non-ideal gas, Van					
				der Waals' equation of state,					
				Meyer cluster expansion, virial					
				coefficients.					
3-6	L9-			Formalism of Fermi-Dirac and	T1,	2			
	L16			Bose-Einstein statistics.					
				Applications of the formalism					
				to: (a) Ideal Bose gas, Debye					
				theory of specific heat,					
				properties of black-body radiation, Bose-Einstein					
				,					
				condensation, degeneracy, BEC in a harmonic potential. (b)					
				Ideal Fermi gas, properties of					
				simple metals, Pauli					
				paramagnetism, electronic					
				specific heat					
6-8	L17-			First and Second order Phase	T1,R2	3			
	L24			transitions, Diamagnetism,	· ·				
				paramagnetism, and					
				ferromagnetism, Landau theory,					
				critical phenomena, Critical					
				exponents, scaling hypothesis.					
8-10	L25-			Ising Model, mean-field theory,	T1, R3	4			

	L30	exact solution in one dimension.
11-14	L31-	Correlation of space-time T1, R3 5
	L40	dependent fluctuations,
		fluctuations and transport
		phenomena, Diffusion equation,
		Random walk and Brownian
		motion, Langevin theory,
		fluctuation dissipation theorem,
		Fokker-Planck equation.

Course code: PH 409 Course title: Atomic and Molecular Spectroscopy Pre-requisite(s): Modern Physics Co- requisite(s): Credits: 4L:3 T:1 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VIII / II Branch: PHYSICS Name of Teacher:

Code: Title: Atomic and Molecular Spectroscopy L-T-P-C PH 409 [3-1-0-4] **Course Objectives** This course enables the students: 15. To learn about the intricacies of spectra of Hydrogen-like atoms To understand the details of rotational, vibrational and Raman spectra of molecules. B. C. To know about the different regions of spectra, and the corresponding instrumentations. To learn about NMR spectra and its application D. To get a feeling of the principles of mass spectroscopy and ionization methods. E.

Course Outcomes

After the completion of this course, students will be:

Alter t	le completion of this course, students win be.						
1.	Able to deal with problems related to Hydrogen-like atomic spectra						
2.	Having knowledge about the rotational, vibrational and Raman spectroscopy of molecules						
3.	Able to comprehend the instrumentation techniques that are used in different regions of spectra						
4.	Understanding NMR spectra and visualize the physical phenomenon						
5.	Learning about mass spectroscopy and its usage						
Module-1	Atomic Physics: Quantum states of an electron in an atom; Electron spin; Stern-Gerlach experiment; Spectrum of Hydrogen, helium and alkali atoms; Relativistic corrections for energy levels of hydrogen; Hyperfine structure and isotopic shift; Spectral terms, L-S and J-J coupling schemes, Singlet-Triplet separation for interaction energy of L-S coupling. Lande	[10]					
	Interval rule, Zeeman, Paschen Back & Stark effect; width of spectral lines						
Module-2	Molecular Spectroscopy: Types of molecular spectroscopy, applications, Rotational, vibrational and electronic spectra of diatomic and polyatomic molecules; Born Oppenheimer	[12]					
	approximation, Frank – Condon principle and selection rules. Molecular hydrogen, Fluorescence and Phosphorescence, Instrumentations of IR and Microwave Spectroscopy and Applications. Raman Effect, Rotational Raman spectra. Vibrational Raman spectra. Stokes						

	Applications. Raman Effect, Rotational Raman spectra. Vibrational Raman spectra. Stokes	
	and anti-Stokes lines and their Intensity difference, Instrumentation and applications.	
Module-3	Characterization of electromagnetic radiation, regions of spectrums, spectra representation,	[10]
	basic elements if practical spectroscopy, resolving power, width and intensity of spectral	
	transition, Fourier transform spectroscopy, concept of stimulated emission.	
Module-4	NMR Spectroscopy: Nuclear spin, nuclear resonance, saturation, spin-spin and spin-lattice	[8]
	relaxations, chemical shift, de shielding, coupling constant, instrumentation and applications.	
Module-5	Principle and applications of Mass Spectroscopy, Thomson's method of determining e/m of	[10]
	electrons, Aston mass spectrograph, Dempster's mass spectrometer, Ionization Methods,	
	instrumentation and applications.	

Text books:

- 1. Introduction to Atomic Spectra", H.E. White, McGraw-Hill.
- 2. Fundamentals of Molecular Spectroscopy" C. N. Banwell, Tata McGraw-Hill
- 3. Atomic Physics", G. P. Harnwell & W.E. Stephens, McGraw-Hills Book Company, Inc.
- 4. Modern Spectroscopy", J. M. Hollas, John Wiley

Reference books:

- 1. "Physics of Atoms and Molecules" by Bransden & Joachain, Pearson
- 2. "Introduction to Spectroscopy" by Pavia et. al., Cengage Learning India Pvt. Ltd.

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	-	L	L	-
В	-	Н	Н	-	-
С	L	Н	Н	-	-
D	-	-	L	Н	-
E	-	-	-	-	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	М	Н	М	L	М	
2	Н	Н	Н	М	Н	М	
3	L	Н	М	М	Н	М	
4	L	М	М	М	Н	М	
5	М	М	М	М	М	М	

Week Lect. Tentati	e Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks by
--------------------	-------	----------------------	------	-----	--------	-------------	------------

No.	No.	Date	No.		Book / Refere	mapped	Content covered	used	faculty if any
					nces				
1	L1- L3			Atomic Physics:	T2, R1	1		PPT Digi	
	LS			Quantum states of an electron in an atom:				Class/Chock	
				Electron spin; Stern-				CIASS/CHOCK	
				Gerlach experiment;				-Board	
				Spectrum of				Dourd	
				Hydrogen, helium and	-				
				alkali atoms;					
				Relativistic					
				corrections for energy					
				levels of hydrogen					
2	L4-			Hyperfine structure	T2, R1	1			
	L6			and isotopic shift;					
				Spectral terms, L-S					
				and J-J coupling					
				schemes, Singlet-					
				Triplet separation for					
				interaction energy of					
				L-S coupling					
3	L7-			Lande Interval rule		1			
	L9			Zeeman, Paschen					
				Back & Stark effect;					
4	L10-			width of spectral lines Molecular	T2, R1	2			
4	L10- L12			Spectroscopy: Types	-	2			
	212			of molecular					
				spectroscopy,					
				applications,					
				Rotational, vibrational					
				and electronic spectra					
				of diatomic and	l				
				polyatomic molecules;					
				Born Oppenheimer					
				approximation, Frank					
				– Condon principle	<u>)</u>				
				and selection rules.					
5	L13-			Molecular hydrogen,		2			
	L15			Fluorescence and	L				
				Phosphorescence, Instrumentations of IR					
				and Microwave					
				Spectroscopy and					
				Applications. Raman					
				Effect					
6	L16-				T2, R1	2			
	L19			spectra. Vibrational					
				Raman spectra. Stokes					
	1		1		172	1		1	

-	- I - I			r	r		
			anti-Stokes lines				
		and	their Intensity	r			
		diff	erence,				
		Ins	rumentation and	l			
		app	lications.				
7	L20-	Cha	racterization of	T2, R1	3		
	L22	ele	ctromagnetic				
		rad	iation, regions of				
		spe	ctrums, spectra				
		rep	resentation, basic				
			nents if practical				
			ctroscopy				
8	L23-		olving power,	T2	3		
	L25	wic	th and intensity of				
		spe	ctral transition,				
		Fou	rier transform	L			
		spe	ctroscopy, concept				
		of	stimulated				
		em	ission.				
9	L26-	NM	IR Spectroscopy:	T2, R2	4		
	L29		clear spin, nuclear				
			onance, saturation				
			n-spin and spin-	,			
			ice relaxations				
10	L30-			T2, R2	4		
10	L33		elding, coupling				
	200		stant,				
			rumentation and				
			lications.				
11	L34-			R2	5		
	L34- L37		lications of Mass		5		
	1.57		ectroscopy,				
		_					
			omson's method of ermining e/m of				
			-				
			ctrograph,				
12	L38-		npster's mass	R2	5		
	L41		ctrometer,				
			ization Methods				
			rumentation and	L			
		app	lications.				

Course code: PH 410 Course title: Electronic Devices & Circuits Pre-requisite(s): Digital and Analog Systems Co- requisite(s): Credits: L:3 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VIII / II Branch: PHYSICS Name of Teacher:

1 (unite	
Code:	
PH 410	

L-T-P-C
[3-0-0-3]

Course Objectives:

- 1. To impart knowledge about a To impart knowledge about a variety of special, power and microwave solid state electronic devices, their structure and the underlying physical principles.
- 2. To expose the students to the integrated circuit chip development technologies and associated processes
- **3.** Amplifiers would be dealt with in all its expanse and rigor to give a good feel of the associated design and mathematical intricacies.
- **4.** A rigorous treatment on integrated circuit operational amplifiers is to be delivered to supplement their understanding on amplifiers
- 5. Linear and non-linear applications of op-amps are introduced to add to the knowledge on the variety of circuits encompassing all major class of applications.
- 6. Nanoelectronic devices and concepts are introduced to give a feel of the future electronics devices and the quantum effects that manifest.

Course Outcomes:

- 1. Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits
- 2. Students would develop an insight into the technologies that go into an IC chip that they would be extensively using during and after the course
- **3.** In depth understanding would enable the students to appreciate the beauty of the subject and design amplifiers that are technically sound.
- 4. Students would develop a comprehensive understanding of contemporary integrated circuit amplifier design.
- 5. Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.
- 6. Students would enjoy the new and stimulating ideas behind the future novel devices and would also appreciate the link between electronics and the quantum effects that come into play.

Module-1	Electronic Devices Varactor diode, photo-diode, Schottky diode, solar cell, Principle of Operation and I-V Characteristics of JFET, MOSFET. Thyristors (SCR, LASCR, Triac and Diac) Microwave semiconductor devices: Tunnel diode, IMPATT, Gunn effect and Gunn diode.	8
Module-2	Integrated circuits: Monolithic IC's, Hybrid IC's. Materials for IC fabrication (Si and GaAs), Crystal growth and wafer preparation, processes Epitaxy, Vapour phase epitaxy (VPE), Molecular beam epitaxy (BME), MOCVD Oxidation, Ion implantation, Optical lithography, electron beam lithography, Etching processes.	8
Module-3	Amplifiers using discrete devices Amplifiers using BJTs, FETs, MOSFETs and their analysis. Feedback in amplifiers, characteristics of negative feedback amplifiers, input resistance, output resistance, method of analysis of a feedback amplifier, feedback types and their analyses, Bode plots, two-pole and three–pole transfer function with Feedback, approximate analysis of a multipole feedback amplifier, stability, gain and phase margins, compensation, dominant-pole compensation, pole- zero compensation.	12
Module 4	Operational amplifiers Differential Amplifier, emitter-coupled differential amplifier, transfer characteristics of a differential amplifier, current mirror and active load, Measurement of op-amps parameters, frequency response of op-amps, dominant–pole compensation, pole-zero compensation, lead	

	compensation, step response of op-amps.	
Module 5	Applications of Op-Amps	12
	Linear: instrumentation amplifier, precision rectifiers, active filters (low-pass, high-pass, band-	
	pass, band-reject/ notch), Analog computation circuits	
	Nonlinear: Comparators, Schmitt trigger, multivibrators, AMV and MMV using 555 timer,	
	waveform generation, D/A converters, binary weighted, A/D converters, simultaneous, counter	
	type, dual slope converter.	
	Single electron devices: Quantum point contact, Coulomb blockade, Resonant tunneling	
	transistor, Single electron transistor (SET).	

Text books:

T1: Physics of Semiconductor Devices- S. M. Sze

T2: Solid State Electronic Devices- B. G. Streetman, PHI

T3: VLSI Technology, S. M. Sze Mc Graw Hill

T4: Integrated Electronics, Jacob Millman and Christos Halkias, -Tata McGraw Hill Publication

T5: Thomas L. Floyd. ELECTRONIC. DEVICES. 9th Edition. Prentice Hall.

T6: Louis Nashelsky and Robert Boylestad, Electronic Devices and Circuit Theory

T7: Khan and Dey, A First course in Electronics, PHI

T8: Operational amplifiers and Linear Integrated Circuits- R. A. Gayakwad, PHI.

T9: Linear Integrated Circuits- D. R. Choudhary and S. B. Jain, New Age Publications

Reference books:

R1: Operational amplifier and Linear Integrated Circuits- R. F. Coughlin, F. F. Driscoll, PHI

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz 1	\checkmark				
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes							
Course Objectives	1	2	3	4	5	6	
А	Н	Н	Η	Н	Η	Н	
В	Н	Н	Н	L	Н	Н	
С	Н	L	Н	L	М	L	
D	Н	М	Μ	Н	Н	М	
Е	Н	Н	Н	Н	Н	М	
F	Н	Н	Н	L	М	Н	
G	Н	Н	L	Μ	L	L	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e	f	g
1	Н	Н	Н	Н	Н	М	Н
2	Н	Н	Н	Н	Н	М	Н
3	Н	Н	Η	Н	Н	М	Н
4	Н	Н	Н	Н	Н	М	Н
5	Н	Н	Н	Н	Н	М	Н

	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2				
CD2	Tutorials/Assignments	CO2	CD1 and CD2				
CD3	Seminars	CO3	CD1 and CD2				
CD4	Mini projects/Projects	CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2				
CD6	Industrial/guest lectures	CO6	CD1 and CD2				
CD7	Industrial visits/in-plant training	-	-				
CD8	Self- learning such as use of NPTEL materials and internets	-	-				
CD9	Simulation	-	-				

Week No.		Tentative Date	Ch. No.	-	Text Book / Refere nces	Actual Content covered	Methodol ogy used	Remarks by facultyif any
1	L1		Mod ule-1	Varactor diode, Schottky diode,				
	L2			photo-diode,	T1			
	L3			solar cell,	T1			
	L4			Principle of	T1, T2,			
	L5			Operation and I-V Characteristics of JFET, MOSFET.	T4			
	L6			Thyristors (SCR,	T1, T4			
	L7			LASCR, Triac and Diac)				

			T 1 1: 1	m 1			
L8			Tunnel diode,				
			IMPATT, Gunn				
			effect and Gunn				
			diode.				
L9		Mod	Integrated circuits:	T1, T3			
		ule-	Monolithic lC's,				
]	II	Hybrid lC's.				
			Materials for IC				
			fabrication (Si and				
			GaAs)				
L10	0		Crystal growth and				
			wafer preparation,				
			processes Epitaxy,				
			Vapour phase				
			epitaxy (VPE)				
L1	1		Molecular beam	T1, T3			
			epitaxy (BME),				
			MOCVD Oxidation				
L12	2		Ion implantation	T1, T3			
L1.	3		Optical lithography	T1, T3			
L14	4			T1, T3			
			lithography, Etching				
			processes				
L1	5 1	Mod	-	T4, T5,			
		ule-	discrete devices	T6			
		III	Amplifiers using				
			BJTs				
L1	6			T4, T5,			
	°		FETs, MOSFETs				
			and their analysis	10			
L1'	7			T4, T5,			
	,		amplifiers,	T6			
			characteristics of	10			
			negative feedback				
			amplifiers				
L1	8		input resistance,	Т4 Т5			
	Ŭ		output resistance,	T4, 15, T6			
L1	9		method of analysis				
			of a feedback				
			amplifier				
L20	0		_	T4, T5,			
	~		their analyses, Bode				
			plots, two-pole and	10			
			three–pole transfer				
			function with				
			Feedback,				
			approximate analysis				
			of a multipole				
			feedback amplifier				
L2	1		-	T4, T5,			
	1		phase margins	14, 15, T6			
			phase margins	10			

1	1.00	1	<i>.</i> •	m4 m7		
	L22		compensation,	T4, T5,		
			dominant-pole	T6		
			compensation, pole-			
			zero compensation			
	L23	Mod	Operational	T4,		
		ule-	amplifiers	T7		
		IV	Differential			
			Amplifier,			
	L24		emitter-coupled	Τ4,		
	L25	1	differential amplifier	T7		
		-				
	L26					
	L27			T7, T9		
			active load			
	L28		transfer	T4, T7		
			characteristics of a			
			differential amplifier			
	L29		Measurement of op-	T4, T7		
1			amps parameters,	· ·		
			frequency response			
			of op-amps			
	L30	1	dominant-pole	T4, T9		
	150		compensation, pole-			
			zero compensation,			
			lead compensation,			
			step response of op-			
			amns			
	1.01		amps.	m7		
	L31	Mod	Applications of Op-	T5		
	L31	ule-	Applications of Op- Amps	T5		
	L31		Applications of Op- Amps Linear:	T5		
	L31	ule-	Applications of Op- Amps Linear: instrumentation	T5		
	L31	ule-	Applications of Op- Amps Linear:	T5		
	L31 L32	ule-	Applications of Op- Amps Linear: instrumentation	T5 T5,T9		
	L32	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers	T5,T9		
		ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low-	T5,T9 T5,T9		
	L32	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass,	T5,T9 T5,T9		
	L32	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass, band-pass, band-	T5,T9 T5,T9		
	L32	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass, band-pass, band- reject/ notch),	T5,T9 T5,T9		
	L32	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation	T5,T9 T5,T9		
	L32 L33	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass, band-pass, band- reject/ notch), 	T5,T9 T5,T9		
	L32	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- 	T5,T9 T5,T9		
	L32 L33	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators,	T5,T9 T5,T9		
	L32 L33	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger	T5,T9 T5,T9 T5,T9		
	L32 L33	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators,	T5,T9 T5,T9		
	L32 L33 L34	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger	T5,T9 T5,T9 T5,T9		
	L32 L33 L34	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV	T5,T9 T5,T9 T5,T9		
	L32 L33 L34	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- AmpsLinear: instrumentation amplifierPrecision rectifiersActive filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuitsNonlinear: Comparators, Schmitt triggerMonlinear: multivibrators, AMV and MMV using 555 timerWaveform generation, D/A converters, binary weighted, A/D	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters,	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters, simultaneous,	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Applications of Op- Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters,	T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9 T5,T9		

L37	Mod ule- VI	Singleelectrondevices:Quantumpoint contact	
L38		Coulomb blockade	T2, T1
L39		Resonant tunneling transistor	g T2, T1
L40		Singleelectrontransistor (SET).	n T2, T1

Course code: PH 411 Course title: Condensed Matter Physics Pre-requisite(s): Quantum Mechanics Co- requisite(s): Credits: L:3 T:0 P:0 Class schedule per week: Class: I.M.Sc./M.Sc. Semester / Level: VIII / II Branch: PHYSICS Name of Teacher: Dr S K Rout

Title: Condensed Matter Physics

Course Objectives

This course enables the students:

IIII	the endoires the students.	
1.	To relate crystal structure to symmetry, recognize the correspondence between real and reciprocal	space.
2.	Acquire knowledge of the behaviour of electrons in solids based on classical and quantum theories	•
3.	To become familiar with the different types of magnetism and magnetism based phenomenon.	
4.	To develop an understanding of the dielectric properties and ordering of dipoles in ferroelectrics.	
5.	To get familiarized with the different parameters associated with superconductivity and the theory	
	of superconductivity.	

Course Outcomes

After the completion of this course, students will be:

 ter the	completion of this course, students will be.
1.	Able to correlate the X-ray diffraction pattern for a given crystal structure based on the
	corresponding reciprocal lattice.
2.	Able to explain how the predicted electronic properties of solids differ in the classical free electron theory,
	quantum free electron theory and the nearly free electron model.
3.	Able to explain various magnetic phenomena and describe the different types of magnetic ordering
	based on the exchange interaction.
4.	Able to differentiate between ferroelectric, anti-ferroelectric, piezoelectric and pyroelectric materials.
5.	Able to differentiate between type-I and type-II superconductors and their theories.

Code:PH 411	Title : Condensed Matter Physics	L-T-P-C
		[3-0-0-3]
Module-1	CRYSTAL DIFFRACTION AND RECIPROCAL LATTICE Revision of concepts, crystal structure, Bravais Lattice, lattice translation vector, symmetry operations, simple crystal structures, Miller indices, lattice planes, Braggs' law, reciprocal lattice to SC, BCC, FCC, Laue's equation and Bragg's law in terms of reciprocal lattice vector, diffraction and the structure factor, Ewald's construction, structure determination using Laue's method, powder crystal diffraction, rotating crystal method, scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc, fcc), atomic form factor.	[8]
Module-2	ENERGY BAND THEORY Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well, Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory, density of states, Fermi-Dirac statistics, effect of temperature on Fermi distribution function, electrons in a periodic potential, Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band, energy band structure of conductors, semiconductors and insulators.	[8]
Module-3	MAGNETISM Magnetic Susceptibility, diamagnetism, paramagnetism, the ground state of an ion and Hund's rules, adiabatic demagnetization, crystal fields, orbital quenching, Jahn-Teller effect, nuclear magnetic resonance, electron spin resonance, Mossbauer spectroscopy, magnetic dipolar interaction, exchange interaction, ferromagnetism, antiferromagnetism,	[8]

	ferrimagnetism, spin glasses.	
Module-4	DIELECTRICS AND FERROELECTRICS Macroscopic Maxwell equation of electrostatics, theory of local field, theory of polarisability, dielectric constant, Claussius-Mosotti relation, optical properties of ionic	[8]
	crystals, dielectric breakdown, dielectric losses, ferroelectric, anti-ferroelectric, piezoelectric, pyroelectric, frequency dependence of dielectric properties, classification	
	of ferroelectric crystal, ferroelectric phase transitions, relaxor ferroelectrics.	
Module-5	SUPERCONDUCTIVITY	[8]
	Basic properties of superconductors, phenomenological thermodynamic treatment, London equation, penetration depth, superconducting transitions, order parameter,	
	Ginzburg-Landau theory, Cooper pair, electron-phonon interaction, BCS theory, coherence length, flux quantization, Josephson junction, high T _c superconductors, mixed	

Introduction to Solid State Physics 8thEdition , Charles Kittel, John Wiley and Sons, 2005.
 Solid State Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976.

References:

- 1. Condensed Matter Physics 2nd Edition, Michael. P Marder, John Wiley and Sons, 2010.
- 2. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press, 2001.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark		
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #		Program Outcomes						
	а	b	с	d	e	f		
1	Н	Н	Н	L	L	М		
2	Н	Н	Н	L	М	L		
3	Н	Н	Н	L	М	L		
4	М	Н	М	L	М	L		
5	М	Н	Н	L	L	L		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Course Objective					
	a	b	С	d	e	
1	Н	L	М	М	М	
2	L	Н	М	М	L	
3	L	М	Н	L	М	
4	L	L	М	Н	L	
5	L	М	М	L	Н	

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods		Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1,CD2 and CD8					
CD2	Tutorials/Assignments		CO2	CD1,CD2 and CD8					
CD3	Seminars		CO3	CD1,CD2 and CD8					
CD4	Mini projects/Projects		CO4	CD1,CD2 and CD8					
CD5	Laboratory experiments/teaching aids		CO5	CD1,CD2 and CD8					
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
	Self- learning such as use of NPTEL materials and								
CD8	internets								
CD9	Simulation								

We	Lect.	Tent	Modul	Topics to be covered	Text	COs	Actual	Methodology	Remar
ek	No.	ative	e		Book /	map	Content	used	ks by
No.		Date	No.		Refere	ped	covered		faculty
					nces				if any
1	L1		Ι	Revision of concepts, crystal	T1, T2	1, 2		PPT Digi	
				structure, Bravais Lattice,				Class/Chalk	
								-Board	
1	L2		1	lattice translation vector,	T1, T2			PPT Digi	
				symmetry operations, simple				Class/Chalk	
				crystal structures, Miller indices,				-Board	
				lattice planes, Braggs' law,					
1	L3-		1	reciprocal lattice to SC, BCC,	T1, T2			PPT Digi	
	L4			FCC, Laue's equation and Bragg's				Class/Chalk	
				law in terms of reciprocal lattice				-Board	
				vector,					

2	L5		diffraction and the structure factor,	T1, T2	PPT Digi Class/Chalk -Board
2	L6		Ewald's construction,	T1, T2	PPT Digi Class/Chalk -Board
2	L7		structure determination using Laue's method, powder crystal diffraction, rotating crystal method,		PPT Digi Class/Chalk -Board
3	L8		scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc,fcc), atomic form factor.	T1, T2	PPT Digi Class/Chalk -Board
4	L11	II	Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory		PPT Digi Class/Chalk -Board
4	L12- 13		density of states, Fermi-Dirac statistics, effect of temperature on Fermi distribution function	T1, T2	PPT Digi Class/Chalk -Board
5	L14- 15		electrons in a periodic potential, Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,		PPT Digi Class/Chalk -Board
5	L16			T1, T2	PPT Digi Class/Chalk -Board
	L17	III	MagneticSusceptibility,diamagnetism,Paramagnetism,The ground state of an ion andHund'srules,adiabaticdemagnetization	, R2	PPT Digi Class/Chalk -Board
	L18		Crystal fields, orbital quenching	T1, T2, R2	PPT Digi Class/Chalk -Board
	L19		Jahn-Teller effect Nuclear magnetic resonance	T1, T2, R2	PPT Digi Class/Chalk -Board
	L20- 21		Electron spin resonance Mossbauer spectroscopy,	T1, T2, R2	PPT Digi Class/Chalk -Board
	L22		Magnetic dipolar interaction, Exchange interaction,	T1, T2, R2	PPT Digi Class/Chalk -Board
	L23- L24		Ferromagnetism, anti- ferromagnetism,Ferrimagnetisms, Spin glasses.	T1, T2, R2	PPT Digi Class/Chalk -Board
	L25	IV	Macroscopic Maxwell equation of electrostatics	T1, T2, R1	PPT Digi Class/Chalk -Board

L26	Theory of local field, theory of	T1, T2,	PPT Digi
	Polarisability, dielectric constant		Class/Chalk
	Claussius-Mosotti relation	,	-Board
L27		z T1, T2,	PPT Digi
227	crystals.	R1 R1	Class/Chalk
	crystais.		-Board
L28-	Dielectric breakdown, dielectric	z T1, T2,	PPT Digi
29		- R1	Class/Chalk
	ferroelectric.		-Board
L30-	Piezoelectric, Pyroelectric	. T1. T2.	PPT Digi
31		f R1	Class/Chalk
	dielectric properties.		-Board
L32	Classification of ferroelectric	T1, T2,	PPT Digi
	crystal, ferroelectric phase		Class/Chalk
	transitions, relaxor ferroelectrics.		-Board
L33		f T1, T2,	PPT Digi
	Superconductors,	R1	Class/Chalk
	Phenomenological		-Board
	thermodynamic treatment		
L34-	London equation, penetration	n T1, T2,	PPT Digi
35	depth	R1	Class/Chalk
	-		-Board
L36	Superconducting transitions, order	T1, T2,	PPT Digi
	parameter, Ginzburg-Landau		Class/Chalk
	theory		-Board
L37	Cooper pair, electron-phonon	T1, T2,	PPT Digi
	interaction, BCS theory	R1	Class/Chalk
			-Board
L38	Josephson junction	T1, T2,	PPT Digi
		R1	Class/Chalk
			-Board
L39	Coherence length, Flux	K T1, T2,	PPT Digi
	quantization	R1	Class/Chalk
			-Board
L40	High T _c superconductors, mixed	T1, T2,	PPT Digi
	state.	R1	Class/Chalk
			-Board

Course code: PH 412 Course title: Electronics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Electronics Lab	
	L-T-P-C
	[0-0-4-2]
List of Experiments:	
1. Verification of truth tables of OR, NOT and AND gates using NAND gates	
2. Verification of truth tables of OR, NOT and AND gates using NOR gates	
3. Realization of XOR and XNOR gates using NAND and NOR gates	
4. Design and verification of a 2 bit binary half adder	
5. Design and verification of a 2- bit binary full adder	
6. Design of a half subtractor and verification of its truth table	
7. Design of a half subtractor and verification of its truth table	
8. Design and implementation of clocked R-S flipflops using NAND gates	
9. Design and implementation of clocked J-K flipflops using NAND gates	
10. Design and testing of monostable vibrator using IC 555 timer	
11. Design and testing of astable multivibrator using IC 555 timer	
12. Design and testing of Schmidt Trigger using IC 741	
13. Design and testing of modulo 9 ripple counter using IC CD4029.	
14. Design and testing of CMOS switch and 2:1 multiplexer using IC 4066.	

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution				
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)				
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)				

Course code: PH 413 Course title: Condensed Matter Physics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Condensed Matter Physics Lab

L-T-P-C [0-0-4-2]

List of experiments:

- 1. To study the permeability of a ferrite substance as a function of frequency. (Take atleast 20 data)
- 2. To study the relative permittivity of a dielectric material as a function of temperature. (Take atleast 20 data).
- 3. Analysis of XRD data using JCPDS software.
- 4. Analysis of FESEM data using ImageJ software to calculate density function.
- 5. Analysis of XRD data using CheckCell software.
- 6. Measurement of resistance of a semiconductor as a function of temperature.
- 7. Measurement of susceptibility using lock in amplifier.
- 8. Synthesis of a ceramic sample using a programmable furnace.
- 9. Analysis of XRD data using FullProf software.
- 10. Design of crystal structure using VESTA software.

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution				
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)				
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)				

I.M.Sc. IX / M.Sc. III Semester

COURSE INFORMATION SHEET

Course code: PH 501 Course title: Nuclear and Particle Physics Pre-requisite(s): Modern Physics Co- requisite(s): Credits: 4L: 3 T:1P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: IX / III Branch: PHYSICS

Name of Teacher: **Title: Nuclear and Particle Physics** Code: L-T-P-C PH 501 [3-1-0-4] Module **Course Objective:** To impart the knowledge regarding the fundamental and basics of Nucleus and its 1 models. 2 To provide the knowledge of the Two-nucleus problem, concept of nuclear force. 3 To acquire knowledge about the nucleus by the study of scattering of particles. 4 To have a good understanding of interaction of charged particles with matter. 5 To have an elementary idea of particles and their classification.

Module	Course Name : Nuclear and Particle Physics Course Outcome:
1	Student will have an idea developed about the nucleus.
2	Student will have a concept and nature of nuclear force.
3	Student will learn about the method and analysis of Scattering process.
4	Student will have an idea about the interaction of particles with matter.
5	Student will understand te nature, interaction etc of the elementary particles.
Module-1	Nuclear Models Liquid drop Model, semi-empirical mass formula, transitions between odd A isobars, transitions between even isobars, odd-even effects and magic numbers, Shell model, collective model.
Module-2	Two nucleon problem, The deuteron, ground state of deuteron, nature of nuclear forces, excited state of deuteron, spin dependence of nuclear force, meson theory of nuclear force
Module-3	Scattering, Cross section, differential cross section, scattering cross section, nucleon nucleon scattering, proton-proton and neutron-neutron scattering at low energies.
Module-4	Interaction of radiation with matter, Interaction of charged particles with matter, stopping power of heavy charged particles, energy loss of electrons, absorption of gamma rays, photoelectric effect, Compton effect and pair production.
Module-5	Classification of elementary particle, Eightfold way, Baryon octate and meson octate, Quark model, Baryon Decuplet, meson nonlet, Intermediate vector Boson, Strong electromagnetic and week interactions, standard model, lepton classification and quark classification.

- 1. Nuclear Theory-Roy and Nigam
- 2. Introductory Nuclear Physics- Kenneth S-Krane
- 3. Nuclear Physics: D. Halliday
- 4. Elements of Nuclear Physics: Pandya and Yadav
- 5. Introduction to Elementary Particle: David Griffiths

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	C01	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark		\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes **Course Objectives** 2 3 4 5 1 А Η Μ L L L В Μ Η L L L С Η L L Μ L D Η L L L L Е L Μ L L Η

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes										
Outcome #	Α	b	c	D	E	f	g	h	Ι	J	k	1
1	Н	Н	L	Μ	М	Μ						
2	Н	Н	L	Μ	Μ	Н						
3	Н	Н	Μ	Μ	Μ	Н						
4	Н	Н	М	Μ	М	Η						
5	Н	Н	L	Μ	Μ	Η						

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2						
CD2	Tutorials/Assignments	CO2	CD1 CD2						
CD3	Seminars	CO3	CD1 CD2						
CD4	Mini projects/Projects	CO4	CD1 CD2						
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

	Lect.	Tentative	Ch.	Topics		Text	COs	Actual	Methodology	Remarks by	ŗ
No.	No.	Date	No.	covered		Book	mapped	Conten	Used	•	f
						/		t		any	
						Refere		covere		2	
						nces		d			
1	L1-			Nuclear	Models	T1 R1					
	L2			Liquid	drop						
				Model,	semi-						
				empirical	mass						
				formula,							
	L3-			transitions		T1 R1					
	L4			between	odd A						
				isobars,							
				transitions							
				between	even						
				isobars,	22						
	L5-			odd-even		T1 R1					
	L8			and	magic Shell						
				numbers, model,	collective						
				model. L							
	L9-			Two	nucleon	T1 T2					
	L11			problem,	The						
	211			deuteron,							
				state of de							
	L12-			nature of		T1-T2					
	L13			forces,	excited						
				state of de							
	L14-				ependence	T1 T2					
	L15			of nuclear	force,						
	L-16			meson th	neory of	T1 T2					
				nuclear fo							
	L17-			Scattering	g, Cross	T1 T2					
	L20			section,		R1					
				differentia							
					scattering						
				cross sect	ion,						

· · · · · · · · · · · · · · · · · · ·	I	· •		
L20-	nucleon nucleon			
L24	scattering, proton-	R1		
	proton and			
	neutron-neutron			
	scattering at low			
	energies			
L25-	Interaction of	T1 R1		
L28	radiation with			
	matter, Interaction			
	of charged			
	particles with			
	matter,			
L29-	stopping power of	T1 P1		
L29- L32	heavy charged			
	particles, energy			
	loss of electrons,			
	*			
	gamma rays,			
	photoelectric			
	effect, Compton			
	effect and pair			
	production			
L33-		T1 T3		
L35	elementary			
	particle,			
L36-	Eightfold way,	T1 T3		
L38	Baryon octate and			
	meson octate,			
	Quark model,			
	Baryon Decuplet,			
	meson nonlet,			
	Intermediate			
	vector Boson			
L39-	Strong	T1 T3		
L40	electromagnetic			
	and week			
	interactions,			
	standard model,			
	lepton classification and			
	quark			
	classification.		1	

Course code: PH 502 Course title: Advanced Quantum Mechanics Pre-requisite(s): Quantum Mechanics Co- requisite(s): Credits: 4L: 3 T:1P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:IX / III Branch: PHYSICS Name of Teacher:

Code: PH 502	Title: Advanced Quantum Mechanics	[L-T-P-C [3-1-0-4]				
Module	Course Objective:					
1	To learn how to apply Perturbation Theory (Time Independent) in non-degenerate and degenerate situations.					
2	To apply approximate method in Quantum Mechanics to treat molecules.					
3	To learn how to apply semi-classical method to treat the interaction of atoms with field.					
4	To learn how to treat Two –level systems Quantum Mechanically.					
5	To learn the basics of relativistic quantum Mechanics.					
Module	Course Outcome:					
1	Will be able to solve and analyse various quantum mechanical problem related to Time Independent Perturbation Theory.					
2	Will be able to treat molecules quantum mechanically .					
3	Will be able to apply semi-classical method to treat atom field interactions.					
4	Will be able to treat Two- Level System Quantum Mechanically.					
5	Will be able to understand the central concept and principles of relativistic Quantum Mechanics.					
Module-1	Perturbation theory, time-independent perturbation theory (non-degenerate and degenerate) and applications. Stark effect and other simple cases. Relativistic perturbation to hydrogen atom. Energy levels of hydrogen including fine structure, Lamb shift and hyperfine splitting . Zeeman effect (normal and anomalous) time, first and second order, the effect of the electric field on the energy levels of an atom (Stark effect)					
Module-2	Quantum mechanics of molecules, Born-Oppenheimer approximation	5				
Module-3	Time-dependent perturbations, first order transitions, Semi- classical theory of interaction of atoms with field. Quantization of radiation field. Hamiltonian of field and atom, Fermi golden rule, the Einstein's A & B coefficients.	10				
Module-4	Atom field interaction, density matrix equation, closed and open two-level atoms, Rabi oscillations.	10				
Module-5	Relativistic wave equations: Klein-Gordon equation for a free particle and particle under the influence of an electromagnetic potential, Dirac's relativistic Hamiltonian, Dirac's relativistic wave equation, positive and negative energy states, significance of negative energy states.	10				
Book: 1. Quantur References	m Mechanics by L. I. Schiff. (Tata McGraw Hill, New Delhi)					
 Quanti Quanti 	um Mechanics by L. D. Landau and E. M. Lifshitz (Pergamon,	Berlin Indi				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	N
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks				\checkmark	\checkmark
Quiz 1					
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

16.Student Feedback on Faculty

17.

Outcome

Student Feedback on Course

Mapping between Objectives and Outcomes rse Objectives and Course Outcomes

Mapping between Course Objectives and Course Outcomes						
Course Objectives	1	2	3	4	5	
A	Н	L	М	М	L	
В	L	Η	L	L	L	
С	М	L	Η	М	L	
D	М	L	Μ	Н	L	
Е	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes										
Outcome #	a	В	с	d	e	f		h	i	j	k	1
1	Н	Н	Η	Μ	Η	Н						
2	Н	Н	Н	Μ	Н	Н						
3	Н	Н	Н	Μ	Η	Н						
4	Н	Н	Η	Μ	L	Н						
5	Н	Н	Η	Μ	Μ	Н						

		IVI	app	ing Between COs and Course	Delly	er	y (CD Cours	-	1	Delivery
CD	Course I	Deliver	y me	thods			Outco		Method	v
CD1				rds/LCD projectors/OHP projectors			CC	01	CD1	CD2
CD2	Tutorials						CC	02	CD1	CD2
CD3	Seminars	-					CC)3	CD1	CD2
CD4	Mini pro	jects/Pr	oject	S			CC)4	CD1	CD2
CD5				nts/teaching aids			CC		CD1	CD2
CD6	Industria							-	_	-
CD7		<u> </u>		ant training						
CD8			-	use of NPTEL materials and internets						
CD9	Simulatio	-	en us							
			n pla	nning Details.						
Week		Tent	C	Topics to be covered	Text		COs	Actual	Method	Remark
No.	No.	ative	h.	1	Book	/	map	Content	ology	s by
		Date	Ν		Refere	e	ped	covered	Used	faculty
			о.		nces		-			if any
1	L1-L6			Perturbation theory, time-	T1-					
				independent perturbation theory	T2-R	1				
				(non-degenerate and degenerate)						
				and applications.						
	L7-L9			Stark effect and other simple	T1-					
				cases. Relativistic perturbation to	T2_R					
				hydrogen atom.	1					
	L10-			Energy levels of hydrogen	T1 T	2				
	L12			including fine structure, Lamb	R1					
				shift and hyperfine splitting						
	L13-			Zeeman effect (normal and	T1 T	2				
	L15			anomalous) time, first and second	R1					
				order, the effect of the electric						
				field on the energy levels of an						
				atom (Stark effect)						
	L16-			Quantum mechanics of molecules,	T1 T	3				
	L20			Born-Oppenheimer approximation	R1					
	L21-			Time-dependent perturbations,	T1 T	3				
	L24		1	first order transitions, Semi-	R1					
			1	classical theory of interaction of						
				atoms with field.						
	L25-		1	Quantization of radiation field.		2				
	L28			Hamiltonian of field and atom,	R1					
	L29-		1	Fermi golden rule, the Einstein's	T1 T2	,				
	L30			A & B coefficients.						
	L31-		1	Atom field interaction, density	T1 T2	,				
	L34			matrix equation,						
	L35-		1	closed and open two-level atoms,	T1 T	2				
	L38			Rabi oscillations.	T3					
	L39-		1	Relativistic wave equations:		2				
	L44		1	Klein-Gordon equation for a free	T3					
			1	particle and particle under the						
			1	influence of an electromagnetic						
			1	potential,						

L44-	18.	T1 T2		D
L50	irac's relativistic Hamiltonian, Dirac's relativistic wave equation, positive and negative energy states, significance of negative			
	energy states.			

Course code	: PH 503		
Course title:	Lasers Physic	cs and Applicat	tions
Pre-requisite	e(s): Waves ar	nd Optics	
Co- requisite	e(s):	-	
Credits: 3	L:3T:1	P: 0	
Class schedu	le per week:		
Class: I.M.S	c.		
Semester / L	evel: IX / III		
Branch: PH	YSICS		
Name of Tea	cher:		

Code: PH 503		Г-Р-С 1-0-4]			
Course Ob	iectives				
	e enables the students:				
	To identify conditions for lasing phenomenon and properties of the laser.				
1.	To discuss stable, unstable resonators and cavity modes.				
2.	To compare continuous and pulsed lasers.				
3.	To classify different types of lasers with respect to design and working principles				
4.	To illustrate various applications of laser e.g. holographic non-destructive testing.				
Course O					
	ompletion of this course, students will be:				
1.	To evaluate conditions for lasing phenomenon and properties of the laser.				
2.	To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one				
3.	To evaluate Q-switching and the mode-locked lasing phenomenon.				
4.	To appraise different type of lasers with respect to design and working principles.				
5. To assess applications of a laser for measurement of distance, holography and medical surgeries etc.					
Module-2T	absorption. Population inversion, gain oscillation, gain saturation, threshold, rate equation, 3 and 4 level systems, laser line shape, hole burning, Lamb dip, output power. Properties of laser: coherence, monochromaticity, divergence. heory of resonator. Stable and unstable resonator, Optical cavities, Cavity modes, longitudinal [10] and	1			
	transverse modes of the cavity.				
Module-3	Continuous wave, Pulsed, Q- switched and Modelocked lasers.	[5]			
Module-4	Different type of lasers, design (in brief) and functioning of different lasers - Ruby laser, Nd: YAG laser, He-Ne laser, CO ₂ laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser	[10]			
Module-5	Measurement with laser, alignment, targeting, tracking, velocity measurement, surface quality [10] measurement. Measurement of distance (interferometric, pulse echo, Beam modulation). laser gyroscope, Holographic nondestructive testing (NDT). Application in communication. Material Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trapping.				
T2: Las R1 K. S R2: Las R3 Las	Svelto; Principles of Lasers, Springer (2004) er Fundamentsls: William T. Silfvast, Cambridge University Press (1998) chimoda, Introduction to laser Physics, Springer Verlag, Berlin (1984) er Electronics: J.T.Verdeyen, 3rdEd, Prentice Hall (1994) er Applications in Surface Science and Technology; H.G.Rubahn; John Wiley & Sons (1999) iccal Methods in Engineering Metrology: Ed D.C.Williams; Chapman & Hall				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks				\checkmark	
Quiz 1					
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

					1
Course Objectives	1	2	3	4	5
А	Η	Μ	М	L	М
В	Μ	Η	М	L	L
С	L	L	Н	L	L
D	-	L	L	Н	L
Е	L	М	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
	а	b	с	d	e	f	
1	Η	Н	Н	Н	L	Н	
2	Н	Н	Н	Н	М	Н	
3	Н	Н	Н	М	L	М	
4	Η		Н	Н	L	М	
5	М	Н	Η	Η	Н	Н	

	Mapping Between COs and Course Delivery	(CD) methods	
CD	Course Delivery methods	Course Outcome	Course Delivery Method
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
CD8	Self- learning such as use of NPTEL materials and internets	-	-
CD9	Simulation		-

Week No.	Lect. No.	Tent ative Date	Ch. No.	Topics to be covered	Text Book / Refere nces	COs mapp ed	Actual Content covered	Methodology used	Remarks by faculty if any
1	L1-L2		1	Interaction of radiations with atoms and ions	T1, T2,	1,2		PPT Digi Class/Chock -Board	
	L3-L7			SpontaneousandStimulatedemissions,Stimulatedabsorption.Populationinversion,gain oscillation		1,		Digi Class/Chock -Board	
	L8- L10			gain saturation, threshold, rate equation, 3 and 4 level systems,		1,2		Digi Class/Chock -Board	
	L11- L14			laser line shape, hole burning, Lamb dip, output power.		1,2,3		Digi Class/Chock -Board	
	L15			Properties of laser: coherence, monochromaticity, divergence.		1,2		Digi Class/Chock -Board	
	L16- L18			Theory of resonator. Stable and unstable resonator,		1		Digi Class/Chock -Board	
	L19- L25			Optical cavities, Cavity modes, longitudinal and transverse modes of the cavity.		2		Digi Class/Chock -Board	
	L26- L30			Continuous wave, Pulsed, Q- switched and Modelocked lasers.		3		Digi Class/Chock -Board	
	L31-35			Different type of lasers, design (in brief) and functioning of different lasers -		4		Digi Class/Chock -Board	

L36- L40	Ruby laser, Nd: YAG laser, He-Ne laser, CO_2 laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser	4	Digi Class/Chock -Board
L41- L45	Measurement with laser, alignment, targeting, tracking, velocity measurement, surface quality measurement.	5	Digi Class/Chock -Board
L46- L50	Measurement of distance (interferometric, pulse echo, Beam modulation). laser gyroscope, Holographic nondestructive testing (NDT). Application in communication. Material Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trapping.		Digi Class/Chock -Board

Course code: PH 513 Course title: Laser Physics Lab Pre-requisite(s): Laser Physics and Applications Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr K. Bose

	Laser Physics Lab	
		L-T-P-C [0-0-4-2]
1.	To determine the wavelength of sodium light using Michelson Interferometer	
2.	Demonstrate interference fringe pattern using Mach Zhender interferometer.	
3.	Study of mercury spectrum using grating and spectrometer.	
4.	Determine the coherence length of a diode laser using a Michelson Interferometer.	
5.	Perform Faraday Effect experiment and find verdet constant of flint glass.	
6.	To study the birefringence with respect to applied voltage in an electro optic crystal.	
7.	To determine the Kerr constant of the liquid (Nitro Benzene)	
8.	Study of hydrogen spectrum using grating and spectrometer.	
9.	To find the velocity of ultrasonic wave in a liquid using ultrasonic diffraction appara	tus.

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

I.M.Sc. X / M.Sc. IV Semester

PE- VI & VII

Two papers from the same Group A or B or C or D or E

Project from the same Group A or B or C or D or E

PE-V

Group A-	Theoretical and Computational Physics:	
	rical Methods for Physicists y of Solids	
Course code	<u>COURSE INFORMATION SHEET</u>	
Course title	: Numerical Methods for Physicists e(s): Mathematical Physics	
	ule per week:	
Class: I.M.S		
Semester / I Branch: PH		
Name of Te		
Group	A Option 1	
Code: PH 504	Title: Numerical Methods for Physicists	L-T-P-C [4- 0-0- 4]
	Theory & Programming using C for solving problems on following topics:	
	e Objectives	
This co	burse enables the students:	
	To learn about optimization techniques	
1.	To understand the concepts of functional approximations	
2.	To know about algebraic eigenvalue problems	
3.	To gain knowledge on integral equations	
4.	To gain familiarity with the numerical solutions of partial differental equations	
Course	e Outcomes	
After t	he completion of this course, students will be:	
1.	Able to perform optimization via coding	
2.	Able to do construct programs on functional approximations	
3.	Solving eigenvalue problems numerically	
4.	Comfortable in dealing with integral equations	
5.	Numerically able to solve partial differential equations	
Module-1	Optimization	[10]
	Golden Section Search, Brent's Method, Methods Using Derivative, Minimization in Several Dimensions, Quasi-Newton Methods, Direction Set Methods, Linear Programming	
Module-2	Functional Approximations	[10]
	Choice of Norm and Model, Linear Least Squares, Nonlinear Least Squares, Discrete Fourier Transform, Fast Fourier Transform (FFT), FFT in Two or More Dimensions, Functional Approximations	
Module-3	Algebraic Eigenvalue Problems	[10]
	Introduction,Power Method, Inverse Iteration, Eigenvalue Problem for a Real Symmetric Matrix , QL Algorithm for a Symmetric Tridiagonal Matrix, Algebraic Eigenvalue Problem	
Module-4	Integral Equations	[10]
	Introduction, Fredholm Equations of the Second Kind, Expansion Methods, Eigenvalue Problem, Fredholm Equations of the First Kind, Volterra Equations of the Second Kind, Volterra Equations of the First Kind	

	Module-5	Partial Differential Equations	[10]
		Wave Equation in Two Dimensions, General Hyperbolic Equations, Elliptic Equations ,	
		Successive Over-Relaxation Method, Alternating Direction Method, Fourier Transform Method,	
		Finite Element Methods, Algorithms for Vector and Parallel Computers	
ľ			

References

- 1. "Numerical methods for Scientists and Engineers" by H. M. Antia, Springer Science and Business Media.
- 2. "Numerical Recipes in C" by William H. Press, Saul A. Teukolsky, William T. Vetterling & Brian P. Flannery, Cambridge University Press.
- 3. "Programming in C# A Primer" by E Balagurusamy, McGraw Hill Education.

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark		
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

19.Student Feedback on Faculty 20.

Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	L	-	-	-
В	М	Н	L	-	М
С	М	L	Н	-	М
D	М	L	L	Н	М
Е	М	L	L	L	Н

Course Outcome #	Progr	Program Outcomes							
	a	b	c	d	e	f			
1	L	Μ	Μ	Μ	L	Μ			
2	L	Μ	Μ	Μ	L	Μ			
3	L	Н	Μ	Μ	L	Μ			
4	L	Н	Μ	Μ	Η	Μ			
5	L	Н	Μ	Μ	Η	Μ			

	Lect		Ch.	ning Details. Topics to be covered	Text Book	Cos	Actual	Methodolo	Remar
No.	No.	ve Date		Topics to be covered	/	mapp	Content	gyused	ks by
110.	110.	ve Date	110.		' Reference	ed	covered	gyuseu	faculty
					s	cu	covercu		if any
1	L1-			Golden Section Search, Brent's		1		Board,	ii uiiy
1	L3			Method, Methods Using		1		Computers	
	25			Derivative				computers	
2	L4-				T1,T2,T3	1		Board,	
2	L4 L6			Dimensions, Quasi-Newton		1		Computers	
	20			Methods				compaters	
3	L7-			Direction Set Methods, Linear	T1 T2 T3	1		Board,	
5	L9			Programming	11,12,13	1		Computers	
4	L10-			Choice of Norm and Model,	T1,T2,T3	2		Board,	
•	L10			Linear Least Squares, Nonlinear		Ĺ		Computers	
				Least Squares				comparens	
5	L13-		<u> </u>	Discrete Fourier Transform, Fast	T1,T2,T3	2		Board,	
-	L15			Fourier Transform (FFT),	11,12,13	–		Computers	
6	L16-			FFT in Two or More Dimensions,	T1,T2,T3	2		Board,	
0	L18			Functional Approximations	11,12,13			Computers	
7	L19-				T1,T2,T3	3		Board,	
,	L1)=			Inverse Iteration,	, 11,12,13	5		Computers	
8	L22-			Eigenvalue Problem for a Real	T1,T2,T3	3		Board,	
0	L22-			Symmetric Matrix , QL		5		Computers	
	221			Algorithm for a Symmetric				compaters	
				Tridiagonal Matrix					
9	L25-			Algebraic Eigenvalue Problem	T1,T2,T3	3		Board,	
-	L27				11,12,10	5		Computers	
10	L28-			Introduction, Fredholm Equations	T1,T2,T3	4		Board,	
10	L30			of the Second Kind, Expansion	11,12,10			Computers	
				Methods				r i i i i i i i i i i i i i i i i i i i	
11	L31-				T1,T2,T3	4		Board,	
	L33			Equations of the First Kind	7 7 -			Computers	
12	L34-			Volterra Equations of the Second	T1,T2,T3	4		Board,	
	L36			Kind, Volterra Equations of the	, ,			Computers	
				First Kind					
13ті,т	L37-			Wave Equation in Two	T1,T2,T3	5		Board,	
2,T3	L39			Dimensions, General Hyperbolic		_		Computers	
				Equations, Elliptic Equations					
14	L40-			Successive Over-Relaxation	T1,T2,T3	5		Board,	1
	L42			Method, Alternating Direction				Computers	
				Method, Fourier Transform					
				Method					
15	L43-		1	Finite Element Methods,	T1,T2,T3	5		Board,	
	L45			Algorithms for Vector and				Computers	
				Parallel Computers					

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Group A

Option 3

Code: PH 505	Title: Theory of Solids							
Course Ob	jectives : This course enables the students							
A.	To become familiar with classification of solids using band theory.							
В.	To be familiarized with the change in density of states as a function of physical dimension of so	lids.						
C.	C. To become familiar with the electrical behaviour of dielectric materials and understand the field induced by dielectrics.							
D.								
E.	To understand the different optical processes and photophysical properties of solids.							
Course Ou	tcomes : After the completion of this course, students will be							
1.	Able to classify materials as metals, insulators and semiconductors and sketch the band diagram	for each.						
2.	Able to classify material as 0D, 1D, 2D and 3D on the basis of density of states and correlate the properties with physical dimensions.							
3.	Able to describe the different dielectric properties and be familiar with the experimental method investigation of dielectrics.	ls for						
4.	Able to apply the theories to estimate the magnetic properties of materials.							
5.	Able to correlate the results of different optical experiments with the theory.							
Module-1	Band TheoryReview of Concepts: (Bloch theorem and Bloch function, Kronig Penney model),Construction of Brillouin zones (1 and 2 dimensions), Extended, reduced and periodic zonescheme, Effective mass of an electron, Nearly free electron model, Tight bindingapproximation, Orthogonalized plane wave method, Pseudo-potential method,Classification of conductor, semiconductor and insulators.	[8]						
Module-2	Electron Statistics Fermi-Dirac distribution, Fermi energy, Density of States, Classification of solids (0D, 1D, 2D, 3D) on the basis of density of states and k-space, effect of temperature on Fermi distribution function.	[6]						
Module-3	DielectricsMatter in a.c. field, Propagation of e.m. wave in matter on the basis of Maxwell's equation, Relaxations and resonances, Kramer's-Kronig relation, Mechanical analogue of relaxation, Debye relation, Argand diagram, Influence of local field and d.c. conductivity and multiple relaxation times, Special diagram (cole-cole arc), Heterogeneous dielectrics (Maxwell- Wagner effect), Dipole relaxation of defects in crystal lattices, Space charge polarization and relaxation, Resonances: Linear oscillator model and one dimensional polar lattices, Ferroelectricity, Microscopic theory of Ferroelectricity, Phase transition of ferroelectrics 	[10]						
Module-4	MagnetismMagnetic interactions, Exchange interaction, Direct exchange, Indirect exchange, Doubleexchange, Helical order, Frustration, Spin glasses, Landau theory of ferromagnetism,Heisenberg and Ising models, Excitations, Magnons, Bloch T ^{3/2} law, Measurement of spinwaves, Magnetism of the electron gas, Spin density waves, Kondo effect.	[8]						

Module-5	Optical properties	[8]
	Classification of optical process, optical coefficient, complex refractive index, propagation	
	of light in a dense optical medium, atomic oscillator, vibrational oscillator, free electron	
	oscillator, dipole oscillator model, inter band absorptions, excitons, concept of excitons,	
	free excitons, free excitons in external field, luminescence, light emission from solids,	
	interband luminescence, photoluminescence, electroluminescence, luminescence centres,	
	phonons, optical properties of metals.	
Toyt book		

Text book

- 1. Introduction to Solid State Physics 8thEdition , Charles Kittel, John Wiley and Sons, 2005.
- 2. Solid State Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976

References:

- 1. Optical properties of Solids: Anthony Mark Fox, Oxford Master Series in Physics, Oxford University Press (2001).
- **2.** Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press (2001).

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	\checkmark
Quiz 1	\checkmark	\checkmark			
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #						
	а	b	С	d	e	f
1	Н	М	М	L	М	L
2	Н	М	М	L	L	L
3	М	Н	Н	L	М	М
4	Н	Н	Н	L	М	М
5	М	Н	Н	L	М	М

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Course Objectives						
	а	b	с	d	e		
1	Н	М	L	L	М		
2	М	Н	L	L	L		
3	L	L	Н	L	М		
4	L	L	L	Н	L		
5	М	L	М	М	Н		

	Mapping Between COs and Course Delivery (CD) methods								
СD	Course Delivery methods		Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments		CO2	CD1, CD2 and CD8					
CD3	Seminars		CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

Week	Lect.	Tent	Modul	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	ative	е		Book /	mappe	Content	used	by
		Date	No.		Refere	d	covered		faculty if
					nces				any
1	L1-L2		Ι	Review of Concepts: (Bloch	T1, T2	1, 2		PPT Digi	
				theorem and Bloch function,				Class/Chalk	
								-Board	
1	L3			Kronig Penney	T1, T2			PPT Digi	
				model)Construction of				Class/Chalk	
				Brillouin zones (1 and 2				-Board	
				dimensions)					
1	L4-L5		1	Extended, reduced and	T1, T2			PPT Digi	
				periodic zone scheme				Class/Chalk	

			Effective mass of an electron,		-Board
2	L6		Nearly free electron model	T1, T2	PPT Digi Class/Chalk -Board
2	L7		Tight binding approximation	T1, T2	PPT Digi Class/Chalk -Board
2	L8-L9		Orthogonalized plane wave method,Pseudo-potential method	T1, T2	PPT Digi Class/Chalk -Board
3	L10		Classification of conductor, semiconductor and insulators	T1, T2	PPT Digi Class/Chalk -Board
4	L11	II	Fermi-Dirac distribution	T1, T2	PPT Digi Class/Chalk -Board
4	L12-13		Fermi energy	T1, T2	PPT Digi Class/Chalk -Board
5	L14-16		Density of States, Classification of solids (0D, 1D, 2D, 3D) on the basis of density of states	T1, T2	PPT Digi Class/Chalk -Board
5	L17		k-space	T1, T2	PPT Digi Class/Chalk -Board
6-7	L18-20		Effect of temperature on Fermi distribution function.	T1, T2	PPT Digi Class/Chalk -Board
	L21	III	Matter in a.c. field, Propagation of e.m. wave in matter on the basis of Maxwell's equation	T1, T2	PPT Digi Class/Chalk -Board
	L22		Relaxations and resonances	T1, T2	PPT Digi Class/Chalk -Board
	L23		Kramer's-Kronig relation, Mechanical analogue of relaxation	T1, T2	PPT Digi Class/Chalk -Board
	L24		diagram	T1, T2	PPT Digi Class/Chalk -Board
	L25		Influence of local field and d.c. conductivity and multiple relaxation times	T1, T2	PPT Digi Class/Chalk -Board
	L26		Special diagram (cole-cole arc), Heterogeneous dielectrics (Maxwell-Wagner effect)		PPT Digi Class/Chalk -Board
	L27		Ferroelectricity, Microscopic		PPT Digi Class/Chalk

		theory of Ferroelectricity		-Board
L28		Phase transition of	T1, T2	PPT Digi
		ferroelectrics $(1^{\text{st}}, 2^{\text{na}})$ and		Class/Chalk
		relaxor kind),		-Board
L29		Hysteresis loop, Recoverable	T1, T2	PPT Digi
222		energy,	11, 12	Class/Chalk
		energy,		-Board
L30		Piezoelectricity and	T1, T2	PPT Digi
230		transducers.	11, 12	Class/Chalk
				-Board
L31	IV	Magnetic interactions,	T1 T2	PPT Digi
201		Exchange interaction	R2	Class/Chalk
				-Board
L32		Direct exchange, Indirect	Т1, Т2,	PPT Digi
132		exchange	R2	Class/Chalk
		exenuinge	112	-Board
L33-34		Double exchange, Helical	Т1 Т2	PPT Digi
L33-34		order, Frustration, Spin		Class/Chalk
		glasses	112	-Board
L35		0	T1 T2	
L33		•	T1, T2, R2	PPT Digi Class/Chalk
		ferromagnetism,	K2	-Board
1.26.27			T 1 T 2	
L36-37		Heisenberg and Ising models,	T1, T2,	PPT Digi
		Excitations,	R2	Class/Chalk -Board
		D1 1 m ² /4 1	T (T)	
L38		Magnons, Bloch $T^{5/2}$ law,	T1, T2,	PPT Digi
			R2	Class/Chalk
1.20			F 1 F 2	-Board
L39		Measurement of spin waves	T1, T2,	PPT Digi
			R2	Class/Chalk
L 40			T 1 T 2	-Board
L40		Spin density waves, Kondo		PPT Digi
		effect.	R2	Class/Chalk
			F 1 F 2	-Board
L41	V		T1, T2,	PPT Digi
		process, optical coefficient	R1	Class/Chalk
				-Board
L42		-	T1, T2,	PPT Digi
		propagation of light in a	R1	Class/Chalk
		dense optical medium		-Board
L43		atomic oscillator, vibrational		PPT Digi
		oscillator	R1	Class/Chalk
				-Board
L44-45		free electron oscillator, dipole	T1, T2,	PPT Digi
		oscillator model	R1	Class/Chalk
				-Board
L46			T1, T2,	PPT Digi
		absorptions, excitons, concept	R1	Class/Chalk
		of excitons, free excitons,		-Board
		free excitons in external field		
L47		luminescence, light emission	T1, T2,	PPT Digi
				Class/Chalk

	from solids	R1	-Board
L48	interband luminescence, photoluminescence	T1, T2, R1	PPT Digi Class/Chalk -Board
L49	electroluminescence,luminesc ence centres	T1, T2, R1	PPT Digi Class/Chalk -Board
L50	phonons, optical properties of metals.	T1, T2, R1	PPT Digi Class/Chalk -Board

Group B- <u>Condensed Matter Physics:</u> Theory of Solids Functional Materials

COURSE INFORMATION SHEET

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Group B

Option 1

Same given As above(in Group A)

Course code: PH 506 Course title: Functional Materials Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4L:4 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Option 2

Group: B

Code: PH 506	Title: Functional Materials	L-T-P-C [4-0-0-4]
Module-1	Introduction to Metals, Alloys, Ceramics, Polymers and Composites, Phase rules Fe-C phase diagram, Steels, cold, hot working of metals, recovery, recrystallization and grain growth, Structure, properties.	[8]
Module-2	Processing and applications of ceramics. Classification of polymers, polymerization, structure, properties, additives, products, processing and applications. Quasicrystals, Conducting Polymers; Properties and applications composites.	[12]
Module-3	Advanced Materials: Smart materials, ferroelectric, piezoelectric, biomaterials (some basic information), superalloys, aerospace materials, shape memory alloys, optoelectronic materials, Materials for photodiode, light emitting diode (LED), Photovoltaic/Solar cell and meta materials	[10]
Module-4	Nanostructured Materials: Nanomaterials classification (Gleiter's Classification)–property changes done to size effects, Quantum dot, wire and well, synthesis of nanomaterials, ball milling.	[8]
Module-5	Liquid state processing -Sol-gel process, Vapour state processing –CVD, MBE, Aerosol processing, fullerene and tubules, formation and characterization of fullerenes and tubules, single wall and multiwall carbon tubules, electronic properties of tubules, applications: optical lithography, MOCVD, super hard coating.	[12]
Text bo	oks:	
	cture and properties of engineering materials, fifth edition, Henkel and Pense, McGraw Hill, 200	2
	naterials Science, An Introduction to Materials in Medicine, Edited by B.D. Ratner, A.S.	
Hoffmar	n, F.J. Sckoen, and J.E.L Emons, Academic Press, second edition, 2004	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz 1					
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

21.Student Feedback on Faculty

22.

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	f
1	Н	Н	Н	L	М	L
2	М	Н	Н	L	L	L
3	Н	М	М	М	М	М
4	М	Н	М	М	Н	М
5	Н	Н	Н	L	Н	L

Course Outcome #			Course Object		
	А	В	С	D	E
1	Н	М	М	М	М
2	L	Н	L	L	М
3	L	М	Н	М	М
4	Н	L	Н	Н	L
5	Н	М	М	L	Н

Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tentati	v Modu	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	e Date	le. No.		Book / Refere	mapped		0.	by faculty if
					nces		covered		any
1	L1		Ι	Introduction to Metals, Alloys	T1			PPT Digi	
								Class/Chal	
								k-Board	
1	L2			Ceramics	T1, T2			PPT Digi	
								Class/Chal	
1	1.0				F 1 F 2			k-Board	
1	L3-			Polymers and Composites, Phase	11,12			PPT Digi	
	L4			rules				Class/Chal k-Board	
2	L5			Fe-C phase diagram	T1			PPT Digi	
2	1.5				11			Class/Chal	
								k-Board	
2	L6-			Steels, cold, hot working of metals,	T1			PPT Digi	
	L8			recovery, recrystallization and grain				Class/Chal	
				growth, Structure, properties.				k-Board	
2	L9-			Processing and applications of	T1			PPT Digi	
	L10			ceramics.				Class/Chal	
								k-Board	
3	L11-			Classification of polymers,	T1			PPT Digi	
	L13			polymerization, structure,				Class/Chal	
			II	properties				k-Board	
3	L14-			additives, products, processing and	T1			PPT Digi	
	L16			applications.				Class/Chal	
3	L17-			Ourseiemustele	T1			k-Board PPT Digi	
3	L17- L18			Quasicrystals	11			Class/Chal	
	LIO							k-Board	
4	L19-			Conducting Polymers; Properties	T1			PPT Digi	
	L20			and applications composites.				Class/Chal	
								k-Board	
4	L21-			Advanced Materials: Smart	T1			PPT Digi	
	22			materials,				Class/Chal	
								k-Board	
5	L23-			Ferroelectric, piezoelectric,	T1			PPT Digi	
	24							Class/Chal	
5	L25-			Biomaterials (some basic	T2			k-Board	
5	L25- L26			Biomaterials (some basic information), superalloys,	12			PPT Digi Class/Chal	
			III	mormation, superanoys,				k-Board	
6	L27-		-	Aerospace materials, shape memory	T1	1	<u> </u>	PPT Digi	<u> </u>
	L28			alloys,				Class/Chal	
								k-Board	
6-7	L29-			Optoelectronic materials, Materials	T1			PPT Digi	
	L30			for photodiode, light emitting diode				Class/Chal	
				(LED), Photovoltaic/Solar cell and				k-Board	
				meta materials					
	L31-		IV	Nanostructured Materials:	T1			PPT Digi	

L32		Nanomaterials classification		Class/Chal
		(Gleiter's Classification)		k-Board
L33-		Property changes done to size	T1	PPT Digi
L35		effects,		Class/Chal
				k-Board
L36-		Quantum dot, wire and well,	T1	PPT Digi
L38				Class/Chal
				k-Board
L39-		synthesis of nanomaterials, ball	T2	PPT Digi
L40		milling.		Class/Chal
				k-Board
L41-		Liquid state processing -Sol-gel	T1, T2	PPT Digi
L43		process, electronic properties of		Class/Chal
		tubules, applications		k-Board
L44-		Vapour state processing -CVD,	T1	PPT Digi
L46	V	MBE		Class/Chal
				k-Board
L47-		Aerosol processing, fullerene and	T1	PPT Digi
L48		tubules,		Class/Chal
				k-Board
L49-		Formation and characterization of	T1	PPT Digi
L50		fullerenes and tubules, single wall		Class/Chal
		and multiwall carbon tubules		k-Board

Group C – <u>Photonics:</u>

Fiber and Integrated Optics Quantum & Nonlinear Optics

		COURSE INFORMATION SHEET	
Course code: PH 507			
Course title: Fiber and Integrated Optics Pre-requisite(s): Waves and Optics			
Credi	ts:	4 L:4 T:0 P:0	
Class	sched	ule per week:	
Class:		-	
		Level: PE V	
		YSICS	
Name			
1 vuine	. 01 10	Group C Option : 1	
		Group C Option . 1	
	ode:	Title: Fiber and Integrated OpticsL-T-P-C	
P	H 507	[4-0-0-4]	
Cours	se Obj	ectives : This course enables the students:	
Ī		To understand the light propagation phenomenon through fiber optic cable	
Ī	1.	To understand various loss mechanism of signal while travelling through an optical fiber.	
t	2.	To understand the basic working principle of waveguides and its design parameters.	
	3.	To identify waveguides for applications in fiber optics communication systems	
-	4.	To understand the principle of working of fiber based sensors for various application purposes.	
Cour		tcomes : After the completion of this course, students will be:	
Cour	1.	Able to illustrate the principle of fiber optics communications.	
-			
-	2.	Able to distinguish between various loss mechanism in fiber optics communication system.	
-	3.	Able to utilize the idea of waveguide for different application purpose.	
-	4.	Able to categorise different waveguides for the utilization in optics communication system	
	5.	Able to interpret different fiber sensors and their respective application and can recommend this	
		technique for other new application.	
	1		
Modul	le-1	Principle of light propagation in fibers, step-index and graded index fibers; single mode,	5
		multimode and W-profile fibers. Ray optics representation, meridional and skew rays. Numerical	
		aperture and acceptance angle.	
Modul	le-2	Dispersion, combined effects of material and other dispersions - RMS pulse widths and	10
		frequency response, birefringence. Attenuation in optical fibers. Material dispersion and	
		waveguide dispersion in single-mode fibers, Inter and intramodal dispersion in graded-index	
		fibers	
Modu	le-3	Theory of optical waveguides, planar, rectangular, symmetric and asymmetric waveguides,	12
		channel and strip loaded waveguides. Anisotropic and segmented waveguides. Step-index and	
		graded index waveguides, guided and radiation modes. Arrayed waveguide devices. Fabrication	
		of integrated optical waveguides and devices.	
Modul	le-A	Wave guide couplers, transverse couplers, grating couplers, tapered couplers, prism couplers,	13
mouu	т - т	fiber to waveguide couplers. Multilayer planar waveguide couplers, dual channel directional	13
		couplers, Butt coupled ridge waveguides, Branching waveguide couplers. Directional couplers,	
14 1 1	1 7	optical switch; phase and amplitude modulators, filters, etc. Y-junction, power splitters	10
Modul	le-5	Fiber optics sensors, intensity modulation, phase modulation sensors, fiber Bragg grating	12
		sensors. Measurement of current, pressure, strain, temperature, refractive index, liquid level etc.	
		Time domain and frequency domain dispersion measurement, fibre lasers and fibre gyroscope.	

Text books:

- T1: Introduction to Fiber Optics: A.K. Ghatak and K. Thayagarajan, Cambridge University press
- T2: Integrated Optics: Theory and Technology; R. G. Hunsperger; Springer
- T3: Optical Fiber Sensors, John Dakin and Brain Culshaw, Arctech House Inc
 - Reference books: R1:

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark		
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	Μ	М	М	L
В	М	Н	М	М	
С	Μ	Μ	Н	М	L
D	L	Μ	Н	Н	М
Е	Μ	Μ	Н	Н	Η

Course		Program Outcomes						
Outcome #	a	a b c d e f						
1	М	Н	Н		L	Н		
2	М	Н	М		М	Н		
3	М	Н	Н	L	L	М		
4	М	М	Н	L	М	М		
5	М	М	М	L	Н	Н		

Mapping of Course Outcomes onto Program Outcomes

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	1	Tentativ		Topics to be covered	Text	Cos	Actual	Methodolog	Remark
No.	No.	e Date	No.		Book/ References	mapped	Content covered	y used	s by aculty if any
	L1-L2			Principle of light propagation in fibers, step-index and graded index fibers; single mode, multimode and W-profile fibers	T1, T2	CO1		PPT Digi Class/Choc k-oard	
	L3-L5			Ray optics representation, meridional and skew rays. Numerical aperture and acceptance angle.	T1, T2	CO1		PPT Digi Class/Choc k-Board	
	L6-L7			Dispersion, combined effects of material and other dispersions		CO2		PPT Digi Class/Choc k-Board	
	L8- L11			RMS pulse widths and frequency response, birefringence. Attenuation in optical fibers.	T1, T2	CO2		PPT Digi Class/Choc k-oard	
	L12- L15			Material dispersion and waveguide dispersion in single-mode fibers, Inter and intramodal dispersion	T1, T2	CO2		PPT Digi Class/Choc k-Board	

	in graded-index fibers		
L16- L19	TheoryofopticalT1, T2waveguides,planar,rectangular,symmetricandasymmetricwaveguides,channelandstrip loaded		PPT Digi Class/Choc k-Board
L20- L23	Anisotropic and T1, T2 segmented waveguides. Step-index and graded index waveguides, guided and radiation modes		PPT Digi Class/Choc k-Board
L24- L27	Arrayed waveguide T1, T2 devices. Fabrication of integrated optical waveguides and devices.		PPT Digi Class/Choc k-Board
L28- L31	Wave guide couplers, T1, T2 transverse couplers, grating couplers, tapered couplers, prism couplers, fiber to waveguide couplers	CO4	PPT Digi Class/Choc k-Board
L32- L35	Multilayer planar T1, T2 waveguide couplers, dual channel directional couplers, Butt coupled ridge waveguides, Branching waveguide couplers	CO4	PPT Digi Class/Choc k-Board
L36- L39	Directional couplers T1, T2 optical switch; phase and amplitude modulators		PPT Digi Class/Choc k-Board
L40	filters, Y-junction, power T1, T2 splitters		PPT Digi Class/Choc k-Board
L41- L44	Fiber optics sensors, T3 intensity modulation, phase modulation sensors, fiber Bragg grating sensors	CO5	PPT Digi Class/Choc k-Board
L45- L48	Measurement of current, T3 pressure, strain, temperature, refractive index, liquid level etc.	CO5	PPT Digi Class/Choc k-Board
L49- L52	Time domain and T3 frequency domain dispersion measurement, fibre lasers and fibre gyroscope.	CO5	PPT Digi Class/Choc k-Board

Course code: PH 508 Course title: Quantum and Nonlinear Optics Pre-requisite(s): Waves and Optics Co- requisite(s): Credits: 4L:4 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher Group C Option 2

Code: PH 508		Titles: Quantum and Nonlinear Optics	L-T-P-C [4-0-0-4]			
This course	enables the	e students:				
А.	1	fy the phenomenon of the nonlinear optical interaction of light	with matter			
В.		ine higher harmonic generations, two-photon absorption ar		ring		
	phenomer			C		
C.	To formu	late nonlinear optics in two-level approximations				
D.	To analyse intensity dependent phenomenon					
Е	To identif	fy nonlinear optical phenomenon for applications in optical dev	vices			
Course Out	tcomes Aft	ter the completion of this course, students will be:				
1.	1	udge non-linear optical phenomenon				
2.	Apply kn	nowledge of nonlinear optical phenomena in higher harmo	nic generations, two	o-photor		
		n and stimulated scattering phenomenon	-	-		
3.	To solve	nonlinear optical interaction problem in two-level system				
4.	To evalua	ate intensity dependent material properties like refractive indice	es and self-focussing			
5.	To design	n non-linear optical devices				
odule -1	Non nonl optic	linear Optical Phenomena: Introduction to nonlinear optics linear optical interaction, phenomenological theory of nonlinea cal susceptibilities. Sum and difference frequency generation, eration, coupled wave equation	arity, nonlinear	10		
Iodule-2	field	hley-Rowe relations, phase matching of SHG, quasi phase matching of SHG (quasi phase matching induced SHG (EIFISH), optical parametric amplification, this eration, two-photon absorption. Stimulated Raman scattering a louin scattering.	ird harmonic	10		
Iodule-3	Two equa field	b level atoms: nonlinear optics in two level approximations, de ation, closed and open two-level atoms, steady state response in d, Rabi oscillations, dressedatomic state, optical wave mixing ems, photon echo, self-induced transparency, optical nutation,	n monochromatic in two level	10		
Iodule-4	tensit self- optic Self phot	ty dependent phenomena: intensity dependent refractive index, -phase modulation, spectral broadening, optical continuum gen cal pulse. Optical phase conjugation, application of OPC in sig -induced transparency, spatial and temporal solitons, solitons i torefractive and quadratic solitons, Soliton pulses, optical -pression.	neration by short gnal processing. In Kerr media,	12		
Iodule-5	Non char	ilinear guided wave optical devices: nonlinear planar wave nnel waveguide, nonlinear directional coupler, nonlinear mode ch-Zehnder interferometer and logic gate, Nonlinear loop mirro	sorter, nonlinear	8		
Book:	_					
		s of Nonlinear Optics; P.E.Powers, CRC Press Francis and Tay	vlor (2011)			
	T	onlinear Optics; Y.R.Shen				
T3. Nonl	inear Optic	s: Robert Boyd, Academic press				

T3. Nonlinear Optics: Robert Boyd, Academic press

R1. Physics of Nonlinar Optics: Guang- Sheng -He and So ng-Hao Lin; World scientific.

R2. Two Level Resonances in Atoms; Allen and J.H. Emberly, John Wiley.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
Α	Η	Μ	Μ	L	М
В	Μ	Η	Μ	L	L
С	L	L	Н	L	L
D	-	L	L	Η	L
Е	L	Μ	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	Н	Н	Н	L	Н
2	Н	Н	Н	Н	М	Н
3	Η	Н	Н	М	L	М
4	Η	М	Н	Н	L	М
5	М	Н	Η	Н	Н	Н

Mapping Between COs and Course Delivery (CD) methods

CD	Course Delivery methods	Course Outcome	CourseDelivery Method
	Lecture by use of boards/LCD projectors/OHP		
CD1	projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
	Self- learning such as use of NPTEL materials and		
CD8	internets	-	-
CD9	Simulation	-	-

Week No.	Lect. No.	Tentativ e Date	Ch. No	Topics to be covered	Text Book / Refere Nces	COs mappe d	Actual Conte nt cover ed	Methodolog y used	Remark s by faculty if any
1	L1-L10		1	Nonlinear Optical Phenomena: Introduction to nonlinear optics, description of nonlinear optical interaction, phenomenological theory of nonlinearity, nonlinear optical susceptibilities. Sum and difference frequency generation, second harmonic generation, coupled wave equation	T1, T2,	1,2		PPT Digi Class/Chock -Board	
	L11- L20			Manley-Rowe relations, phase matching of SHG, quasi phase matching, electric field induced		2		Digi Class/Chock -Board	

r		1 1	· · · · · · · · · · · · · · · · · · ·
	SHG (EIFISH), optical		
	parametric		
	amplification, third		
	harmonic generation,		
	two-photon absorption.		
	Stimulated Raman		
	scattering and		
	scattering.		
L21-	Two level atoms:	3	Digi
L30	nonlinear optics in two		Class/Chock
	level approximations,		-Board
	density matrix equation,		
	closed and open two-		
	level atoms, steady state		
	response in		
	monochromatic field,		
	Rabi oscillations,		
	dressed		
	atomic state, optical		
	wave mixing in two		
	level systems, photon		
	echo, self-induced		
	transparency, optical		
	nutation, free induction		
	decay		
L31-	Intensity dependent	4	Digi
L31- L42	· -		Class/Chock
	phenomena: intensity		
	dependent refractive		-Board
	index, self-focusing,		
	self-phase modulation,		
	spectral broadening,		
	optical continuum		
	generation by short		
	optical pulse. Optical		
	phase conjugation,		
	application of OPC in		
	signal processing. Self-		
	induced transparency,		
	induced transparency,		
	1 .		
	spatial and temporal		
	spatial and temporal solitons, solitons in Kerr		
	spatial and temporal solitons, solitons in Kerr media, photorefractive		
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons,		
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical		
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse		
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical		
L43-	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression	5	Digi
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave	5	Digi Class/Chock
L43- L50	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices:	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar	5	
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide,	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide,	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional coupler, nonlinear mode	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional coupler, nonlinear mode sorter, nonlinear Mach-	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional coupler, nonlinear mode sorter, nonlinear Mach- Zehnder interferometer	5	Class/Chock
	spatial and temporal solitons, solitons in Kerr media, photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse compression Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional coupler, nonlinear mode sorter, nonlinear Mach-	5	Class/Chock

Group D – <u>Electronics:</u>

23. Instrumentation and Control

Option 1

24. Physics of Low dimensional Semiconductors

COURSE INFORMATION SHEET

Course code: PH 509 Course title: Instrumentation and Control Pre-requisite(s): Co- requisite(s): Credits: 4L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher: Dr. Dilip Kumar Singh

Group : D

С	ode:	Title: Instrumentation and Control L	-T-P-C					
Pl	H 509	4-	0-0-4					
Cour	se Ob	lectives						
This	course	enables the students:						
	1.	Course on <i>Instrumentation and control</i> intends to impart knowledge of measurement, data acquisition and control for experiments.						
	2.	The first module of the course addresses basics of measurements like range, resolution, reproducibility, accuracy and precision.						
	3.	Module-2 of the course introduces various types of sensors and their working to record changes in the different physical parameters.						
	4.	The techniques of signal conditioning and noise reductions for acquired data subject of Module-3.	are					
	5.	Last two units covers working and theory of different types of correction and regulating elements used in control systems.						
After	the co	mpletion of this course, students will be: Learners would develop understanding of various experimental parameters of manufacture and provision						
	2.	measurements like range, resolution, reproducibility and precision. Through this course, students would develop an insight into fundamentals of sensors / transducers, data acquisition and processing, noise minimization and control systems for automation.						
	3.	This course is expected to enable students to design and understand hardwares for developing equipment for data acquisition, data conditioning and control.	s used					
	4.	Course would enable students to grasp understanding of instrumentation for automation of various physical process monitoring and control.						
<u> </u>			<u> </u>					
M	odule	1 Measurement basics: Range, resolution, linearity, hysteresis, reproducibility and drift, calibration, accuracy and precision.	5					
М	odule	2 Sensors Sensor Systems, characteristics, Instrument Selection, Measurement Issues and Criteria, Acceleration, Shock and Vibration Sensors,	10					

		1
	Interfacing and Designs, Capacitive and Inductive Displacement	
	Sensors, Magnetic Field Sensors, Flow and Level Sensors, Load	
	Sensors, Strain gauges, Humidity Sensors, Accelerometers,	
	Photosensors, Thermal Infrared Detectors, Contact and Non-contact	
	Position sensors, Motion Sensors, Piezoresistive and Piezoelectric	
	Pressure Sensors, Sensors for Mechanical Shock, Temperature Sensors	
	(contact and non-contact)	
Module-3	Signal conditioning	15
	Types of signal conditioning, Amplification, Isolation, Filtering,	
	Linearization, Classes of signal conditioning, Sensor Signal	
	Conditioning, Conditioning Bridge Circuits, D/A and A/D converters	
	for signal conditioning, Signal Conditioning for high impedance sensors	
	Grounded and floating signal sources, single-ended and differential	
	measurement, measuring grounded signal sources, ground loops, signal	
	circuit isolation, measuring ungrounded signal sources, system isolation	
	techniques, errors, noise and interference in measurements, types of	
	noise, noise minimization techniques	
Module-4	Actuators	4
	Correction and regulating elements used in control systems, pneumatic,	
	hydraulic and electric correction elements.	
Module-5	Control System	16
	Open loop and closed loop (feedback) systems and stability analysis of	
	these systems, Signal flow graphs and their use in determining transfer	
	functions of systems; transient and steady state analysis of linear time	
	invariant (LTI) control systems and frequency response. Tools and	
	techniques for LTI control system analysis: root loci, Routh-Hurwitz	
	criterion, Bode and Nyquist plots. Control system compensators:	
	elements of lead and lag compensation, elements of Proportional-	
	Integral-Derivative (PID) control. State variable representation and	
	solution of state equation of LTI control systems.	
Text books		
T1. Electron	nic Instrumentation -H. S. Kalsi, Tata McGraw-Hill Education, 2010	
	nic Instrumentation -W. Bolton	
	entation: Electrical and Electronic Measurements and Instrumentation -A. I	K.
Sawhney,		-
···· ·) ,		
T4. Modern	Electronic Instrumentation & Measurement Techniques -Helfrick & Coope	er

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Y
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4
А	Н	Η	Н	Н
В	Н	Η	L	L
С	Н	Н	Н	L
D	Н	L	Н	L
Е	Н	Н	Н	L
F	Н	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
	a	b	с	d	e	f	
1	Н	Н	Н	L	Н	Н	
2	Н	Н	Н	L	Н	Н	
3	Н	Н	Н	L	Н	Н	
4	Н	Η	Н	L	Н	М	

Mapping Between COs and Course Delivery (CD) methods

CD	Course Delivery methods	Course Outcome	Course Delivery Method
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	CO6	CD1 and CD2
CD7	Industrial visits/in-plant training	-	-
CD8	Self- learning such as use of NPTEL materials and	-	-
	internets		
CD9	Simulation	-	-

Lecture wise Lesson planning Details.

Week				Topics to be covered	Text	Cos	Actual	Method	Remarks
	No.	Date	No		Book /	mapped	Content	ology	by faculty
No.					Refere nces		covered	used	if any
1	L1			Measurement basics: Rang					
				resolution, linearity,	T1, T4				
	L2								
	L3			hysteresis, reproducibility	T1, T4				
	L4			drift, calibration,	T1, T4				
	L5			accuracy and precision.	T1, T4				
	L6			characteristics,	s,T1, T4				
	L7				n,T1, T4				
				Measurement Issues an Criteria,	d				
	L8				dT1, T4				
				Vibration Sensors, Interfacin					
				and Designs,					
	L9			Capacitive and Inductiv	eT1, T4				
				Displacement Sensor	\$,				
				Magnetic Field Sensors,					
	L10			Flow and Level Sensors, LoadT					
				Sensors, Strain gauge					
				Humidity Sensor	\$,				
	X 4.4			Accelerometers,					
	L11			Photosensors, Thermal Infrared	[1, 14				
	L 10			Detectors,	4TT1 TT 4				
	L12			Contact and Non-conta Position sensors, Motio					
				Sensors, Notice	11				
	L13			Piezoresistive and Piezoelectric	Т1 Т4				
	L14				orT1, T4				
				Mechanical Shock,					
	L15				ctT1, T4				
				and non-contact)					
	L16			Signal conditioning Types of	fT1, T4				
	L17			signal conditioning,	T1, T4				
	L18			Amplification, Isolation,	T1, T4				
	L19				T1, T4				
	L20			Filtering, Linearization,	T1, T4				
	L21		1	Classes of signal conditioning,T	1, T4				
				Sensor Signal Conditioning,					
	L22			Conditioning Bridge Circuits,	T1, T4				
	L23			D/A converters	T1, T4				
	L24			and A/D converters for signal conditioning,	T1, T4				
	L25				hT1, T4				

			
		impedance sensors Grounded	
		and floating signal sources,	
Ľ	26	0	T4
		measurement,	
Ľ	27	measuring grounded signalT1,	T4
		sources, ground loops, signal	
		circuit isolation,	
L	28	measuring ungrounded signalT1,	T4
		sources,	
L	29	system isolation techniques,T1,	T4
1		errors, noise and interference in	
T	20	measurements,	
L.	30	types of noise, noiseT1,	14
T	21	minimization techniques	
	31	Actuators T1,	
T	20	Correction and regulating elements used in controlT1,	
	32		
T.	33	systems, pneumatic, hydraulic andT1,	T4
	34	electric correction elements. T1,	
Ľ	35	Control System T1,	T4
		Open loop and closed loop	
		(feedback) systems	
L.	36	stability analysis of theseT1,	14
	27	systems,	
L.	37	Signal flow graphs and their useT1, T	4
		in determining transfer	
Т	20	functions of systems;	
L.	38	transient and steady stateT1,	
T.	39	analysis of linear time invariant T1, (LTI) control systems and	14
L.	59	frequency response.	
T	40	Tools and techniques for LTIT1, T4	
	41	control system analysis: root T1,	
	42		
		11,	
	43	Bode and Nyquist plots. T1,	
	44	T1,	T4
L	45	Control system compensators:T1,	
L	46	elements of lead and lag T1,	T4
	47	compensation, T1,	T4
I.	48	elements of Proportional-T1,	
	49	Integral-Derivative (PID) T1,	
		control.	
L	50	State variable representationT1,	T4
		and solution of state equation of	
1	1	LTI control systems.	

Course code: PH 510 Course title: Physics of Low dimensional Semiconductors Devices Pre-requisite(s): Co- requisite(s): Credits: L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher: Group : D

Option 2

Code:	Title: Physics of Low dimensional Semiconductors	L-T-P-C				
	Devices					
PH 510		4-0-0-4				
Course Objectives						

This course enables the students:

Course on "Physics of Low dimensional Semiconductors" contains information about functionality and working of devices with miniaturized size.
The first module includes introduction to various types of semiconductor nanostructures and effect of dimension on their properties.
 The properties, growth and band-engineering of heterostrcutres is planned to be covered in Unit-2.
Unit-3 contains Quantum wells and Low-dimensional systems, while Unit-4 addresses physics of Tunneling transport and Low-dimensional systems.
The electronic and optical properties of Two-dimensional electron gas (2DEG) and their applications is subject of Unit-5.

Course Outcomes

After the completion of this course, students will be:

		inpletion of this course, students will be.							
	1.	. Learners would gain knowledge about working and application of various Low-dimensional Semiconductors.							
	nensional systems, Tunneling cations would update learners								
3. Knowledge about Physics and applications of Two-dimensional electron gas (2-DEG) we them to grasp the pace of advancing field of 2D-Semiconductors and their applications for devices.									
Modu	le-1	Introduction to Semiconductor Nanostructures	6						
		Introduction, Semiconductor quantum dot and quantum wire,							
		Density of states for 0-D, 1D and 2D nanostructures. Two-							
		dimensional semiconductors.							
Modu	le-2	Hetrostructures	8						
Widdure-2		General properties and growth of hetrostructures, Band engineering, Layered structures, Quantum wells and barriers, Doped hetrostructures, Wires and dots, Optical confinement, Effective mass approximation and Effective mass theory in hetrostructures.							

Module-3	Quantum wells and Low-Dimensional Systems	
	Infinite deep square well, square well of finite depth, parabolic well, triangular well, Low-dimensional systems, Occupation of subbands, Quantum wells in hetrostructures.	12
Module-4	Tunneling transport and Quantum Hall effectPotential step, T-Matrices, Resonant tunneling, Superlattices and minibands, Coherent transport in many channels, Tunneling in hetrostructures, Schrodinger equation with electric and magnetic fields, Quantum hall effect	12
Module-5	Two-Dimensional electron gas (2DEG)Revision of approximate methods, scattering rates: the goldenrule, Absorption in a quantum well, Electronic structure of a2DEG, Optical properties of quantum wells: Kane model, bands ina quantum well, Interband and intersubband transitions in aquantum well, Optical gain and lasers, Excitons	12

Text Book

[T1] John H. Davies, The Physics of Low-Dimensional Semiconductors an Introduction, Cambridge University Press.

[T2] Thomas Heinzel, Mesoscopic electronics in solid state nanostructures, Wiley-VCH

[[]T3] Jan G. Korvink, Andreas Greiner, Semiconductors for micro and Nanotechnology – An Engineers. Wiley-VCH
Introduction for

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Y
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark		\checkmark
Quiz 1	\checkmark				
Quiz 2					
Quiz 3					

Indirect Assessment –

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Η	Η	Η	Н	Н
В	Η	Η	Η	L	L
С	Н	Н	L	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course	Program Outcomes					
Outcome #	a	b	c	d	e	f
1	Н	Н	Н	Μ	Н	Н
2	Н	Н	Н	Μ	Н	Н
3	Н	Н	Н	М	Н	Н

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods		Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2						
CD2	Tutorials/Assignments		CO2	CD1 and CD2						
CD3	Seminars		CO3	CD1 and CD2						
CD4	Mini projects/Projects		CO4	CD1 and CD2						
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2						
CD6	Industrial/guest lectures		-	-						
CD7	Industrial visits/in-plant training		-	-						
CD8	Self- learning such as use of NPTEL materials and internets		-	-						
CD9	Simulation		-	-						

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	Cos	Actual	Method	Remarks
	No.	Date	No.		Book /	mapped	Content	ology	by faculty
No.					Refere nces		covered	used	if any
1	L1		Ch1						
	L2			Introduction to Semiconductor Nanostructures Introduction, Semiconductor quantum dot and quantum wire,	T1, T2 T3	,			
				Density of states for 0-D, 1D	T1, T2				
	-		-	and 2D nanostructures.	T3				
	L3 L4								
	L5			Two-dimensional	T1, T2	,			
	L6			semiconductors.	Т3				
	L7		Ch2	Hetrostructures	T1, T2 T3	·,			

		1				r	T	
			General properties and growth					
			of hetrostructures					
	L8		Band engineering	T1,	T2,			
			0 0	T3				
	L9		Layered structures	T1,	T2,			
			,	T3	,			
	L10		Quantum wells and barriers	T1,	T2,			
				T3	,			
	L11		Doped	T1,	T2,			
			1 1	T3	,			
			hetrostructures, Wires and dots					
	L12		Optical confinement,	T1,	T2,			
				T3				
	L13		Effective mass approximation		T2,			
			and Effective mass theory in	T3				
	L14		hetrostructures.					
	115	C1 2				 		
	L15	Ch3	Quantum wells and Low-	TT 1	T 2			
	116		Dimensional Systems		Τ2,			
	L16		Infinite deep square well,	T3				
	L17		square well of finite depth,	T1.	T2,			
				T3	,			
				10				
	L18		parabolic well,	T1,	T2,			
				T3				
	L19							
	L20		triangular well,		T2,			
				T3				
	L21							
	L22				T2,			
	L23		Low-dimensional systems,	Τ3				
	L24		Occupation of subbands,					
		-		T 1	T			
	L25	-	-		Τ2,	 ļ		
	L26		hetrostructures.	T3				
	L27	Ch4	Tunneling transport and	Т1	T2,			
		CI14	Quantum Hall effect Potential	T1, T3	ı∠,			
			step	13				
	L28		T-Matrices	T1,	T2,			
				T3	- 7			
	L29		Resonant tunneling		T2,			
			- 0	T3	- 7			
	L30		Superlattices and minibands	T1,	T2,			
			1	T3	· _,			
		1	Coherent transport in many		T2.	<u> </u>		
	L31		channels	T3	· _,	 		
	L32			-				
	L33	1			T2,	1	1	
	L34		Tunneling in hetrostructures	T1,	T3			

L35	\$chrodinger equation with T1, T2,
	electric and magnetic fields T3
L36	
L37	Quantum hall effect T1, T2, T3
L38	
L39	Ch5 Two-Dimensional electron gas
	(2DEG)
	Revision of approximate methods
L40	scattering rates: the golden rule T1, T2,
L41	T3
L42	Absorption in a quantum well T1, T2,
L43	T3
L44	Electronic structure of a 2DEG, T1, T2,
L45	Optical properties of quantum wells: Kane model
L46	bands in a quantum wellT1, T2,T3
	Interband and intersubband T1, T2,
L47 L48	transitions in a quantum well T3
	Optical gain and lasers, T1, T2,
L49 L50	Excitons T3

Group E- Plasma Sciences:

- 1. Introduction to Plasma Physics
- 2. Plasma Processing of Materials

COURSE INFORMATION SHEET

Course code: PH 511 Course title: Introduction to Plasma Physics Pre-requisite(s): Co- requisite(s): Credits: 4L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level:PE V Branch: PHYSICS Name of Teacher:

Group : E Option 1

ode: H 511		Title: Introduction to Plasma Physics	L-T-P-0 [4-0-0-4]
Module		Course Objective:	
<u>1.</u>		To impart the knowledge about the fundamental and basics of Plasma Physics.	
2.		To learn about the charged particle motion in electric and magnetic field.	
3.		To provide the knowledge about the ionization process and diffusion.	
4.		To learn about the basic Plasma Diagnostic Methods.	
5.		To learn how to use plasma for various application.	
Module		Course Outcome	
1.		Will have an idea about the basis of Plasma (Fourth State of Matter).	
2.		Will be able to visualize the motion of charged particles in electric and	
		magnetic field.	
3.		Will have knowledge about the ionization and diffusion of Plasma.	
4.		Will be able to measure the different plasma parameters.	
5.		Will be familiar with different applications of Plasma.	
Module-1	The	fourth state of matter, collective behavior, charge neutrality, space and time scale,	[8]
		ept of plasma temperature, Classification of Plasma, Debye shielding, Debye length,	
Module-2	Singl	na frequency, plasma parameters and criteria for plasma state. e particle dynamics, charged particle motion in electric field, magnetic field and in	[8]
Module 2	-	bined electric and magnetic field, Basics of drift, Drift of guiding centre, gradient	[0]
		curvature drift and magnetic mirror. $E \times B$	
Module-3		ation by collision, Townsends theory of collision ionization, The breakdown potential,	[8]
inouule 5		mal ionization and excitation, concepts of diffusion, mobility and electrical conductivity,	[0]
		ipolar diffusion.	
Module-4	Basic	plasma diagnostics, Single probe method, Double probe method, Optical emission	[8]
	spect	roscopy (basic idea), Abel inversion.	
Module-5		rolled Thermonuclear fusion, Tokamak, Laser Fusion, MHD Generator, Industrial	[8]
Referen		cations of plasma.	

1. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984

2. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004

3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd., 2001.

4. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965

5. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Y
projectors	
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Η	Μ	L	Μ	L
В	М	Η	L	L	L
С	М	L	Н	L	L
D	М	L	L	Н	L
E	L	L	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes										
Outcome #	a	В	С	d	e	f	g	h	Ι	j	k	1
1	Μ	Н	Μ	Μ	Μ	Η						
2	М	Н	Μ	Μ	Μ	Η						
3	М	Н	Μ	Μ	Μ	Η						
4	Μ	Н	Μ	Μ	Μ	Η						
5	Μ	Н	L	Μ	Μ	Η						

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2							
CD2	Tutorials/Assignments	CO2	CD1 CD2							
CD3	Seminars	CO3	CD1 CD2							
CD4	Mini projects/Projects	CO4	CD1 CD2							
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2							
CD6	Industrial/guest lectures									
CD7	Industrial visits/in-plant training									
CD8	Self- learning such as use of NPTEL materials and internets									
CD9	Simulation									

	Lect.	Tentat	Ch.	Topics to be covered	Text	COs	Actual	Methodolo	Remarks
No.	No.	ive	No.		Book /	mapped	Content	gy used	by
		Date			Refere		covered		faculty
					nces				if any
1	L1-			The fourth state of matter,	T1 R1				
	L2			collective behavior, charge					
				neutrality,					
	L3-			space and time scale, concept	T1 R1				
	L4			of plasma temperature,					
	L5-			Classification of Plasma,	T1 R1				
	L6			Debye shielding, Debye					
				length,					
	L7-			plasma frequency, plasma	T1 R1				
	L8			parameters and criteria for					
				plasma state.					
	L9-			Single particle dynamics,					
	L10			C I	R1				
				electric field,					
	L11-			6	T1T2				
	L12			combined electric and	R1				
				magnetic field,					
	L13-			Basics of drift, Drift of	T1T2				
	L14			guiding centre,	R1				
	L15-			Basics of drift, Drift of	T1T2				
	L16			guiding centre,	R1				
	L17-			Ionization by collision,	T2 R1				
	L20			Townsends theory of collision					
				ionization, The breakdown					
				potential,					
	L21-			Thermal ionization and	T2 R1				
	L24			excitation, concepts of					
				diffusion, mobility and					
				electrical conductivity,					
				Ambipolar diffusion					
	L25-			Basic plasma diagnostics,					
	L28			Single probe method, Double					
				probe method,					

L29-	Optical emission spectroscopy	y T2 R1
L32	(basic idea), Abel inversion	
L33-	Controlled Thermonuclea	ear T1 R1
L36	fusion, Tokamak,	
L37-	Laser Fusion, MHD Generator,	r, T1 R1
L40	Industrial applications of	of
	plasma.	

Course code: PH 512 Course title: Plasma Processing of Materials Course code: SAP Course title: Plasma Processing of Materials Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: 0x Class: I.M.Sc. / M.Sc. Semester / Level: Branch: Physics Name of Teacher: Dr. Sanat Kr. Mukherjee

Group : E Option 2

Code: PH 512	Title: Plasma Processing of Materials	L-T-P-C [4-0-0-4]
Course Ob	jectives	
This c <u>ourse</u>	enables the students to:	
1.	Defineplasma and its parameters	
2.	Outline the design principles of high and low-pressure plasma torches.	
3.	Identify the processes of measurement of plasma parameters.	
4.	Outline the industrial applications of low temperature plasma	
5.	Explain arc plasma-based systems and illustrate their industrial applications	
Course Ou		
After the co	mpletion of this course, students will be able to:	
1.	Define plasma, classify it into various types in terms of the plasma parameters and explain the types of reactions involved in a plasma.	various
2.	Demonstrate the construction and working of high and low-pressure plasma torches.	
3.	Illustrate the various processes of measurement of plasma parameters.	
4.	Outlinevarious plasma processes, such as, plasma etching, plasma ashing, plasma polymerization and their associated techniques such as, sputtering, nitriding, etc.	on, etc.,
5.	Illustrate arc plasma based applications like, plasma spraying, plasma waste processing, plasma etc.	cutting,
Module-1	Plasma-the fourth state of matter, Plasma Parameters, Debye length, Plasma oscillations & frequency, Plasma Sheath, Interaction of electromagnetic wave with plasma, Concept about plasma equilibrium, Industrial Plasmas, Cold and thermal plasma, Plasma Chemistry, Homogeneous and Heterogeneous reaction, Reaction rate coefficients, Plasma Surface	[8]
	interaction.	
Module-2	Design principles and construction of plasma torches and thermal plasma reactors, Efficiency of plasma torches in converting electrical energy in to thermal energy, Designing aspects of low pressure plasma reactors.	[8]
Module-3	Measurements of Plasma parameters, Electrical probes, Single and double Langmuir probe, Magnetic probe, Calorimetric measurements, Enthalpy Probes, Spectroscopic techniques.	[8]
Module-4	Plasma Etching Anisotropic etching, plasma cleaning, surfactants removal, plasma ashing, plasma polymerization, Plasma sputtering and PECVD Thin film coatings, magnetron sputtering, RF PECVD, MW PECVD, plasma nitriding.	[15]
Module-5	Module 5:Plasma Spraying Non-transferred plasma torches, powder feeder, optimization of spraying processes, spherodization, Arc plasmas, Plasma torches, plasma waste processing, Synthesis of materials and metallurgy in arc plasmas, Plasma cutting and Welding.	[6]

- 1. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984
- 2. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004
- 3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd., 2001.

Reference books:

- 1. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965
- 2. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course	Program Outcomes						
Outcome #	a	b	с	d	e	f	
1	Н	Н	Н	L	М	L	
2	Н	Н	М	L	L	L	
3	Н	М	М	L	L	L	
4	Н	М	М	L	L	L	
5	Н	Н	Н	L	Н	L	

Course	Course Objectives						
Outcome #	а	b	с	d	e		
1	Н	М	М	М	L		
2	М	Н	М	М	L		

3	М	М	Н	L	L
4	М	М	Н	L	L
5	М	М	L	L	Н

Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
	Lecture by use of boards/LCD projectors/OHP					
CD1	projectors	CO1	CD1, CD2 and CD8			
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8			
CD3	Seminars	CO3	CD1, CD2 and CD8			
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
	Self- learning such as use of NPTEL materials and					
CD8	internets					
CD9	Simulation					

Week No.			ModuleNo.		Text	Cos	Actual	Methodology	Remarks
	No.	ive Date			Book / Refere nces	mapped	Content covered	used	byfaculty if any
1-2	L1-2		Ι	Plasma-the fourth state of matter, Plasma Parameters, Debye length	T2	CO-1		PPT Digi Class/Chal k-Board	
	L3-4			Plasma oscillations & frequency, Plasma Sheath, Interaction of electromagnetic wave with plasma, Concept about plasma equilibrium		CO-1		PPT Digi Class/Chal k-Board	
2	L5			Industrial Plasmas, Cold and thermal plasma,	T1	CO-1		PPT Digi Class/Chal k-Board	
2-3	L6			PlasmaChemistry,HomogeneousandHeterogeneousreaction		CO-1		PPT Digi Class/Chal k-Board	
3	L7-8			Reaction rate coefficients, Plasma Surface interaction		CO-1		PPT Digi Class/Chal k-Board	
4	L9-12		Π	Design principles and construction of plasma torches and thermal plasma reactors		CO-2		PPT Digi Class/Chal k-Board	
5	L13- 14			Efficiency of plasma torches in converting electrical energy in to thermal energy		CO-2		PPT Digi Class/Chal k-Board	

5-6	L15-	III	Measurements of Plasma	T1	CO-3	PPT Digi
	16		parameters			Class/Chal
						k-Board
7	L17-		Electrical probes, Single		CO-3	PPT Digi
	18		and double Langmuir			Class/Chal
			probe			k-Board
8	L19-		Magnetic probe,	T2	CO-3	PPT Digi
	20		Calorimetric			Class/Chal
			measurements Enthalpy			k-Board
			Probes,			
8-9	L21-		Spectroscopic techniques.	T1,	CO-3	PPT Digi
	22			Τ2,		Class/Chal
						k-Board
9-10	L23-	IV	Plasma Etching	T1,	CO-4	PPT Digi
	25		Anisotropic etching	Τ2,		Class/Chal
						k-Board
10-11	L26-		plasma cleaning,		CO-4	PPT Digi
	28		surfactants removal	Т2,		Class/Chal
						k-Board
11-12	L29-		plasma ashing, plasma		CO-4	PPT Digi
	31		polymerization	Τ2,		Class/Chal
						k
						-Board
12	L32-		Plasma sputtering and		CO-4	PPT Digi
	33		PECVD Thin film	Т2,		Class/Chal
			coatings			k-Board
13	L34-		magnetron sputtering	T1,	CO-4	PPT Digi
	35			Т2,		Class/Chal
					_	k-Board
13	L36		, RF PECVD, MW		CO-4	PPT Digi
			PECVD	Τ2,		Class/Chal
1.4	1.07		1	75 1		k-Board
14	L37		plasma nitriding	T1,	CO-4	PPT Digi
				Τ2,		Class/Chal k-Board
14	L40	V	Plasma Spraying Non-	T1,	CO-5	PPT Digi
14	L40	v	transferred plasma torches	T1, T2,	0-5	Class/Chal
			transferred plasma torenes	12,		k-Board
14	L41		powder feeder,	Т2	CO-5	PPT Digi
11	211		optimization of spraying	12		Class/Chal
			processes			k-Board
15	L42	———————————————————————————————————————	*	T1,	CO-5	PPT Digi
1.5	1/42		plasmas, Plasma torches	T1, T2,		Class/Chal
			plasmas, i lasma torenes	12,		k-Board
15	L43-		plasma waste processing,	T2	CO-5	PPT Digi
10	44		Synthesis of materials and			Class/Chal
			metallurgy in arc plasmas			k-Board
16	L45			тγ	CO-5	PPT Digi
10	L4J		Plasma cutting and Welding	12		Class/Chal
			welding			k-Board
						K-DUalu

PE-VI to VII

Group A- Theoretical and Computational Physics:

- 1. Theoretical and Computational Fluid Dynamics
- 2. Theoretical and Computational Condensed Matter Physics
- 3. Nonlinear Dynamics and Chaos

COURSE INFORMATION SHEET

Course code:	PH 514			
Course title:	Theoret	ical and	l Computational Fluid Dynamics	
Pre-requisite	e(s):			
Co- requisite	e(s):			
Credits: 4	L: 2	T: 0	P: 4	
Class schedu	le per w	eek:		
Class: I.M.So	2.			
Semester / Lo	evel: PE	VI//VII	[
Branch: PHY	ISICS			
Name of Tea	cher:			
Group : A	4		Option 1	
Code:	Title	e: Theo	pretical and Computational Fluid Dy	n
PH 514			ogramming using C for solving proble	

Code:	Title: Theoretical and Computational Fluid Dynamics	L-T-P-C
PH 514	Theory & Programming using C for solving problems on following topics:	
		[2- 0-4- 4]
Course (Dbjectives	-
This cou	rse enables the students:	
А.	To learn the techniques of model atomic and molecular systems.	
В.	To receive explanation of methods to deal with the different ensembles used in Statistical Mechanics.	
C.	To obtain training on numerical methods used for integrations in Fluid Dynamics.	
D.	To discuss ways to analyze the accuracy of correlation functions and equilibrium averages.	

Course Outcomes

After the completion of this course, students will be:

1.	Learning about common models used to describe atoms and molecules					
2.	Able to prepare codes for transforming between different ensembles.					
3.	Develop a good handle on relevant numerical integrations.					
4.	Achieve competence in the estimation of errors involved in computing correlation functions equilibrium averages.	and				
Module-1	Model systems and interaction potentials: Atomic systems, Molecular systems, Lattice systems, Calculating the potential, Constructing an intermolecular potential, Studying small systems: periodic and spherical boundary conditions.	[11]				
Module-2	Statistical Mechanics: Statistical ensembles, Transformation between ensembles, Fluctuations, Time correlations, Transport coefficients.	[9]				
Module-3	Molecular dynamics: Finite difference methods, Verlet algorithm, Linear and nonlinear molecules, Checks on accuracy.	[7]				
Module-4	Monte Carlo methods: Monte Carlo integration, Importance sampling, Metropolis method, Molecular liquids.	[9]				
Module-5	Analyzing results: Time correlation functions, Fast Fourier transform, Estimation of errors in equilibrium averages and fluctuations, Errors in time correlation functions.	[9]				
	nces: puter Simulation of Liquids" by Allen and Tildesley, Oxford Science Publications . Art of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.					

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4
А	Н	М	М	М
В	М	Н	М	М
С	М	L	Н	М
D	L	М	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course	Program Outcomes					
Outcome #	a	b	С	d	e	f
1	Н	Н	М	М	Н	М
2	L	Н	М	М	Н	М
3	L	Н	Н	М	Н	М
4	L	Н	Н	М	Н	М

Week	Lect.	Tent	Ch.	Topics to be covered	Text	Cos	Actual	Met	Remark
No	No.	ative			Book /	map	Content	hodo	s by
		Date	No		Referen ces	ped	covered	logy used	faculty if any
1	L1-L3			Model systems and interaction potentials: Atomic systems, Molecular systems	T1,T2	1			
2	L4-L6			Lattice systems, Calculating the potential, Constructing an intermolecular potential,	T1,T2	1			
3	L7-L9			Studying small systems: periodic and spherical boundary conditions	T1,T2	1			
4	L10-			Statistical Mechanics: Statistical	T1,T2	2			

	L12	ensembles				
5	L13- L15	Transformation between ensembles, Fluctuations	T1,T2	2		
6	L16- L18	Time correlations, Transport coefficients.	T1,T2	2		
7	L19- L21	Moleculardynamics:Finitedifferencemethods,Verletalgorithm	T1,T2	3		
8	L22- L24	Linear and nonlinear molecules, Checks on accuracy.	T1,T2	3		
9	L25- L27	Monte Carlo methods: Monte Carlo integration	T1,T2	4		
10	L28- L30	Importance sampling, Metropolis method	T1,T2	4		
11	L31- L33	Molecular liquids.	T1,T2	4		
12	L34- L36	Analyzing results: Time correlation functions, Fast Fourier transform	T1,T2	5		
13	L37- L39	Estimation of errors in equilibrium averages and fluctuations	T1,T2	5		
14	L40L42	Errors in time correlation functions.	T1,T2	5		

Course code: PH 515 Course title: Theoretical and Computational Condensed Matter Physics Pre-requisite(s): Co- requisite(s): Credits: 4L: 2 T: 0 P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : A Option 2

Code: PH 515	Title: Theoretical and Computational Condensed Matter Physics Theory & Programming using C for solving problems on following topics:	L-T-P-C [2- 0-4- 4]
Course Obj	ectives:	1
The course a	ims to give students the basic concepts of condensed matter physics and to prepare them to form	ulate the
oroblems in	condensed matter physics so that these can be solved on a computer. The main objectives of the c	course are
1. To te	each how Monte-Carlo techniques can be used to solve various physical systems.	
U	ive concepts of first order phase transitions, second order phase transitions and mean field theory g model.	using
3. To te	each the equilibrium properties and time evolution of simple fluids.	
4. To p	rovide the concept on computation of free energies of solids and how to obtain them numerically	•
5. To in	ntroduce the method of dissipative particle dynamics.	
Program Oi	itcomes:	
After taking	the course the student should be able to	
1. Use	Monte-Carlo simulation to obtain the equilibrium configuration of a physical system.	
2. Diffe	erentiate between first order and second order phase transitions and appreciate the efficiency of n	nean
field	theory.	
3. Calc	ulate transport coefficients and space-time correlation function of simple fluids.	
4. Com	pute the free energy of perfect or imperfect solids numerically.	
5. Und	erstand the fundamentals of dissipative particle dynamics technique.	
Module-1	Random Systems	[10
	Generation of Random Numbers, Introduction to Monte Carlo Methods: Integration, Random	
	Walks, Self-Avoiding Walks, Random Walks and Diffusion, Diffusion, Entropy, and the	
	Arrow of Time, Cluster Growth Models, Fractal Dimensionalities of Curves, Percolation	
Module-2	Statistical Mechanics, Phase Transitions, and the Ising Model	[10
	The Ising Model and Statistical Mechanics, Mean-Field Theory, The Monte Carlo Method	
1 1 1 2	The Ising Model and Second-Order Phase Transitions, First-Order Phase Transitions	510
Module-3	Equilibrium and Dynamical properties of simple fluids Thermodynamic measurements, Structure, Packing studies, Cluster analysis, Transpor	[10
	Thermodynamic measurements, Structure, Packing studies, Cluster analysis, Transpor coefficients Measuring transport coefficients, Space-time correlation functions	Ļ
Module-4	Free Energies of Solids	[10
1,100010 7	Thermodynamic Integration, Free Energies of Solids, Free Energies of Molecular Solids,	
	Vacancies and Interstitials, Numerical Calculations	
Module-5	Dissipative Particle Dynamics	[10
	Justification of the Method, Implementation of the Method, DPD and Energy Conservation	
Text books	:	
	nputation Physics" by Nicholas J. Giordano, Pearson Addison-Wesley	
	Art of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.	
Reference	hooline	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Y

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark		\checkmark
Quiz 1					
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e		
1	Н	L	L	L	L		
2	L	Η	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Η	L		
5	L	L	L	L	Η		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes							
	а	b	с	d	e	f		
1	Η	Η	Н	М	Н	Н		
2	Η	Η	Н	М	Н	Н		
3	Η	Η	Н	М	Н	Н		
4	Η	Η	Н	М	Н	Н		
5	Η	Η	Н	М	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD9						
CD2	Tutorials/Assignments	CO2	CD1, CD2and CD9						
CD3	Seminars	CO3	CD1, CD2 and CD9						
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD9						
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD9						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

Week	Lect	Tenta	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remar
No.		tive	No.		Book /	mapp	Content	used	ks by
	No.	Date			Refere	ed	covered		faculty
					nces				if any
1-3	L1- L10			Generation of Random Numbers, Introduction to Monte Carlo Methods: Integration, Random Walks, Self-Avoiding Walks, Random Walks and Diffusion, Diffusion, Entropy, and the Arrow of Time, Cluster Growth Models, Fractal Dimensionalities of Curves, Percolation		1		PPT Digi Class/Chock -Board	
3-5	L11- L20			The Ising Model and Statistical Mechanics, Mean-Field Theory, The Monte Carlo Method, The Ising Model and Second-Order Phase Transitions, First-Order Phase Transitions		2			
6-8	L21- L30			Thermodynamic measurements, Structure, Packing studies, Cluster analysis, Transport coefficients Measuring transport coefficients, Space-time correlation functions	R1	3			
8-10	L31- L40			Thermodynamic Integration, Free Energies of Solids, Free Energies of Molecular Solids, Vacancies and Interstitials, Numerical Calculations		4			
11-14	L41- L50			Justification of the Method, Implementation of the Method, DPD and Energy Conservation	T1, T2, R1	5			

Course code: PH 516 Course title: Nonlinear Dynamics and Chaos Pre-requisite(s): Classical Dynamics Co- requisite(s): Credits: 4L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Code: PH 516	Title: Nonlinear Dynamics and Chaos			
Course C	bjectives: The objective of the course is to			
	rain students to calculate fixed points and do stability analysis of various systems motivated om physics/biology.			
2. 0	ive a clear concept of bifurcation and some examples of the phenomenon.			
3. T	each them to plot limit cycles of various differential equations on computer using C language.			
4. T	each properties of limit cycles taking examples from physics.			
	rain students to solve problems on coevolution and the impact of environment on population growth oncepts from physics.	using		
	utcomes: The student should be able to			
2. C	lodel physical or biological systems computationally and obtain their fixed points, saddle points, attro- ompute the evolution of phase space as various parameters are changed.	ractors, etc		
	isualize limit cycles of various nonlinear systems graphically.			
	olve problems related to oscillators, viz., relaxation oscillators, weakly nonlinear oscillators, etc.			
5. S	olve simple models of population growth of multiple-species on computer.			
	 Fixed Points and Stability, Population Growth, Linear Stability Analysis, Existence and Uniqueness, Impossibility of Oscillations, Potentials, Solving Equations on the Computer, Uniform Oscillator, Nonuniform Oscillator, Overdamped Pendulum, Fireflies Superconducting Josephson Junctions 	2		
Module-2		[10]		
Module-3	Phase Plane Phase Portraits, Existence, Uniqueness, and Topological Consequences, Fixed Points and Linearization, Rabbits versus Sheep, Conservative Systems, Reversible Systems, Pendulum, Index Theory	[10]		
Module-4	Limit Cycles Ruling Out Closed Orbits, Poincare-Bendixson Theorem, Oscillators, Weakly Nonlinear Oscillators	[8]		
Module-5	Population DynamicsMultispecies model: limit cycles and time delays, Randomly Fluctuating Environment, NicheOverlap and Limiting Similarity	[10]		
Strogatz,	ks: near dynamics and Chaos: with applications to physics, biology, chemistry, and engineering by CRC Press. ility and Complexity in Model Ecosystems" by Robert M May, Princeton University Press.	Steven H		

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Υ
Tutorials/Assignments	Υ
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and	
internets	Y
Simulation	Υ

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark		\checkmark
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

- Student Feedback on Faculty
 Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e		
1	Н	L	L	L	L		
2	L	Н	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Н	L		
5	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Н	Μ	Н	Н	
2	Н	Н	Н	М	Н	Н	
3	Н	Н	Н	Μ	Н	Н	
4	Н	Н	Н	Μ	Н	Н	
5	Н	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD9						
CD2	Tutorials/Assignments	CO2	CD1, CD2and CD9						
CD3	Seminars	CO3	CD1, CD2 and CD9						
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD9						
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD9						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

Week	Lect.	Tent	С	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	ative	h.		Book /	map	Content	ogy	by faculty
		Date	Ν		Refere	ped	covered	used	if any
			0		nces				
1-3	L1-			Fixed Points and Stability,	T1, T2	1		PPT Digi	
	L12			Population Growth, Linear				Class/Cho	
				Stability Analysis, Existence				ck	
				and Uniqueness, Impossibility				-Board	
				of Oscillations, Potentials,					
				Solving Equations on the					
				Computer, Uniform Oscillator,					
				Nonuniform Oscillator,					
				Overdamped Pendulum,					
				Fireflies, Superconducting					
			_	Josephson Junctions					
4-6	L13-			Saddle-Node Bifurcation,		2			
	L22			Transcritical Bifurcation, Laser					
				Threshold, Pitchfork	-				
				Bifurcation, Overdamped Bead					
				on a Rotating Hoop, Imperfect					
				Bifurcations and Catastrophes,					
				Insect Outbreak, Chaos					
6-8	L23-			Phase Portraits, Existence,		3			
				Uniqueness, and Topological					

	LL3 2	Consequences, Fixed Points and Linearization, Rabbits versus Sheep, Conservative Systems, Reversible Systems, Pendulum, Index Theory	
9-10	L33- L40	Ruling Out Closed Orbits, Poincare-Bendixson Theorem, Lienard Systems, Relaxation Oscillators, Weakly Nonlinear OscillatorsT1,T24	
11-14	L41- L50	Multispeciesmodel:limitT1, T25cyclesandtimedelays,RandomlyFluctuatingEnvironment,NicheOverlapand Limiting SimilarityImitian Similarity	

Course code: PH 517

Course title: Nonconventional Energy Materials Pre-requisite(s):Student should qualify 'Solid State Physics' or similar paper

Co- requisite(s):Knowledge of Mathematical Physics, Quantum Mechanics, and Statistical Mechanics

Credits: L:3T:1 P: 0 Class schedule per week:4 Class: I.M.Sc./ M.Sc. Semester / Level: X/IV Branch:Physics Name of Teacher:

Group : B Option 1				
Code:		Title: Nonconventional Energy Materials	L-T-P-C	
PH 51	17		[3-1-0-4]	
Cours	se O	bjectives		
This c	ours	e enables the students:		
11150	1.	Todefine the current scenario of the conventional sources of energy and importance of		
	1.	sustainable energy sources.		
-	2.	To explain the basic of PN Junction solar cell.		
	3.	To define the solar cell characterization.		
	4.	To illustrate the various solar cell technologies.		
Ì	5.	To explain the other nonconventional energy sources		
Cours		utcomes		
Cours				
After t	the c	ompletion of this course, students will be able to:		
	1.	Explain the current status of conventional sources of energy and list the various sustainable		
-	-	energy sources.		
	2.	Define various properties of the semiconducting materials, formation of PN junction and generation of photo-voltage and photo-current of PN Junction solar cell.		
	3.	Demonstrate the measurement of solar cell parameters and solar cell design for high Isc,		
		design for high Voc, design for high FF.		
	4.	Explain the fabrication of wafer based solar cells, thin film solar cell, organic solar cells, dye-		
		sensitized solar cell, GaAs solar cells, Thermo-photovoltaics and multijunction solar cells.		
	5.	Discuss the concepts of wind energy, bio energy, tidal power, fuel cells, and solar thermal.		
Modu	le-1	Energy sources and their availability, conventional sources of energy: Fossil fuel, Hydraulic	[5]	
		energy, Nuclear energy: nuclear fission, nuclear fusion, Environmental impact of conventional		
		sources of energy, Need for sustainable energy sources, Nonconventional energy sources,		
	1 0	Current status of renewable energy sources.	54.01	
Modu	le-2	Structure of solar cell materials, direct and indirect band gap semiconductor, carrier concentration and distribution, drift and diffusion current densities, P-N Junction: space charge	[10]	
		region, energy band diagram, carrier movements and current densities, carrier concentration		
		profile; P-N junction in non-equilibrium condition, I-V Relation, P-N Junction under		
		Illumination, Generation of photovoltage, Light generated current, I-V equation of solar cells.		
Modu	le-3	Solar Cell Characteristics and Cell parameters: Short circuit current, open circuit voltage, fill	[10]	
mouu	10 5	factor, efficiency; losses in solar cells, Solar Cell Design: design for high Isc, design for high		
		Voc, design for high FF; Solar spectrum at the Earth's surface, solar simulator: I-V		
		measurement, quantum efficiency measurement, minority carrier lifetime and diffusion length		
		measurement.		
Module-4		Wafer-based Si solar cell fabrication: saw damage removal and surface texturing, P-N Junction	[15]	
		formation, ARC and surface passivation, metal contacts-pattern defining and deposition. High		
		efficiency solar cells, Thin Film Solar Cell Technologies: advantages of thin film technologies,		
		thin films solar cell structures, thin film crystalline, microcrystalline, polycrystalline, and		
		amorphous Si solar cells. Emerging solar cell technologies: working principle of organic solar		

	cells, material properties and structure of organic solar cells; Dye-sensitized Solar Cell: working principle, materials and their Properties; GaAs solar cells, Thermo-photovoltaics, multijunction solar cells.	
Module-5	Other nonconventional Energy Sources: Wind Energy: Classification of wind mills, advantages and disadvantage of wind energy; Bio Energy: Bio gas and its compositions, process of bio gas, generation – wet process, dry process, utilization and benefits of biogas technology. Tidal Power: Introduction, classification of tidal power plants, factors affecting the suitability of the site for tidal power plant, advantages and disadvantages of tidal power plants. Fuel Cells: Introduction, working of fuel cell, types of fuel cells, advantages of fuel cell technology. Solar Thermal: Solar collectors, solar cookers, solar water heater.	[10]
	ference Books: cells: Operating principles, technology and system applications by Martin A Green, Prentice Hall In	

1. Solar cells: Operating principles, technology and system applications by Martin A Green, Prentice Hall Inc, Englewood Cliffs, NJ, USA, 1981.

2. Semiconductor for solar cells, H J Moller, Artech House Inc, MA, USA, 1993.

- 3. Solis state electronic device, Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi 1995.
- 4. Direct energy conversion, M.A. Kettani, Addision Wesley Reading, 1970.
- 5. Hand book of Batteries and fuel cells, Linden, Mc Graw Hill, 1984.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	N
Industrial/guest lectures	Ν
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks					
Quiz 1		\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Outcomes							
Course	1	2	3	4	5		
Objectives							
А	Н	L	L	L	L		
В	М	Η	Μ	Μ	L		
С	Μ	М	Η	L	L		
D	Μ	L	L	Η	L		
Е	Μ	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes						
Outcome #	a	b	с	d	e	f		
1	L	L	М	Н	L	Н		
2	М	Н	М	Н	Н	Н		
3	М	Н	М	Н	Н	Н		
4	М	Н	М	Н	Н	Н		
5	М	Н	М	Н	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2				
CD2	Tutorials/Assignments		CO2	CD1 and CD2				
CD3	Seminars		CO3	CD1 and CD2				
CD4	Mini projects/Projects		CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2				
CD6	Industrial/guest lectures		-	-				
CD7	Industrial visits/in-plant training		-	-				
CD8	Self- learning such as use of NPTEL materials and internets		-	-				
CD9	Simulation		-	-				

Week	Lect.	Tentativ	Ch.	Topics to be covered	Text	Cos	Actual	Method	Remarks by
No.	No.	e Date	No.		Book / Referenc	mapped	Content covered	ology used	faculty if any
					es				
	L1			World energy status, current energy scenario in India, environmental aspects of energy utilization, Classification of energy, Energy Resources, need of renewable energy, non- conventional energy sources.					
	L2,			An overview of	R 1				
	L3			developments in Offshore					

	Wind Energy, Tidal Energy,
	Wave energy systems,
	Ocean energy,
L4,	Thermal Energy Conversion, R1
L5	solar energy, biomass,
	biochemical conversion,
	biogas generation,
	geothermal energy tidal
	energy, Hydroelectricity.
	Energy conservation and
	storage.
L6-	Solar energy, its importance, R1, R2
L10	storage of solar energy, T1
	solar pond, non-convective
	solar pond, applications of
	solar pond and solar energy,
	solar water heater, flat plate
	collector, solar distillation,
	solar cooker, solar green
	houses, solar cell
L11-	absorption air conditioning.R1, R2
L15	Need and characteristics of T1
	photovoltaic (PV) systems,
	PV models and equivalent
	circuits, and sun tracking
	systems
L16-	Wind Energy: Fundamentals R1, R2
L19	of Wind energy, Wind
	Turbines and different
	electrical machines in wind
	turbines, Power electronic
	interfaces, and grid
	interconnection topologies.
L20-	Ocean Energy, PotentialR1, R2
L22	against Wind and Solar,
	Wave Characteristics, Wave
	Energy Devices.
L23-	Tide characteristics and R1, R2
L25	Statistics, Tide Energy
	Technologies, Ocean
	Thermal Energy, Osmotic
	Power, Ocean Bio-mass.
L26-	Biomass energy, resources, R1, R2
L30	conversion, gasification,
	liquefaction, production,
	energy farming,
L31-	Geothermal Energy:R1, R2
L33	Geothermal Resources,
	Geothermal Technologies.
L34,	small hydro resources.R1, R2
L35	Layout, water turbines,
	classifications, generators,
	status.

L36- L38	Direct Energy conversion:R1, R2 Thermoelectric effects, generators, Thermionic generators, magneto hydro dynamics generators, Fuel cells
L39, L40	photovoltaic generators,R1, R2 electrostatic mechanical generators, Thin film solar cells, nuclear batteries.

Course code: PH 518 Course title: Cryogenic Physics Pre-requisite(s): Co- requisite(s): Credits: L:4T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:PE VI / VII Branch: PHYSICS Name of Teacher: Group : B Optio

Option 2

ode: H 518	Title: Cryogenic Physics							
	Objectives : This course enables the students	[4-0-0-4]						
1		ire.						
2	To acquire basic understanding of the macroscopic manifestations of quantum phenomenon at							
2	low temperatures like superfluidity of He^4 , He^3 and superconductivity.							
2								
4	the physical properties.	n m						
-								
5	Become conversant with the principles and methods to produce low temperature.							
	Dutcomes : After the completion of this course, students will be							
1	Able to explain the physics and production of low temperature.							
2	Able to describe and analyze the macroscopic manifestations of quantum phenomenon at low tempe	ratures.						
3	Able to summarize and apply the knowledge of the behaviour of various physical properties at low							
	temperature.							
4								
5	Compare different methods of producing low temperature.							
Module		[8]						
	properties; superfluid ⁴ He, experimental observation, two-fluid model and Bose-Einstein							
	condensation; normal-fluid and superfluid ³ He; mixtures of ³ He and ⁴ He.							
Module		[8]						
	Specific heat of phonons-Debye model, significance of the Debye temperature; specific heat	[~]						
	of conduction electrons in simple metals; electrical conductivity, relaxation-time							
	approximation, Matthiessen's rule, electron-phonon scattering, electron-magnon scattering;							
	thermal conductivity of metals; Kondo effect; Heavy Fermion Systems.							
Module	· · ·	[8]						
	spins, magnetic contribution to specific heat, Schottky anomaly; spin waves-magnons,	[0]						
	ferromagnets, anti-ferromagnets.							
Module		[8]						
	Oscillations , Colossal Magnetoresistance):	[-]						
	Transition temperature, Meissner effect, type-I and type-II superconductors;							
	phenomenological description, London equations; microscopic theory of superconductors;							
	flux quantization; Shubnikov-de Haas (SdH) oscillations, quantization of Bloch electrons in a							
	uniform magnetic field; colossal magnetoresistance (CMR).							
Module		[8]						
	cycle refrigerators, Gifford Mc-Mahon coolers; simple-helium bath cryostats; ³ He- ⁴ He	r~1						
	dilution refrigerator; Pomeranchuk cooling; refrigeration by adiabatic demagnetization of a							
	paramagnetic salt and adiabatic nuclear demagnetization.							
Text	books:							
	Low-Temperature Physics, Christian Enss and Siegfried Hunklinger, Springer 2005.							
1.								

References:

- Introduction to Solid State Physics, Charles Kittel, 8th edition, John Wiley and Sons, 2005. (For SdH oscillations)
 Solid State Physics, Neil W. Ashcroft and N. David Mermin, Harcourt College Publishers, 1976. (For SdH oscillations)

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	Yes
Laboratory experiments/teaching aids	Yes
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

(CO) Attainment Assessment tools & Evaluation **Course Outcome** ocedure Direct Assessment

procedure Direct Assessment						
Assessment Tool	% Contribution during CO Assessment					
Assignment	10					
Seminar before a commitee	10					
Three Quizes	30 (10+10+10)					
End Sem Examination Marks	50					

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

25.Student Feedback on Faculty

26.

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
Outcome #	a	b	с	d	e	f	
1	L	Н	Н	L	Н	М	
2	М	Н	Н	L	Н	М	
3	М	Н	Н	L	Н	М	
4	L	Н	Н	L	Н	М	
5	L	Н	Н	L	Н	М	

Course Outcome #			Course Objectiv	ves	
Outcome #	a	b	с	d	e
1	Н	Н	Н	L	L
2	М	Н	М	М	L
3	М	М	Н	М	L
4	М	М	Н	Н	L
5	M	L	L	L	Н

	Mapping Between COs and Cou	rs	e Delivery (CD) n	nethods	
СD	Course Delivery methods		Course Outcome	Course Method	Delivery
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2, and CD8	CD4,CD5
CD2	Tutorials/Assignments		CO2	CD1, CD2, and CD8	CD4,CD5
CD3	Seminars		CO3	CD1, CD2, and CD8	CD4,CD5
CD4	Mini projects/Projects		CO4	CD1, CD2, and CD8	CD4,CD5
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2, and CD8	CD4,CD5
CD6	Industrial/guest lectures				
CD7	Industrial visits/in-plant training				
CD8	Self- learning such as use of NPTEL materials and internets				
CD9	Simulation				

		vise Lesson		g Detalls.					
Week	Lect.	Tentative	Module	Topics to be covered	Text	COs	Actual	Methodolo	Remarks
No.	No.	Date	No.		Book /	mapped	Content	gyused	byfacult
					Refere		covered		y if any
					nces				
1-2	L1		Ι	Introduction to low	T1-T2	CO-1		PPT Digi	
				temperature physics,				Class/Chal	
				course objectives,				k-Board	
				grading scheme					
	L2-			Cryoliquids, general	T1-T2	CO-1		PPT Digi	
	L5			properties of He,				Class/Chal	
				Superfluid ⁴ He,				k-Board	
				Experimental					
				Observation, Two					
				fluid model, Bose					
				Einstein Condensation					
2	L6-7			Superfluid and Normal	T1-T2	CO-1		PPT Digi	
				Fluid ³ He.				Class/Chal	
								k-Board	
2	L8			Mixtures of 'He and	T1-T2	CO-1		PPT Digi	
				⁴ He.				Class/Chal	
								k-Board	
3	L9-		II	Solids at Low	T1-T2	CO-2		PPT Digi	
	L10			Temperature: Phonons				Class/Chal	
				and electrons, specific				k-Board	
				heat of Phonons,					
_				Debye model					
3	L11			Specific heat of	T1-T2	CO-2		PPT Digi	
				conduction electrons in				Class/Chal	
				simple metals				k-Board	
3-4	L11-			Electrical conductivity,	T1-T2	CO-2		PPT Digi	
	L13			relaxation-time				Class/Chal	

4	L13- 16 L17- 20	III		T1-T2	CO-2 CO-3	k-Board PPT Digi Class/Chal k-Board PPT Digi Class/Chal
			Temperature (Magnetic Moments, Spins) Paramagnetic systems-isolated spins, magnetic contribution to specific heat, Schottky anomaly			k-Board
6	L21- 24		Spin waves-magnons, ferromagnets, anti- ferromagnets	T1-T2	CO-3	PPT Digi Class/Chal k-Board
7	L25- 28	IV	Temperature (Introduction to Superconductivity, Shubnikov-de Haas Oscillations, Colossal Magnetoresistance) Transition temperature, Meissner effect, type-I and type- II superconductors; phenomenological description, London equations; microscopic theory of superconductors; flux quantization;		CO-4	PPT Digi Class/Chal k-Board
8	L29- 32		Shubnikov-deHaas(SdH)oscillations,quantization ofBlochelectrons in a uniformmagneticfield;colossalmagnetoresistance(CMR).	T2, R1-R2	CO-4	PPT Digi Class/Chal k-Board
9	L33- 34	V	Refrigeration: Liquefaction of gases, expansion engines, Joule-Thomson expansion	T1-T2	CO-5	PPT Digi Class/Chal k-Board
9	L35- 36		Closedcyclerefrigerators,GiffordMc-Mahoncoolers;	T1-T2	CO-5	PPT Digi Class/Chal k-Board

		simple-helium bath cryostats		
10	L37- 40	³ He- ⁴ He dilution T1-T2 refrigerator; Pomeranchuk cooling; refrigeration by adiabatic demagnetization of a paramagnetic salt and adiabatic nuclear demagnetization.	2 CO-5	PPT Digi Class/Chal k-Board

		e: PH 519	
		: Physics of Thin Films	
	equisi		
Co- r Credi	equisit	L:4T:00 P:00	
		ule per week: 0x	
		Sc. / M.Sc.	
		Level:X / IV	
	ch: Ph		
		acher:	
G	roup :	B Option 3	
Code		Title: Physics of Thin Films	L-T-P-C
PH 5	19		[4004]
	1.	Definevacuum and compare various vacuum pumps and gauges.	
	2.	Outline the thermodynamics of thin films.	
	3.	Illustrate the mechanism of thin film formation.	
	4.	Explain various techniques of thin film formation.	
	5.	Summarize various properties of thin films.	
Cour	se Out	comes	
After	the con	mpletion of this course, students will be able to:	
	1.	Demonstrate various types of pumps and gauges, inspect leak in vacuum and can design a	
		vacuum system.	
	2.	Define the thermodynamical parameters of thin films and can outline interdiffusion in thin	
		films.	
	3.	Demonstrate the stages of thin film formation and can outline the conditions for	
		the formation of amorphous, crystalline and epitaxial films.	
	4.	Illustrate and compare physical vapour deposition (PVD) and chemical vapour deposition	
	-	(CVD) techniques.	7
M. l.	5	Define various thin film properties and outline the techniques of their determination.	7.
Modu	lle-1	Vacuum Science & Technology:	[8]
		Classification of vacuum ranges, Kinetic theory of gases, gas transport and pumping,	
		Conductance and Throughput, Classification of vacuum pumps, single stage and double stage rotary pump, diffusion pump, turbomolecular pump, cryopump and Classification of gauges,	
		Mechanical gauges: McLeod gauge, Thermal conductivity gauges: Pirani gauge and	
		thermocouple gauge, Ionization gauges: Bayard-Alpert gauge, Penning gauge, leak detection.	
Modu	10.2	Basic Thermodynamics of Thin Films	[8]
WIOU	110-2	Solid surface, interphase surface, Surface energies: Binding energy and Interatomic Potential	[0]
		energy, latent heat, surface tension, Liquid surface energy measurement by capillary effect,	
		by zero creep, magnitude of surface energy, General concept, jump frequency and diffusion	
		flux, Fick's First law, Nonlinear diffusion, Fick's second law, calculation of diffusion	
		coefficient, interdiffusion and diffusion in	
		thin films	
Modu	ıle-3	Mechanisms of Film Formation	[8]
		Stages of thin film formation: Nucleation, Adsorption, Surface diffusion, capillarity theory of	[-]
		nucleation, statistical theory of nucleation, growth and coalescence of islands, grain structure	
		and microstructure of thin films, diffusion during film growth, polycrystalline and amorphous	
		films, Theories of epitaxy, role of interfacial layer, epitaxial film growth, super lattice	
		structures	
Modu	ıle-4	Methods of Preparation of Thin Films:	[15]
		Physical vapour deposition: Vacuum evaporation-Hertz- Knudsen equation, evaporation from	
		a source and film thickness uniformity, Glow discharge and plasmas-Plasma structure, DC,	
		RF and microwave excitation; Sputtering processes-Mechanism and sputtering yield,	

		Sputtering of alloys; magnetron sputtering, Reactive sputtering; vacuum arc: cathodic and anodic vacuum arc deposition. Chemical vapour deposition: Thermodynamics of CVD, gas transport, growth kinetics, Plasma chemistry, plasma etching mechanisms; etch rate and	
		selectivity, orientation dependent etching; PECVD.	
Mod	lule-5	Characterization of thin films:	[6]
		Deposition rate, Film thickness and uniformity, Structural properties: Crystallographic	
		properties, defects, residual stresses, adhesion, hardness, ductility, electrical properties,	
		magnetic properties; optical properties.	
Text	t books:		
1.	The	Material Science of Thin Films by Milton Ohring, Academic Press, Inc., 1992.	
2.	Han	dbook of Thin Films by Maissel and Glang	
3.	Thir	n Film Phenomena by K. L. Chopra (McGraw Hill, 1969)	
Refe	erence b	oooks:	
1.	Thir	Film Deposition: Principles & Practice by Donald L. Smith (McGraw Hill, 1995)	
2.	Coa	ting Technology Handbook by D. Satas, A. A. Tracton, Marcel Dekkar Inc. USA.	
3.	Arc	Plasma Technology in Material Science, P. A. Gerdeman and N. L. Hecht, Springer Verlag, 1972	_

3.	Arc Plasma Technology in Material Science, P. A. Gerdeman and N. L. Hecht, Springer Verlag, 1972.	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Yes
projectors	
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and	Yes
internets	
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark			\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2					
Quiz 3					

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course			Program	n Outcomes		
Outcome #	a	b	С	d	e	f
1	Н	Н	Н	L	М	L
2	Н	Н	М	L	L	L
3	Н	М	М	L	L	L
4	Н	М	М	L	L	L
5	Н	Н	Н	L	Н	L

Mapping of Course Outcomes onto Program Outcomes

Course		Course Objectives				
Outcome #	a	b	С	d	e	
1	Н	М	М	М	L	
2	М	Н	М	М	L	
3	М	М	Н	L	L	
4	М	М	Н	L	L	
5	М	М	L	L	Н	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tent	Module	Topics	to b	e Text	Cos	Actual	Methodology	Remarks
	No.	ative	No.	covered		Book /	mapped	Content	used	by
No.		Date				Refere		covered		faculty if
						nces				any
1-2	L1-2		Ι	Classificat vacuum Kinetic th gases	ranges		CO-1		PPT Digi Class/Chalk- Board	
	L3-4			gas transp pumping, Conductar Throughpu	nce an	1 T2	CO-1		PPT Digi Class/Chalk -Board	
2	L5			Classificat vacuum	ion o pumps	f T1 ,	CO-1		PPT Digi Class/Chalk-	

2-3	L6		single stage and double stage rotary pump, diffusion pump, turbomolecular pump, cryopump and Classification of gauges, Mechanical gauges: McLeod gauge	T1	CO-1	Board PPT Digi Class/Chalk- Board
3	L7	-	Thermal conductivity gauges: Pirani gauge and thermocouple gauge,		CO-1	PPT Digi Class/Chalk- Board
3	L8		Ionization gauges: Bayard-Alpert gauge, Penning gauge, leak detection.		CO-2	PPT Digi Class/Chalk- Board
4	L9	II	Solid surface, interphase surface	Т3	CO-2	PPT Digi Class/Chalk- Board
4	L10		Surface energies: Binding energy and Interatomic Potential energy		CO-2	PPT Digi Class/Chalk- Board
5	L11-12		latent heat, surface tension, Liquid surface energy measurement by capillary effect, by zero creep		CO-2	PPT Digi Class/Chalk- Board
5	L13		magnitude of surface energy, General concept, jump frequency and diffusion flux		CO-2	PPT Digi Class/Chalk- Board
6	L14-16		Fick's First law, Nonlinear diffusion, Fick's	T1, T2, T3	CO-2	PPT Digi Class/Chalk- Board

[<u> </u>		second law.				
			,				
			calculation of				
			diffusion				
			coefficient,				
			interdiffusion and				
			diffusion in				
			thin films				
7	L17-18	III	Stages of thin film formation:	T1	CO-3	PPT Digi Class/Chalk-	
			Nucleation,			Board	
			Adsorption,				
			Surface diffusion				
	L 10 20				GO 3		
7-8	L19-20		capillarity theory of nucleation.		CO-3	PPT Digi	
						Class/Chalk- Board	
			statistical theory				
			of nucleation,				
			growth and				
			coalescence of				
			islands				
8	L21-22		grain structure and	T2	CO-3	PPT Digi	
			microstructure of			Class/Chalk-	
			thin films,			Board	
			diffusion during				
			film growth				
9	L23		polycrystalline and	T1,	CO-3	PPT Digi	
			amorphous films,			Class/Chalk-	
			Theories of			Board	
			epitaxy				
9	L24		role of interfacial		CO-3	PPT Digi	
			layer, epitaxial			Class/Chalk-	
			film growth, super			Board	
			lattice structures				
9-10	L25-26	IV	Vacuum	T1	CO-4	PPT Digi	
			evaporation-Hertz-			Class/Chalk-	
			Knudsen equation,			Board	
			evaporation from a				
			source and film				
			thickness				
			uniformity				
10	L27-28		Glow discharge	T1	CO-4	PPT Digi	
			and plasmas-			Class/Chalk- Board	
			Plasma structure,			Board	
			DC, RF and				
			microwave				
			excitation				
11	L29-30		Sputtering	T2	CO-4	PPT Digi	
			processes-			Class/Chalk-	
						Board	

			Mechanism and sputtering yield, Sputtering of alloys	TO 1		
11-12	L31-32		magnetron sputtering, Reactive sputtering	T2	CO-4	PPT Digi Class/Chalk- Board
12	L33-34		vacuum arc: cathodic and anodic vacuum arc deposition. Chemical vapour deposition	T2	CO-4	PPT Digi Class/Chalk- Board
13	L35-36		Thermodynamics of CVD, gas transport, growth kinetics, Plasma chemistry		CO-4	PPT Digi Class/Chalk- Board
14	L37-39		plasma etching mechanisms; etch rate and selectivity, orientation dependent etching; PECVD		CO-4	PPT Digi Class/Chalk- Board
14	L40	V	Deposition rate, Film thickness and uniformity	T2	CO-5	PPT Digi Class/Chalk- Board
15	L41		Structural properties: Crystallographic properties, defects	T2	CO-5	PPT Digi Class/Chalk- Board
15	L42		residual stresses, adhesion, hardness, ductility	T2	CO-5	PPT Digi Class/Chalk- Board
15	L43		electrical properties	T2	CO-5	PPT Digi Class/Chalk- Board
16	L44		magnetic properties;	T2	CO-5	PPT Digi Class/Chalk- Board
16	L45		optical properties	T2	CO-5	PPT Digi Class/Chalk- Board

Course code: PH 520Course title: Theory of Dielectrics and FerroicsPre-requisite(s):Co- requisite(s):Credits:4L:3 T:1 P: 0Class schedule per week:Class: I.M.Sc.Semester / Level:PE VI / VIIBranch: PHYSICSName of Teacher:Group : BOption 4

			LTCP
Cod PH 5	Title: Theory of dielectrics and ferroics	3-1-0-4	
		iectives	•
This c		enables the students:	1
	1.	To become familiar with the concept of polarisation in ideal and non-ideal dielectrics.	
	2.	To be familiarized with electrochemical impedance spectroscopy.	1
	3.	To become familiar with the theory of ferroelectricity using domain theory and understan different type of phase transition in ferroelectric materials.	
	4.	To acquire an understanding of the theory of ferromagnetism and know about the differer magnetic ordering.	it types of
	5.	To become familiar with the concept of multiferroics and different types of mechanisms by which multiferroics can be formed.	у
		t comes mpletion of this course, students will be:	
	1.	Able to differentiate between different type of dielectrics, ferroelectrics and able to interp experimental results with different theoretical models.	ret the
	2.	Able to apply the concept of relaxation, resonance and dispersion in dielectrics using freq time domain method.	uency and
	3.	Able to differentiate between different types of ferroelectric materials and able to calculat recoverable energy, efficiency from the hysteresis loop.	e the
	4.	Able to identify and compare different kinds of magnetic ordering.	
	5.	Able to categorize different types of multiferroics based on the different mechanisms of the origin.	neir
Modu	ıle-1	Macroscopic theory of dielectrics: Polarisation in dielectrics, Clausius Mosotti relation for ideal dielectrics, Lorentz field, Debye correction to Clausius Mosotti equation, frequency and temperature dependency of dielectrics, Temperature coefficient of dielectrics, dielectric losses. The double well potential model for polarization and determination of depth of potential wells.	[10
Modu	ıle-2	Dielectric spectroscopy: introduction to impedance spectroscopy, physical models for equivalent circuit elements, dielectric relaxation in materials with single time constant, distribution of relaxation time, interface and boundary conditions, grain boundary effects. Elementary idea of measurement technique in frequency and time domain methods.	[10
Module-3		Ferroelectricity: Ferroelectricity, Microscopic theory of Ferroelectricity, Landau primer of ferroelectricity, Phase transition of ferroelectrics (1 st , 2 nd and relaxor kind), soft optical phonons, hysteresis loop, Recoverable energy, Piezoelectricity and energy harvesting, transducer.,	[10
Module-4Ferromagnetism: Weiss model of a ferromagnet, magnetic susceptibility, magnetic field, origin of the molecular field, Weiss model of antiferroma susceptibility, effect of a strong magnetic field, types of antiferrom ferrimagnetism, helical order, spin glasses, frustration.			[10

Module-5	Multiferroics: Ferroic, magnetoelectric, multiferroic, magnetodielectric, magnetoelectric coupling, Type I and Type II Multiferroics, charge-order driven multiferroicity, examples of charge-ordered driven multiferroicity, lone-pair electron multiferroic systems, geometric ferroelectricity, frustrated magnetism triggered ferroelectricity,	[10]
	applications of multiferroics: magnetoelectric switching, multiferroics for spintronics.	
Textbo	oks:	
1. App	lied Electromagnetism and Materials by Andre Moliton, Springer, 2007	
0	netism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Steph adell, Oxford University Press, 2001.	en
	tiferroic Materials: Properties, Techniques and Applications, Junling Wang, CRC Press, T Francis group, 2017.	aylor

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark		\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

27.Student Feedback on Faculty 28.

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #	Program Outcomes Program Outcomes							
	а	b	с	d	e	f		
1	М	Н	Н	L	L	М		
2	L	Н	Н	L	L	М		
3	М	Н	Н	L	L	L		
4	Н	М	М	L	L	L		
5	М	Н	Н	Н	L	L		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Course Objective						
	a	b	С	d	e			
1	Н	М	М	L	М			
2	М	Н	М	L	М			
3	М	М	Н	L	М			
4	L	L	L	Н	Н			
5	М	М	М	Н	Н			

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2 and CD8				
CD2	Tutorials/Assignments		CO2	CD1, CD2 and CD8				
CD3	Seminars		CO3	CD1, CD2 and CD8				
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD8				
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tentative	Mod	Topics to be covered	Text	COs	Actual	Methodolog	Remarks
No.	No.	Date	ule	_	Book /	map	Content	у	by
			No.		Refere	ped	covered	used	faculty
					nces				if any
1	L1-2		Ι	Macroscopic theory of dielectrics: Polarisation in dielectrics, ClausiusMosotti relation		1, 2		PPT Digi Class/Chalk -Board	
1	L3			for ideal dielectrics, Lorentz field, Debye correction to ClausiusMosotti equation,	T1			PPT Digi Class/Chalk -Board	
1	L4- L5			frequency and temperature dependency of dielectrics,	T1			PPT Digi Class/Chalk -Board	

2	L6		Temperature coefficient	T1	PPT Digi
-	20		of dielectrics, dielectric		Class/Chalk
			losses.		-Board
2	L7-8		The double well	T1	PPT Digi
_	27 0		potential model for		Class/Chalk
			polarization and		-Board
			determination of depth		
			of potential wells.		
4	L9-	II	Dielectric spectroscopy:	T1	PPT Digi
	10		introduction to		Class/Chalk
	-		impedance		-Board
			spectroscopy,		
4	L11			T1	PPT Digi
			equivalent circuit		Class/Chalk
			elements		-Board
5	L12-			T1	PPT Digi
_	13		materials with single		Class/Chalk
			time constant,		-Board
			distribution of relaxation		
			time,		
5	L14-		interface and boundary	T1	PPT Digi
	15		conditions, grain		Class/Chalk
			boundary effects.		-Board
6	L16			T1	PPT Digi
			measurement technique		Class/Chalk
			in frequency and time		-Board
			domain methods.		
	L17	III	Ferroelectricity:	T1	PPT Digi
			Ferroelectricity,		Class/Chalk
			Microscopic theory of		-Board
			Ferroelectricity,		
	L18		Landau primer of	T1	PPT Digi
			ferroelectricity,		Class/Chalk
					-Board
	L19		Phase transition of	T1	PPT Digi
			ferroelectrics (1 st , 2 nd		Class/Chalk
			and relaxor kind),		-Board
	L20		soft optical phonons,	T1	PPT Digi
			hysteresis loop,		Class/Chalk
					-Board
	L21-		Recoverable energy,		PPT Digi
	24		Piezoelectricity and		Class/Chalk
			energy harvesting,		-Board
			transducer		
	L25	IV	Ferromagnetism: Weiss	T2	PPT Digi
			model of a ferromagnet,		Class/Chalk
					-Board
	L26		magnetic	T2	PPT Digi
			susceptibility,effect of a		Class/Chalk
<u> </u>			magnetic field,		-Board
	L27		origin of the molecular		PPT Digi
			field, Weiss model of		Class/Chalk
			antiferromagnet,		-Board
			magnetic susceptibility		

28		effect of a strong	T2	PPT Digi
		magnetic field,		Class/Chalk
				-Board
29-		21	T2	PPT Digi
30		antiferromagnetic order		Class/Chalk
				-Board
L31-		ferrimagnetism, helical	T2	PPT Digi
32		order, spin glasses,		Class/Chalk
		frustration.		-Board
L33	V	Multiferroic,	T3	PPT Digi
		magnetoelectric,		Class/Chalk
		multiferroic,		-Board
L34		magnetodielectric,	T3	PPT Digi
		magnetoelectric		Class/Chalk
		coupling, Type I and		-Board
		Type II Multiferroics,		
L35		charge-order driven	T3	PPT Digi
		multiferroicity,		Class/Chalk
		examples of charge-		-Board
		ordered driven		
		multiferroicity,		
L36		lone-pair electron	T3	PPT Digi
		multiferroic systems,		Class/Chalk
				-Board
L37-		geometric	T3	PPT Digi
38		ferroelectricity,		Class/Chalk
		frustrated magnetism		-Board
		triggered		
		ferroelectricity,		
L39-		11	T3	PPT Digi
40		multiferroics:		Class/Chalk
		magnetoelectric		-Board
		switching, multiferroics		
		for spintronics		

 Course code: PH 515

 Course title: Theoretical and Computational Condensed Matter

 Physics Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4L:2 T:0 P:4

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level: PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : B
 Option 5

Same Given As above(in Group A)

Group C- Photonics:

- 1. Photonic and Optoelectronic Devices
- 2. Holography and Applications
- 3. Quantum photonics and applications

4. Introduction to Nanophotonics

COURSE INFORMATION SHEET

Course code	e: PH 521		
Course title	: Photonics and	Optoelectronic Devices	
Pre-requisit	e (s):		
Co- requisit	e(s):		
Credits:	4 L:3 T:1	P: 0	
Class sched	ule per week:		
Class: I.M.S	Sc.		
Semester / I	Level: VI / VII		
Branch: PH	YSICS		
Name of Te	acher:		
Group :	С	Option 1	
Code: PH 5	21	Title: Photonics and Optoelectronic Devices	L-T-P-C
			$[3 \ 1 \ 0 \ 4]$

Course Objectives This course enables the students:

- 1. To explain the properties of optoelectronic material and optical processes in semiconductor.
- 2. To understand underlying principle & working of liquid crystal displays, optical modulator, and switches.
- 3. To understand principle & working of light sources and photodetectors.
- 4. To know the working of optical nonlinear devices and understand its significance for optical computing.
- 5. To acquire the knowledge of the function and working of photonic switches and interconnects **Course Outcomes** After the completion of this course, students will be:
- 1. Able to identify suitable optoelectronic materials and explain optical phenomena occurring in semiconductor
- 2. Able to recognize parameters for optimizing the performance of liquid crystal displays, optical modulator, and switches & solve related numerical problems.
- 3. Able to identify the parameters for optimizing the performance of light sources and detectors.
- 4. To define the role of different nonlinear optical devices in optical computing.
- 5. To select appropriate photonic switch and interconnect for different operations under different working condition.
- Module-1 Optical processes in semiconductors: Electron-hole pair formation and recombination, Direct and indirect bandgap semiconductors, structural property of crystalline, polycrystalline, amorphous materials, optoelectronic materials, Liquid crystals, compound semiconductors, absorption in semiconductors, Stark effects in quantum well structures, Absorption and emission spectra, excitonic effects.
- Module-2 Displays, optical modulators, and switches: Liquid crystal cells (principle), Passive and Active matrix 8 liquid crystal displays, Electro-optic modulator, Magneto-optic modulator, Acousto-optic modulator. Electro-absorption modulators, Mach-Zehnder Electrorefraction (Electro-optic) modulators, optical switches.
- Module-3 Optical sources and detectors: Light emitting diodes, surface- and edge- emitting configuration.
 Injection laser diodes, gain and index guided lasers, PIN and avalanche photodiodes, Photoconductors, Phototransistors, noise in photodetector. Solar cells (spectral response, conversion efficiency), Charge-coupled devices, Characteristics and applications.
- Module-4 Optical computing: Digital optical computing: Nonlinear devices, optical bistable devices, SEED
 10

 devices, Optical phase conjugate devices, integrated devices, spatial light modulators (SLM),
 0

 Optical Memory: Holographic data storage
 10
- Module-5 Photonic switching and interconnects: Kerr gates, Nonlinear Directional couplers, Nonlinear optical loop mirror (NOLM), Soliton logic gates, Free-space optical interconnects, wave-guide interconnects, holographic interconnections.

References

- Essentials of optoelectronics, Alan Rogers, 1st Ed., Chapman & Hall.
- Introduction to Fiber Optics, Ghatak & Thyagarajan, Cambridge University press.
- Optoelectronics: An Introduction to Materials and Devices, Jasprit Singh, The McGraw-Hill Companies.
- Semiconductor Optoelectronics Devices, P. Bhattacharya, PHI.

- Optoelectronics and Photonics, principles and practices S. O. Kasap, Prentice Hall
- Photonic switching and Interconnects; Abdellatif Marrakchi, Marcel Dekker, Inc.
- Optical Computing, an Introduction, Mohammad A. Karim and Abdul A. S Awwal, John Wiley & SonsInc

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark		\checkmark	\checkmark
Quiz 1		\checkmark			
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course	Course Outcomes								
Objective	1	2	3	4	5				
А	Н	Η	Η	Н	Н				
В	L	Η	М	Μ	L				
С	Μ	Η	Η	Μ	Н				
D	Μ	Μ	Η	Н	Н				
E	М	Η	Η	Н	Н				

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program Outcomes							
	а	b	С	d	e	f		
1	Н	Н	Η	-	Н	М		
2	Н	Н	Н	-	Н	Н		
3	М	Н	Н	-	Н	Н		

4	М	Η	М	-	Н	Н
5	L	Н	М	_	Н	Н

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2							
CD2	Tutorials/Assignments	CO2	CD1							
CD3	Seminars	CO3	CD1, CD2							
CD4	Mini projects/Projects	CO4	CD1, CD8							
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD8							
CD6	Industrial/guest lectures									
CD7	Industrial visits/in-plant training									
CD8	Self- learning such as use of NPTEL materials and internets									
CD9	Simulation									

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Method	Remarks
k		e	No	-	Book /	mappe	Content	ology	by
No.	No.	Date			Refere	d	covered	used	faculty if
					nces				any
1	L1		1	Electron-hole pair	R3, R4,	1, 2		CD1,	
				formation and	R5			CD2	
				recombination					
	L2			Direct and indirect	R3, R4,	1		CD1,	
				bandgap	R5			CD2	
				semiconductors					
	L3			structural property of	R3, R4	1		CD1,	
				crystalline,				CD2	
				polycrystalline,					
				amorphous materials,					
	L4			optoelectronic materials	R3, R4,	1		CD1,	
					R5			CD2	
2	L5			Liquid crystals,	R3	1		CD1,	
								CD2	
	L6			compound	R4	1		CD1,	
				semiconductors				CD2	
	L7			absorption in	R3, R4,	1		CD1,	
				semiconductors	R5			CD2	
	L8			Stark effects in quantum	R3, R4,	1		CD1,	
				well structures	R5			CD2	
3	L9			Absorption and	R3, R4,	1		CD1,	
				emission spectra	R5			CD2	
	L10			excitonic effects	R4	1		CD1,	
								CD2	
	L11		2	Liquid crystal cells	R3	2		CD1,	
				(principle)				CD2	
	L12			Passive and Active	R3	2		CD1,	
				matrix liquid crystal				CD2	

			displays			
4	L13		Electro-optic modulator	R3, R4,	1,2	CD1,
				R5		CD2
	L4		Magneto-optic	R3, R4,	1,2	CD1,
			modulator	R5		CD2
	L15		Acousto-optic	R3, R4,	1,2	CD1,
			modulator	R5		CD2
	L16		Electro-absorption	R3, R4,	1,2	CD1,
			modulators	R5		CD2
5	L17		Mach-Zehnder	R3, R4,	1,2	CD1,
			Electrorefraction	R5		CD2
			(Electro-optic)			
			modulators			
	L18		optical switches	R4	1,2	CD1,
						CD2
	L19	3	Light emitting diodes	R3, R4,	1,3	CD1,
				R5		CD2
	L20		-	R3, R4,	1,3	CD1,
			configuration	R5		CD2
6	L21			R3, R4,	1,3	CD1,
			configuration	R5		CD2
	L22		Injection laser diodes	R3, R4,	1,3	CD1,
				R5		CD2
	L23		gain and index guided		1,3	CD1,
			lasers	R5		CD2
	L24		PIN photodiodes	R3, R4,	1,3	CD1,
				R5		CD2
7	L25		Avalanche photodiodes	R3, R4,	1,3	CD1,
				R5		CD2
	L26		Photoconductors	R3, R4,	1,3	CD1,
				R5		CD2
	L27		Phototransistors	R3, R4,	1,3	CD1,
	1.00			R5	1.0	CD2
	L28		Noise in photodetector	R3, R4,	1,3	CD1,
0	1.20			R5	1.0	CD2
8	L29		Solar cells (spectral		1,3	CD1,
			response, conversion	K5		CD2
	1.00		efficiency)		1.0	
	L30		Charge-coupled	R3, R4,	1,3	CD1,
			devices, Characteristics	K5		CD2
			and applications			
	L31	4	•	R6, R7	3,4	CD1,
	+		computing			CD8
9	L32		Nonlinear devices	R4, R6	3,4	CD1,
						CD8
	L33		optical bistable devices	R4	3,4	CD1,
	L Q (D 4		CD8
	L34		SEED devices	R4	3,4	CD1,
	1.25		Ontinelal	DC D7	2.4	CD8
	L35		Optical phase conjugate	R6, R7	3,4	CD1,
10			devices	D (D =		CD8
10	L36		integrated devices	R6, R7	3,4	CD1,

-			I		1	 	
	-					CD8	
	L37						
	L38		spatial light modulators	R6, R7	3,4	CD1,	
	-		(SLM)			CD8	
	L39						
	L40		Optical Memory:	R6, R7	4,5	CD1,	
			Holographic data			CD8	
			storage				
11	L41	5	Kerr gates	R4, R6,	4,5	CD1,	
				R7		CD8	
	L42		Nonlinear Directional	R6, R7	4,5	CD1,	
	-		couplers			CD8	
	L43		1				
	L44		Nonlinear optical loop	R6, R7	4,5	CD1,	
			mirror (NOLM)	,		CD8	
12	L45		Soliton logic gates	R6, R7	4,5	CD1,	
						CD8	
	L46		Free-space optical	R6, R7	4,5	CD1,	
	-		interconnects			CD8	
	L47						
13	L48		wave-guide	R6, R7	4,5	CD1,	
	-		interconnects			CD8	
	L49						
	L50		holographic	R6, R7	4,5	CD1,	
			inteconnections			CD8	

Course code: PH 522 Course title: Holography and Applications Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI / VII Branch: PHYSICS Name of Teacher: Group : C Option 2

Code: PH 522	Title: Holography and Applications	L-T-	P- C	2
°H 522		[3	1	0
Course Ob	jectives This course enables the students:			
1.	To understand the basics of holograms and able to differentiate between holography and photography			
2.	To acquire the knowledge of different types of holograms.			
3.	To understand different materials used for hologram recordings and its merits and demerits.			
4.	To have an idea of using holographic technique in varieties of diverse applications			
5.	To acquire knowledge in holographic optical elements and to estimate how these optical elements can be utilized.			
	Able to identify the parameters which differentiate holograms from photographs			
1.	Able to distinguish between various types of holograms.			
2.	Able to analyze the different parameters of holographic recording materials.			
3.	Able to utilize holographic interferometric technique in various new applications			
4.	Able to experiment with holographic elements for various applications.			
Module-1	Basics of Holography: Principle of Holography. Recording and Reconstruction Method. Theory	v of	l I	10]
	Holography as Interference between two Plane Waves. Point source holograms, In line Hologram off axis hologram, Fourier Hologram, Lenses Fourier Hologram, Image Hologram, Fraunhofer Hologram. Holographic interferometer, double exposure hologram, real-time holography, digital holography, holographic camera.	n,]
Module-2	Theory of Hologram: Coupled wave theory, Thin Hologram, Volume Hologram, Transmissior Hologram, Reflection Hologram, Anomalous Effect.	1	[8]
Module-3	Recording Medium: Microscopic Characteristics, Modulation transfer function, Diffraction efficiencies, Image Resolution, Nonlinearities, S/N ratio, Silver halide emulsion, Dichromated gelatin, Photoresist, Photochrometics, Photothermoplastics, photorefractive crystals.	n]	13]
Module-4	Applications : Microscopy, interferometry, NDT of engineering objects, particle sizing, holograp particle image velocimetry; imaging through aberrated media, phase amplification by holography Optical testing; Information storage.]	13]
Module-5	Holographic Optical Elements (HOE): multifunction, holographic lenses, holographic mirror holographic beam splitters, polarizing, diffuser, interconnects, couplers, scanners; Optical data processing, holographic solar connectors; antireflection coating, holophotoelasticity;	or,	[8]

Text books:

T1: Optical Holography, Principle Techniques and applications: P. Hariharan, Cambridge University Press

T2: Holographic Recording materials; H.M.Smith, Springer Verlag

Reference books: R1: Lasers and Holography P C Mehta and V V Rampal, World Scientific

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Y
projectors	
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation oodi

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark			
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5	
А	Н	Μ	L	Н		
В	Н	Η	Μ	М	L	
С	Н	Η	Н	М	М	
D		М	Μ	Н	Н	
Е	L	М	Μ	Н	Н	

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes								
Outcome #	a	b	с	d	e	f				
1	М	Н	Н		L	Н				
2	М	Н	М		М	Н				
3	М	Н	Н	L	L	М				
4	М	М	Н	L	Н	М				
5	М	М	М	L	Н	Н				

	Mapping Between COs and Course Delivery (CD) methods								
СD	Course Delivery methods	Course Outcome	Course Deliver Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2						
CD2	Tutorials/Assignments	CO2	CD1 and CD2						
CD3	Seminars	CO3	CD1 and CD2						
CD4	Mini projects/Projects	CO4	CD1 and CD2						
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
	Self- learning such as use of NPTEL materials and								
CD8	internets								
CD9	Simulation								

-		Tentative Date	 Topics to be covered	Text Book / Refere nces	Cos mapped	Actual Content covered	Methodol ogy used	Remarks faculty if any	by
1	L1- L2		Principle of Holography.RecordingandReconstructionMethod.Theory ofHolographyas Interferencebetweentwo Plane Waves		CO1		PPT Digi Class/Ch ock- Board		
	L3- L6		Point source holograms, In line Hologram, off axis hologram, Fourier Hologram, Lenses Fourier Hologram, Image Hologram		CO1		PPT Digi Class/Ch ock- Board		
	L7- L10		Fraunhofer Hologram. Holographic interferometer, double exposure hologram, real-time holography, digital holography		CO1		PPT Digi Class/Ch ock-oard		
	L11- L14		Theory of Hologram: Coupled wave theory, Thin Hologram, Volume Hologram		CO2		PPT Digi Class/Ch ock- Board		
	L15- L18		Transmission Hologram, Reflection Hologram, Anomalous Effect.		CO2		PPT Digi Class/Ch ock- Board		
	L19- L22		RecordingMedium:MicroscopicCharacteristics,	T2, R1	CO3		PPT Digi Class/Ch ock-		

L23- L26 L27- L31	Modulationtransferfunction,Diffractionefficiencies,ImageResolution,Nonlinearities,S/Nratio,SilverhalideemulsionDichromatedgelatin,Photoresist,Photochrometics,		Board PPT Digi Class/Ch ock- Board PPT Digi Class/Ch ock- ock- ock-
1.22	Photothermoplastics, photorefractive crystals.	F1 P1 CO4	Board
L32- L35	Microscopy, interferometry, NDT of engineering objects, particle sizing,	Г1, R1 CO4	PPT Digi Class/Ch ock-oard
L36- L39	holographic particle 7 image velocimetry; imaging through aberrated media		PPT Digi Class/Ch ock- Board
L40- L44	holography; Optical testing; Information storage	Г1, R1 CO4	PPT Digi Class/Ch ock-oard
L45- L46	Holographic Optical 7 Elements (HOE): multifunction, holographic lenses, holographic mirror		PPT Digi Class/Ch ock- Board
L47- L50	holographic beam T splitters, polarizing, diffuser, interconnects, couplers, scanners		PPT Digi Class/Ch ock- Board
L51- L52	Optical data processing, T holographic solar connectors; antireflection coating, holophotoelasticity	Г1, R1 CO5	PPT Digi Class/Ch ock- Board

Course code: PH 523 Course title: Quantum photonics and applications Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI / VII Branch: PHYSICS Name of Teacher: Group : C Option 3

	coup : (
ode: P	PH 523	Title: Quantum photonics and applicationsL-T-	
		[3	1 0 4
		ctives :This course enables the students:	
	1.	To assess light-matter interaction at the nanoscale (1-100 nm) in terms of photon statistics for ident	ification
		of single photon sources.	
	2.	To Identify various plasmonic nanoantenna (nanoparticles, nanorods) for enhanced electromagnetic interaction	c
	3.	To identify a source of single photons and discuss a method to detect the single photons efficiently.	
	4.	To design chip scale devices for propagation of single photons for quantum communications	
	5.	To assess the present status and future applications of single photons in quantum technology	
Course	e Outco	omes: After the completion of this course, students will be	
	1.	Able to identify semiconducting quantum dot as a single photon source.	
	2.	To develop skills of designing a suitable metal nanoantenna for enhanced light-matter interaction, t making single photon source faster and brighter.	hus
	3.	To characterize (theoretically) whether a given source of the photon, is a single photon source.	
	4.	To design (theoretically) photonic circuits for the propagation of single photons on semiconductor a metallic platform.	and
	5.	To understand the modern and future scope of quantum communication.	
Modul	e-1	Classical optical communications and their limitations, quantum optical communications, Semiconducting quantum dots, quantum dot single photon sources, classification of light states and photon statistics. Photon detection and correlation function.Single-Photon Pulses and Indistinguishability of Photons.	12
Modul	e-2	Plasmonic nanoantennas, fabrications, characterizations and applications in quantum communications devices	8
Modul	e-3	Single photon sources for quantum information: Fabrication and characterizations, Han burry Brown and Twiss measurements (single photons characterization), The Hong–Ou–Mandel effect (indistinguishability test).	12
Modul	e-4	Resonant excitation of single photon sources, Integrated quantum photonic circuits and devices, semiconductor, metallic platform, single photon filtering and multiplexing.	8
Modul	e-5	Principles of quantum key distribution (QKD), Implementing QKD, Fiber-based QKD, Free-space QKD, Diamond-based single-photon sources and their application in quantum key distribution, Quantum repeaters	10
Re f 1. 2. 3.	Novo	er, P. (Ed.). (2009). Single semiconductor quantum dots (Vol. 28). Berlin: Springer. tny, L. & Hecht, B., Principles of nano-optics, Cambridge university press, 2006 s, B., &Orrit, M. (2005). Single-photon sources. Reports on Progress in Physics, 68(5), 1129.	
4	D	Contraction of the Alternative de Orienteur information and in a side distance de Driveiale en	.1

4. Prawer, Steven, and Igor Aharonovich, eds. Quantum information processing with diamond: Principles and applications. Elsevier, 2014.

5. Briegel , H.-J. , Dürr , W. , Cirac , J. I. and Zoller , P. (1998) ' Quantum repeaters: The role of imperfect local operations in quantum communication ', Phys Rev Lett , 81 , 5932 – 5935 ,

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

procedure Direct Assessment	
Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark		\checkmark		
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	М	Μ	L	М
В	М	Н	Μ	L	L
С	L	L	Η	L	L
D	-	L	L	Н	L
Е	L	М	L	L	Η

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Н	Н	L	Н	
2	Н	Н	Н	Н	М	Н	
3	Н	Н	Н	М	L	М	
4	Η	М	Н	Н	L	М	
5	М	Н	Н	Н	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods		Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2					
CD2	Tutorials/Assignments		CO2	CD1 and CD2					
CD3	Seminars		CO3	CD1 and CD2					
CD4	Mini projects/Projects		CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2					
CD6	Industrial/guest lectures		-	-					
CD7	Industrial visits/in-plant training		-	-					
CD8	Self- learning such as use of NPTEL materials and internets		-	-					
CD9	Simulation		-	-					

Week No.	Lect. No.	Tentati ve Date	Ch. No.	Topics to be covered	Text Book / Refere nces	COs mapped	Actual Content covered	Methodolo gy used	Remarks by faculty if any
1	L1-L2		1	Classical optical communications and their limitations, quantum optical communications	T1, T2,	1,2		PPT Digi Class/ Chock -Board	
	L3-L7			Semiconducting quantum dots, quantum dot single photon sources,		1,		Digi Class/ Chock -Board	
	L8-L10			classification of light states and photon statistics		1,2		Digi Class/Ch ock -Board	
	L11- L12			Photondetectionandcorrelationfunction.Single-PhotonPulsesandIndistinguishabilityofPhotons		1,2,3		Digi Class/Ch ock- Board	
	L13- L20			Plasmonic nanoantennas, fabrications,		1,2		DigiClass /Chock	

	characterizations and		-Board
	applications in quantum communications devices.		
L21- L32	Single photon sources for quantum information: Fabrication and characterizations, Han burry Brown and Twiss measurements (single photons characterization), The Hong–Ou–Mandel effect (indistinguishability test).		Digi Class/Ch ock -Board
L33- L40	Resonant excitation of single photon sources, Integrated quantum photonic circuits and devices, semiconductor, metallic platform, single photon filtering and multiplexing.	2	Digi Class/Ch ock -Board
L41- L50	Principles of quantum key distribution (QKD), Implementing QKD, Fiber-based QKD, Free- space QKD, Diamond- based single-photon sources and their application in quantum key distribution, Quantum repeaters	3	Digi Class/Ch ock -Board

Course code: PH 524 Course title: Introduction to Nanophotonics Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI / VII Branch: PHYSICS Name of Teacher: Group C

Option 4

Group							
Code:	Title: Introduction to NanophotonicsL-T-P						
PH 524	[31						
Course	Dbjective: Course enables the students:						
1.	To identify optical phenomenon and tools to understand physics at nanoscales.						
2.	To evaluate different quantum systems in zero, one, two and three-dimensional system at the n	anoscale.					
	To discuss photonic crystals and manifestation of nonlinear optical interactions with it.						
	like microcavity and waveguides.	sine devices					
		•					
1.	To solve problems of optical confinement at nanoscales.						
2.	To evaluate light-matter interaction in Nano-systems (quantum dots, well etc).						
3.	To design theoretical models for photonic crystals.						
4.	To design (theoretically) different types of microstructure fibres and photonic crystal fibre de	evices					
5.	To assess the field enhancement in metal nanoparticles and its application in surface plasmor	n waveguides.					
	Further he/she will be able to apply knowledge of light confinement in microcavity for microcavi	-					
Module-1	Foundations for Nanophotonics: similarities and differences of photons and electrons and the	ir 10					
	confinement. Propagation through a classically forbidden zone: tunnelling. Localization und						
	periodic potential: Band gap. Cooperative effects for photons and electrons. Nanoscale optic						
	interactions, axial and lateral nanoscopic localization, scanning near-field optical micro						
	Nanoscale confinement of electronic interactions: Quantum confinement effects, nanosc						
	interaction dynamics, nanoscale electronic energy transfer. Cooperative emissions						
Module-2		Quantum 10					
	confinement, density of states, optical properties. Quantum confined stark effect. Diele	•					
	confinement effect, Core-shell quantum dots and quantum-dot-quantum wells. Quantum con						
	structures as lasing media. Organic quantum-confined structures						
Module-3		band- 12					
	gaps, light guiding. Theoretical modeling of photonic crystals. Methods of fabrication. Photo						
	crystal optical circuitry. Nonlinear photonic crystals. Applications of photonic	crystals.					
	Microstructure fibers: photonic crystal fiber (PCF), photonic band gap fibers (PBG), band ga						
	guiding, single mode and multi-mode, dispersion engineering, nonlinearity engineering, PCF	-					
Module-4	Plasmonics: Metallic nanoparticles, nanorods and nanoshells, local field enhancement. Collect	ctive 8					
	modes in nanoparticle arrays, particle chains and arrays. surface plasmons, plasmon wavegui						
	Applications of metallic Nanostructures						
Module-5	Nanophotonic Devices: Quantum well lasers: resonant cavity quantum well lasers and light e	mitting 10					
	diodes, Fundamentals of Cavity QED, strong and weak coupling regime, Purcell factor, Spon	ntaneous					
	emission control, Application of microcavities, including low threshold lasers, resonant cavit						
	Microcavity-based single photon sources.	•					
Refe	rences:	•					
	Vanophotonics, Paras N Prasad, John Wiley & Sons (2004)						
	Fundamentals of Photonic Crystal Fibers; Fredric Zolla- Imperial College Press.						
T3. F	hotonic Crystals; John D Joannopoulos, Princeton University Press.						
	hotonic Crystals: Modelling Flow of Light; John D Joannopoulos, R.D. Meade and J.N.Winn, I	Princeton					
Univ	ersity Press (1995)						

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment				
Assignment	10				
Seminar before a commitee	10				
Three Quizes	30 (10+10+10)				
End Sem Examination Marks	50				

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark		
Quiz 1					
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
Α	Н	Μ	М	L	М
В	М	Η	М	L	L
С	L	L	Н	L	L
D	-	L	L	Н	L
Е	L	Μ	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	f
1	Н	Н	Н	Н	L	Н
2	Н	Н	Н	Н	М	Н
3	Н	Н	Н	М	L	М
4	Н	М	Н	Н	L	М
5	М	Н	Н	Н	Н	Н

	Mapping Between COs and Course Deliv	ery (CD) metl	hods
CD	Course Delivery methods	Course Outcome	Course Delivery Method
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
	Self- learning such as use of NPTEL materials and		
CD8	internets	-	-
CD9	Simulation	-	-

Week	Lect.	Tentati	Ch.	Topics to be covered	Text	COs	Actual	Methodo	Remarks
No.	No.	ve	No	1	Book /	mappe	Content	logy	by
		Date			Refere	d	covered	used	faculty if
		Dute			nces		coverca	useu	any
1	L1-L4		1	Foundations for	T1, T2,	1,2		PPT Digi	ully
1			1	Nanophotonics:	11, 12,	1,2		Class/Ch	
				similarities and				ock	
				differences of photons				-Board	
				and electrons and their				Dourd	
				confinement.					
				Propagation through a					
				classically forbidden					
				zone: tunneling.					
				Localization under a					
				periodic potential:					
				Band gap.					
	L3-L7			Cooperative effects for		1,		Digi	
				photons and electrons.				Class/Ch	
				Nanoscale optical				ock	
				interactions, axial and				-Board	
				lateral nanoscopic					
				localization, scanning					
				near-field optical					
				microscopy.					
	L8-L10			Nanoscale confinement		1,2		Digi	
				of electronic				Class/Ch	
				interactions: Quantum				ock	
				confinement effects,				-Board	
				nanoscale interaction					
				dynamics, nanoscale					
				electronic energy					
				transfer. Cooperative					
				emissions					
	L11-L12			Quantum wells,		1,2,3		Digi	
				quantum wired,				Class/Ch	
				quantum dots,				ock	
				quantum rings and				-Board	
				superlattices. Quantum					

	1	· · · · · · · · · · · · · · · · · · ·		
		confinement, density		
		of states, optical		
		properties		
L1	13-L15	Quantum confined stark	1,2	Digi
		effect. Dielectric		Class/Ch
		confinement effect,		ock
		Core-shell quantum		-Board
		dots and quantum-dot-		
		quantum wells.		
L.1	16-L20	Quantum confined	3	Digi
	-	structures as lasing		Class/Ch
		media. Organic		ock
		quantum-confined		-Board
		structures		Dourd
IO	21-L25	Photonic Crystals:	3	Digi
		5	5	Class/Ch
		1 1		
		features of photonic		ock
		crystals, wave		-Board
		propagation, photonic		
		band-gaps, light		
		guiding. Theoretical		
		modeling of photonic		
		crystals. Methods of		
		fabrication		
L2	26-L30	Photonic crystal optical	3	
		circuitry. Nonlinear		
		photonic crystals.		
		Applications of		
		photonic crystals.		
		Microstructure fibers:		
		photonic crystal fiber		
		(PCF), photonic band		
		gap fibers (PBG), band		
		gap swiding single mode		
		guiding, single mode		
		and multi-mode,		
		dispersion		
		engineering,		
		nonlinearity		
		engineering, PCF		
		devices		
L3	31-L35	Plasmonics: Metallic	4	
		nanoparticles,		
		nanorods and		
		nanoshells, local field		
		enhancement.		
		Collective modes in		
		nanoparticle arrays,		
		particle chains and		
		-		
		plasmons, plasmon		
		waveguides.		
		Applications of		
		metallic		
		Nanostructures		
· · ·	-			

L36-L50	Nanophotonic Devices:	5	
	Quantum well lasers:		
	resonant cavity		
	quantum well lasers		
	and light emitting		
	diodes, Fundamentals		
	of Cavity QED, strong		
	and weak coupling		
	regime, Purcell factor,		
	Spontaneous emission		
	control, Application of		
	microcavities,		
	including low		
	threshold lasers,		
	resonant cavity LED.		
	Microcavity-based		
	single photon sources.		

Group D- Electronics:

1. Microprocessor and Microcontroller Applications

2. Integrated Electronics

3. Microwave Electronics

COURSE INFORMATION SHEET

 Course code: PH 525

 Course title: Microprocessor and Microcontroller Applications

 Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4L:3 T:1

 P: 0

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level:PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : D
 Option 1

Code PH 52	The where opiocessor and where ocontroller Applications	L-T-P-C		
		3-1-0-4		
Course C	bjectives			
This cours	e enables the students:			
	The first module introduces architecture of 8085 and 8086 Microp	processor.		
1.	The module-2 is compilation of information about I/O communication Interface.			
2.	2. Microcontrollers (8051), its architecture and working is subject of module-3			
3.	The 4 th module contains Real time control sequences and program	nming of 8051-		
	microcontroller.			
4.	The AVR RISC microcontroller architecture is covered in module	e-5.		

Course Outcomes

After the completion of this course, students will be:

		The course intends to impart knowledge of Microprocessors and microcontrollers to enable gain the knowledge of basics of Modern computation.	learners					
		nowledge of 8085/8086 architecture would make learners rich about working and design of icroprocessors and microcontrollers.						
·		The course also includes information about microcontrollers, real time control of 8051 and AVR RISC microcontroller architecture. This would enable learners to understand fundamentals of microcontrollers and implement it to design / use microcontroller for new environments.						
Module	-1	8086 Architecture	[15]					
		Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram.						
		Register Organization, Memory Segmentation. Programming Mode!. Memory						
		addresses. Physical memory organization. Architecture of 8086, signal descriptions						

REFERENCE BOOKS:

- 1. Advanced Microprocessors and Peripherals -A. K. Ray and K.M. Bhurchandani, TMH, 2nd edition 2006.
- 2. The 8051 Microcontrollers, Architecture and programming and Applications -K.Uma Rao, Andhe Pallavi,,Pearson, 2009.
- 3. Micro Computer System 8086/8088 Family Architecture. Programming and Design -By Liu and GA Gibson, PHI, 2nd Ed.,
- 4. Microcontrollers and application, Ajay. V. Deshmukh, TMGH. 2005

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)

End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark		\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes							
Course Objectives		Course Outcomes					
	1	2	3	4	5		
Α	Н	М	Μ	L	Н		
В	М	Н	М	М	Н		
С	L	L	Н	М	L		
D	М	L	L	Н	Н		
Е	Н	М	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
	a	b	С	d	e	f	
1	Н	М	Н	М	М	М	
2	L	Н	Н	М	Н	Н	
3	Н	L	М	М	L	М	
4	L	М	Н	М	М	М	
5	L	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures	-	-					
CD7	Industrial visits/in-plant training	-	-					
CD8	Self- learning such as use of NPTEL materials and internets	-	-					
CD9	Simulation	-	-					

Week				nning Details. Topics to be covered	Text	Cos	Actual	Methodol	Remarks
	No.	Date			Book /	mappe	Content	ogy used	by
No.			No.		Refere nces	d	covered		faculty if any
1	L1-		1	Introduction to 8085	T1, R3	CO1		CD1,	
	L2			Microprocessor, 8086				CD2	
				Architecture-Functional					
				diagram.					
	L3-			Register Organization,	T1,R3	CO1		CD1,	
	L5			Memory Segmentation.				CD2	
				Programming Model					
2	L6			Memory addresses. Physical	T1,R3	CO1		CD1,	
				memory organization.				CD2	
	L7-8			Architecture of 8086, signal	T1, R3	CO1		CD1,	
				descriptions of 8086-	-			CD2	
				common function signals.					
				Minimum and Maximum					
				mode signals.					
3	L9		-	Timing diagrams. Interrupts	T1. R3	CO1		CD1,	
-				of 8086.	,			CD2	
	L10-			Instruction Set and Assembly	T1, R3	CO1		CD1,	
	11			Language Programming of		001		CD2	
	11			8086: Instruction formats,				0.02	
				addressing modes,					
				instruction set, assembler					
				directives,					
4	L12-		-	macros, simple programs	T1 D2	CO1		CD1,	
4	13			involving logical, branch and	11, KJ	COI		CD1, CD2	
	15			call instructions, sorting,				CD2	
				cui instructions, sorting,					
	L14-			evaluating arithmetic	T1, R3	CO1		CD1,	
	15			expressions, string				CD2	
				manipulations.					
5	L16		2	8255 PPI various modes of	T2	CO2		CD1,	
				operation and interfacing to				CD2	
				8086					
	L17-			Interfacing keyboard,	T2	CO2		CD1,	
	18			display, stepper motor				CD2	
				interfacing, D/A and A/D					
				converter.					
6	L19-			Memory interfacing to 8086,	T2	CO2		CD1,	
0	20			Interrupt structure of 8086,				CD1, CD2	
	20			Vector interrupt table,					
				Interrupt service routine,					
	L21-				T2	CO2		CD1,	
	L21- 22							CD1, CD2	
				BIOS interrupts, Interfacing Interrupt Controller 8259					
				1					
				DMA Controller 8257 to					

			8086.			
7	L23-		Communication	T2	CO2	CD1,
	25		interface: Serial			CD2
			communication standards,			
			Serial data transfer schemes.			
	L26-		8251 USART architecture	T2	CO2	CD1,
	27		and interfacing, RS-232,			CD2
			IEEE-4-88,			
8	L28-		Prototyping and trouble	T2	CO2	CD1,
	29		shooting			CD2
	L30-	3	Overview of 8051	T2	CO3	CD1,
	31		microcontroller.			CD2
			Architecture.			
9	L32-		I/O Ports. Memory	T2	CO3	CD1,
	33		organization,			CD2
	L33-		addressing modes and	T2	CO3	CD1,
	L34		instruction set of 8051,			CD2
	L35		simple program	T2	CO3	CD1,
						CD2
10	L36-	4	Interrupts, timer/ Counter	T2, R2	CO4	CD1,
	37		and serial communication,			CD2
	L38-		1 0 0	T2, R2	CO4	CD1,
	39		Interrupts, programming			CD2
11	T 40		external hardware interrupts	T2 D2	004	
11	L40-		1 0 0	T2, R2	CO4	CD1,
	41		communication interrupts	T2 D2	004	CD2
	L42		programming 8051 timers	12, R2	CO4	CD1,
			and counters			CD2, and
	1.42			D 4	005	CD8
	L43	5	Introduction	R4	CO5	CD1,
						CD2, and
	T 4 4			D 4		CD8
	L44-		AVR Family architecture,	K4	CO5	CD1,
	45		Register File, The ALU.			CD2, and
10	I 4C		Management	D 4	CO5	CD8
12	L46-			R4	CO5	CD1, CD2 and
	47		Instruction execution.			CD2, and CD8
	L 40			D 4	007	
	L48-		Timers. UART. Interrupt	R4	CO5	CD1, CD2 and
	49		Structure			CD2, and
						CD8

COURSE INFORMATION SHEET

Course code: PH 526 Course title: Integrated Electronics Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 2

logic processing for digital devices.	3-1-0-4								
bles the students: First module of the course contains information about various type logic processing for digital devices.	of circuitry to achieve								
First module of the course contains information about various type logic processing for digital devices.	of circuitry to achieve								
First module of the course contains information about various type logic processing for digital devices.	of circuitry to achieve								
	1. First module of the course contains information about various type of circuitry to achieve logic processing for digital devices.								
 The second module of the course would introduce the learners to the processes currently being followed in foundry for fabrication of Integrated devices. 									
3. The learners should explain different nanoscale devices.									
The working and construction of nanoscale electronic devices is pl Module-4.	anned to be covered in								
The final module, module-5 contains an account of functional the and their applications. Information contained in this module bridg the course taught.	,	_							
his course would introduce students about designing and making proc he various fabrication process taught in module-II would enrich their kno brication processes enabling them with skills of nanofabrication.	-								
nowledge of functioning and construction of nanoscale electronic devolution them update with recent technologies in the field.									
nowledge of functioning and construction of nanoscale optoelectronic eed to keep them update with recent technologies in the field.	c devices would cater the								
nowledge of various types of functional thin films, nanostructures and hable learners understand working of presently used various type of se	**								
ogic Families iode Transistor Logic, High Threshold Logic, Transistor-transisto ansistor Logic, Direct Coupled Transistor Logic, Comparison of Logi	-	5							
Ategrated Chip Technology verview of semiconductor industry, Stages of Manufacturing, Process rystal growth, Basic wafer fabrication operations, process yields, sem reparation, yield measurement, contamination sources, clean room con	s and product trends, iconductor material nstruction, substrates, implantation, rapid	20							
v r	erview of semiconductor industry, Stages of Manufacturing, Process ystal growth, Basic wafer fabrication operations, process yields, sem paration, yield measurement, contamination sources, clean room con fusion, oxidation and photolithography, doping and depositions, rmal processing, metallization. patterning process, Photoresists, phy	regrated Chip Technology erview of semiconductor industry, Stages of Manufacturing, Process and product trends, ystal growth, Basic wafer fabrication operations, process yields, semiconductor material eparation, yield measurement, contamination sources, clean room construction, substrates, fusion, oxidation and photolithography, doping and depositions, implantation, rapid ermal processing, metallization. patterning process, Photoresists, physical properties of ptoresists, Storage and control of photoresists, photo masking process, Hard bake, develop							

	inspect, Dry etching Wet etching, resist stripping, Doping and depositions: Diffusion process steps, deposition, Drive-in oxidation, Ion implantation, CVD basics, CVD process steps, Low pressure CVD systems, Plasma enhanced CVD systems, Vapour phase epitoxy, molecular beam epitaxy. Design rules and Scaling, BICMOS ICs: Choice of transistor types, pnp transistors, Resistors, capacitors, Packaging: Chip characteristics, package functions, package operations	
Module-3	Nanoelectronic devices Effect of shrinking the p-n junction and bipolar transistor; field-effect transistors, MOSFETs, Introduction, CMOS scaling, the nanoscale MOSFET, vertical MOSFETs, electrical characteristics of sub-100 nm MOS transistors, limits to scaling, system integration limits (interconnect issues etc.), heterostructure and heterojunction devices, ballistic transport and high-electron-mobility devices, HEMT, Carbon Nanotube Transistor, single electron effects, Coulomb blockade. Single Electron Transistor, Resonant Tunneling Diode, Resonant Tunneling Transistor, applications in high frequency and digital electronic circuits and comparison with competitive devices.	15
Module-4	Nano-Optoelectronic devices Direct and indirect band gap semiconductors, QWLED, QWLaser, Quantum Cascade Laser Integrated Micromachining Technologies for Transducer Fabrication	5
Module-5	Applications of Functional Thin Films and Nanostructures Functional Thin Films and Nanostructures for Gas Sensing, Chemical Sensors, Applications of Functional Thin Films for Mechanical sensing, Sensing Infrared signals by Functional	5

Textbooks and Reference Books:

- 1. Herbert Taub, Donald L. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977
- 2. S.M. Sze, Ed, Modern Semiconductor Device Physics, Wiley, New York
- 3. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd Ed, Wiley, Hoboken.
- 4. S. Wolf and R.N. Tauber, Silicon Processing, vol. 1, (Lattice Press)
- 5. S.Wolf and R. N. Tauber, Silicon Processing for the VLSI Era. (Lattice Press, 2000)
- Streetman, B.G. Solid State Electronic Devices, Prentice Hall, Fifth Edition, 2000 6.
- R. D. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, CRC Press, Boca 7. Raton.
- 8. W. R. Fahrner (Editor), Nanotechnology and Nanoelectronics, Materials, Devices, Measurement Techniques
- 9. Anis Zribi, Jeffrey Fortin (Editors), Functional Thin Films and Nanostructures for Sensors Synthesis, Physics, and Applications

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

29.Student Feedback on Faculty

30.

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	Course Outcome					
	1	2	3	4	5	
Α	Н	L	М	Μ	М	
В	М	Н	Н	Н	Н	
С	L	М	Н	Η	М	
D	L	М	Μ	Н	Н	
Е	L	М	Н	Η	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program Outcomes					
	а	b	С	d	e	f
1	Н	Н	Н	М	М	М
2	М	Н	Н	М	Н	Η
3	М	Н	М	М	Н	М
4	М	Н	М	М	Н	М
5	М	Η	Н	М	Н	Η

	Mapping Between COs and Course Delivery (CD) methods							
			Course	Course Delivery				
CD	Course Delivery methods		Outcome	Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2				
CD2	Tutorials/Assignments		CO2	CD1 and CD2				
CD3	Seminars		CO3	CD, CD2 and CD8				
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD8				
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures		-	-				
CD7	Industrial visits/in-plant training		-	-				
CD8	Self- learning such as use of NPTEL materials and internets		-	-				
CD9	Simulation		-	-				

Week	Lect.	Tentati	Ch.	Topics to be covered	Text	COs	Actual ContentMethodologReman		
No.	No.	ve Date	No.		Book / Refere	mapped	covered	y used	ks by faculty if any
					nces			uscu	n any
1	L1-L2		1	Diode Transistor Logic, High	R2,			CD1,	
				Threshold Logic, Transistor-	R3,			CD2	
				transistor Logic	and R6				
	L3-L4			Resistor-transistor Logic,	R2,			CD1,	
				Direct Coupled Transistor				CD2	
				Logic,	and R6				
	L5		1	Comparison of Logic	R2,			CD1,	
				families	R3,			CD2	
					and R6				
	L6-7		2	Overview of semiconductor	• R1,R4,			CD1,	
				industry, Stages of	R5			CD2	
				Manufacturing, Process and	l				
				product trends					
	L8-9			Crystal growth, Basic wafer	R1,			CD1,	
				fabrication operations,	R4, R5			CD2	
				process yields,	,				
				semiconductor material					
				preparation,					
	L9			yield measurement,	, R1,			CD1,	
				contamination sources, clean	R4, R5			CD2	
				room construction,					
	L10-			substrates, diffusion,	-			CD1,	
	12				R4,			CD2	
				photolithography, doping					
				and depositions,					
				implantation, rapid thermal					
				processing, metallization.					
	L13-			patterning process,				CD1,	
	14			Photoresists, physical	R4, R5			CD2	
				properties of photoresists,					
	L15-			-	R1,			CD1,	
	16			photoresists, photo masking	R4, R5			CD2	
				process, Hard bake, develop					
				inspect,	5.1		_		
	L17-			Dry etching Wet etching,	-			CD1,	
	18 L 10			resist stripping,	R4, R5			CD2	
	L19-			Doping and depositions:				CD1,	
	20				R4, R5			CD2	
				deposition, Drive-in	L				
	L O 1			oxidation, Ion implantation,	D1		-		
	L21-			CVD basics, CVD process				CD1,	
	22			steps, Low pressure CVD				CD2	
				systems, Plasma enhanced					

				<u>г г т</u>
		CVD systems, Vapour phase		
		epitoxy, molecular beam		
		epitaxy.		
L23-		Design rules and Scaling,	R1	CD1,
24			R4, R5	CD2
24				CD2
		transistor types, pnp		
		transistors, Resistors,		
		capacitors		
L25		Packaging: Chip	R1.	CD1,
1120		characteristics, package		CD2
		1 0		CD2
		functions, package		
		operations		
L26-	3	Effect of shrinking the p-n	R8, R9	CD1,
27		junction and bipolar		CD2, and
		transistor; field-effect		CD8
		,		CD0
		transistors, MOSFETs,		
L28-		Introduction, CMOS scaling,	R8, R9	CD1,
29		the nanoscale MOSFET,		CD2, and
		vertical MOSFETs		CD8
L30-			R8, R9	CD1,
			Kö, Ký	
31		sub-100 nm MOS transistors,		CD2, and
		limits to scaling, system		CD8
		integration limits		
		(interconnect issues etc.)		
L32-		, ,	R8, R9	CD1,
33				CD2, and
55		5		
		ballistic transport and high-		CD8
		electron-mobility devices,		
L34-	-	HEMT, Carbon Nanotube	R8, R9	CD1,
L35		Transistor, single electron		CD2, and
		effects, Coulomb blockade.		CD8
		eneets, coulomb blockade.		CD0
L36-		Single Electron Transistor,	R8 R0	CD1,
38		Resonant Tunneling Diode,		CD2, and
50		U		
		Resonant Tunneling Transistor		CD8
1 20				CD1
L39-			R8, R9	CD1,
40		frequency and digital		CD2, and
		electronic circuits and		CD8
		comparison with competitive		
		devices		
L41	4		R8, R9	CD1
L41	4	Direct and indirect band gap	ко, ку	CD1,
		semiconductors		CD2, and
				CD8
L42-		QWLED, QWLaser,	R8, R9	CD1,
43		Quantum Cascade Laser		CD2, and
				CD8
T 4 4	_ _	Internets d. Marco 111		
L44-		Integrated Micromachining	ка, ку	CD1,
45		Technologies for Transducer		CD2, and
		Fabrication		CD8
L		I		II

L46- 48 5	Nanostructures for Gas	CD1, CD2, and CD8
L49- 50		CD1, CD2, and CD8

COURSE INFORMATION SHEET

Course code: PH 527 Course title: Microwave Electronics Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 4

Code: PH 52		Title: Microwave Electronics	L-T-P-C [3-1-0-4]				
Cours	se O	bjectives					
This c		se enables the students:					
		Module-1 contains information about Transmission lines and wave-guides.					
		The design and working of various types of micro-wave sources is covered in module-II.					
	3.	Module-III contains information about various types of stripline, microstrip lines and Ne analysis.	twork				
	4.	nowledge about Micro-wave passive components and methods to measure various microwave rameters are planned to be covered in Module-IV.					
	5.	Module-V contains information about design, fabrication and working of microwave integrated circuit technology.					
		utcomes completion of this course, students will be: Leaner would gain knowledge about working, design and application of microwave frequencies	ency				
	electronics. 1. The course is intended to enrich the learner about Microwave transmission lives waveguides. Through it students would be able to understand the propagation of m through transmission lines and Waveguides.						
2. Learner would gather understanding of devices used for microwave generation, detection microwave network analysis							
	3.	Learner would also enrich their knowledge in terms of various microwave passive compo microwave parameters and microwave integrated circuit technology	nents,				
Module-1		Transmission lines and Waveguides Introduction of Microwaves and their applications. Types of Transmission lines, Characterization in terms of primary and secondary constants, Characteristic impedance, General wave equation, Loss less propagation, Propagation constant, Wave reflection at discontinuities, Voltage standing wave ratio, Transmission line of finite length, The Smith Chart, Smith Chart calculations for lossy lines, Impedance matching by Quarter wave transformer, Single and double stub matching. Rectangular Waveguides: TE and TM wave solutions, Field patterns, Wave impedance and Power flow.	12				
Modul	le-2	Microwave SourcesMicrowave Linear-Beam (O type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies, Klystron, Multicavity Klystron Amplifiers, Reflex Klystrons, Helix Travelling-wave tubes, magnetron Oscillators. Tunnel diode, TED ¬Gunn diode, Avalanche transit time devices IMPATT (also TRAPAT) and parametric devices.	7				

Module-3	Stripline and microstrip lines and Network analysis	11
	Dominant mode of propagation, Field patterns, Characteristic impedance, Basic design	
	formulas and characteristics. Parallel coupled striplines and microstrip lines-Even-and	
	odd-mode excitations. Slot lines and Coplanar lines. Advantages over waveguides.	
	Microwave Network Analysis: Impedance and Admittance matrices, Scattering matrix,	
	Parameters of reciprocal and Loss less networks, ABCD Matrix, Scattering matrices of	
	typical two-port, three-port and four-port networks, Conversion between two-port	
	network matrices.	
Module-4	Microwave Passive Components and measurements	14
	Waveguide Components: E-plane and H-plane Tees, Magic Tee, Shorting plunger,	
	Directional couplers, and Attenuator. Stripline and Microstrip line Components: Open	
	and shorted ends. Half wave resonator, Lumped elements (inductors, capacitors and	
	resistors) in microstrip. Ring resonator, 3-dB branchline coupler, backward wave	
	coupler, Wilkinson power dividers and rat-race hybrid ring. Low pass and band pass	
	filters. Microwave Measurements: Detection of microwaves, Microwave power	
	measurement, Impedance measurement, Measurement of reflection loss (VSWR), and	
	transmission loss in components. Passive and active circuit measurement &	
	characterization using network analyser, spectrum analyser and noise figuremeter	
Module -5		6
	Substrates for Microwave Integrated Circuits (MICs) and their properties. Hybrid	
	technology – Photolithographic process, deposited and discrete lumped components.	
	Microwave Monolithic Integrated Circuit (MMIC) technology-Substrates, MMIC	
	process, comparison with hybrid integrated circuit technology (MIC technology).	
RECOMM	ENDED BOOKS:	
1 Elec	ctromagnetic Waves and Radiating Systems – E.C. Jordan & K.G. Balmain, Prentice Hall, I	nc.
	rowave Devices and Circuits -S. Y. LIAO, PHI	
3 Intr	oduction to Microwave Theory and Measurements – L. A. Lance, TMH	
4 Tra	nsmission lines and Networks – Walter C. Johnson, McGraw Hill, New Delhi	
	works Lines and Fields – John D. Ryder	
	prowave Engineering: Passive Circuits -Peter A. Razi, Prentice Hall of India Pvt. Ltd, New I	Delhi.
	veguides – H.R.L. Lamont, Methuen and Company Limited, London	
	ndations for Microwave Engineering – Robert E. Collin, McGraw Hill Book Company, Nev	w Delhi
	owave Engineering – Annanurna Das, TMH, New Delhi	

9 Microwave Engineering – Annapurna Das, TMH, New Delhi

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	N
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

31.Student Feedback on Faculty

32.

Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives		Course Outcomes					
	1	2	3	4	5		
Α	Н	Μ	Μ	L	Η		
В	Н	Н	Μ	L	Η		
С	М	L	Н	L	L		
D	Н	L	L	Н	Η		
Е	L	Μ	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program			Outcomes			
	a	b	С	d	e	f	
1	Н	М	Н	М	Н	Н	
2	Н	Н	Н	М	Н	Н	
3	Н	L	М	М	L	М	
4	Н		Н	М	М	М	
5	М	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	CourseDelivery Method				
	Lecture by use of boards/LCD						
CD1	projectors/OHP projectors	CO1	CD1 and CD2				
CD2	Tutorials/Assignments	CO2	CD1 and CD2				
CD3	Seminars	CO3	CD1 and CD2				
CD4	Mini projects/Projects	CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures	-	-				
CD7	Industrial visits/in-plant training	-	-				

	Self- learning such as use of NPTEL		
CD8	materials and internets	-	-
CD9	Simulation	-	-

Week	Lect.	Tentati	Ch.	Topics to be covered	Text		Actual	Methodology	Remarks by
No.	No.	ve	No.		Book /	mappe	Content	used	faculty if any
		Date			Refere	d	covered		
					nces				
	L1-L2		1	Introduction of Microwaves	R1, R4,	CO1		CD1, CD2	
					and R7				
	L3-L5			Types of Transmission		CO1		CD1, CD2	
					and R7			,	
				terms of primary and	l				
				secondary constants,	,				
				Characteristic impedance					
2	L6				,R1, R4,	CO1		CD1, CD2	
				Loss less propagation,				,	
				Propagation constant, Wave					
				reflection at discontinuities,					
	L7		1	Voltage standing wave	R1, R4.	CO1	1	CD1, CD2	
				ratio, Transmission line of	and R7				
				finite length,					
	L8		1	e i	R1, R4,	CO1		CD1, CD2	
				Chart calculations for lossy				, -	
				lines,					
;	L9		1	Impedance matching by	R1. R4.	CO1		CD1, CD2	
				Quarter wave transformer,					
				Single and double stub					
				matching.					
	L10-12		1	Rectangular Waveguides:	R1. R4.	CO1		CD1, CD2	
				TE and TM wave solutions,				- , -	
				Field patterns, Wave					
				impedance and Power flow.					
1	L13-14		2	Microwave Linear-Beam (O	R2	CO2		CD1, CD2	
	_			type) and Crossed-Field					
				tubes (M type), Limitations					
				of conventional tubes at					
				microwave frequencies,					
	L15		1	Klystron, Multicavity	R2	CO2		CD1, CD2	
				Klystron Amplifiers, Reflex					
				Klystrons					
5	L16-17		1	Helix Travelling-wave	R2	CO2		CD1, CD2	
				tubes, magnetron					
				Oscillators.					
	L18		1	Tunnel diode, TED ¬Gunn	R2	CO2		CD1, CD2	
				diode,					
	L19		1	Avalanche transit time	R2	CO2	1	CD1, CD2	
				devices IMPATT (also					
				TRAPAT) and parametric					
				devices.					
5	L20-21		3		R4, R5	CO1,		CD1, CD2	
			Г	propagation, Field patterns,		CO3			

			Characteristic impedance,			
	L22		Basic design formulas and R4, R5	CO1,	CD1, CD2	
	1222		characteristics.	CO3		
	L23		Parallel coupled striplinesR4, R5	CO1,	CD1, CD2	
	L23		and microstrip lines-Even-	CO3	CD1, CD2	
			and odd-mode excitations.	203		
	L24			CO1,	CD1, CD2	
	L24		Slot lines and CoplanarR4, R5	CO1, CO3	CD1, CD2	
			lines. Advantages over	COS		
7	1.25.27		waveguides	CO1		
/	L25-27		Microwave Network R4, R5	CO1,	CD1, CD2	
			Analysis: Impedance and	CO3		
			Admittance matrices,			
			Scattering matrix,			
	L28		Parameters of reciprocal and R4, R5	CO1,	CD1, CD2	
			Loss less networks, ABCD	CO3		
			Matrix,			
8	L29		Scattering matrices of R4, R5	CO1,	CD1, CD2	
			typical two-port, three-port	CO3		
			and four-port networks,			
	L30		Conversion between two-R4, R5	CO1,	CD1, CD2	
			port network matrices.	CO3		
	L31-32	4	Waveguide Components: E- R6, R8	CO4	CD1, CD2	
			plane and H-plane Tees,			
			Magic Tee, Shorting			
			plunger, Directional			
			couplers, and Attenuator.			
9	L33-34		Stripline and Microstrip line R6, R8	CO4	CD1, CD2	
			Components: Open and			
			shorted ends.			
	L35-36		Half wave resonator, R6, R8	CO4	CD1, CD2	
			Lumped elements			
			(inductors, capacitors and			
			resistors) in microstrip.			
10	L37-38		Ring resonator, 3-dBR6, R8	CO4	CD1, CD2	
			branchline coupler,			
			backward wave coupler,			
			Wilkinson power dividers			
			and rat-race hybrid ring.			
	L39		Low pass and band passR6, R8	CO4	CD1, CD2	
			filters.			
11	L40-42		Microwave Measurements:R6, R8	CO4	CD1, CD2	
			Detection of microwaves,		- , -	
			Microwave power			
			measurement, Impedance			
			measurement, Measurement			
			of reflection loss (VSWR),			
			and transmission loss in			
			components.			
	L43-44		Passive and active circuitR6, R8	CO4	CD1, CD2	
			measurement &			
			characterization using			
			network analyser, spectrum			
			analyser and noise			
			-			
			figuremeter			

12 L4	Substrates for Microwave Integrated Circuits (MICs) and their properties.	CO5	CD1, CD2
L4	Hybrid technology – Photolithographic process, deposited and discrete lumped components.		CD1, CD2, and CD8
L4	Microwave Monolithic Integrated Circuit (MMIC) technology-Substrates		CD1, CD2, and CD8
L4	MMIC process, comparison with hybrid integrated circuit technology (MIC technology).		CD1, CD2, and CD8

Group E- Plasma Sciences:

- 1. Theory of Plasmas
- 3. Plasma Confinement

- 2. Physics of Thin Films
- 4. Waves and Instabilities in Plasma

COURSE INFORMATION SHEET

Course code: PH 528Course title: Theory of PlasmasPre-requisite(s):Co- requisite(s):Credits:4L:4 T:0 P: 0Class schedule per week:Class: I.M.Sc.Semester / Level: PE VI/ VIIBranch: PHYSICSName of Teacher:Group : EOption 1

Code: PH 528	6			
Plasma Tl	heory			
Course O	bjective			
1. To lea	rn about the similarity of plasma with fluid.			
2. To lea	rn about the diffusion and mobility of plasma.			
3. To lea	rn about the resistivity and single fluid MHD equation of plasma.			
4. To lea	rn about the Boltzmann and the Vlasov equation.			
5. To lea	rn about the different type of discharges.			
Course O	utcome			
	niliar about the method by which plasma can be treated as a fluid.			
	niliar with the diffusion and mobility process.			
	e to derive the set of single fluid MHD equation.			
	e to describe plasma with Boltzmann and Vlasov equation.			
5. Be fan	niliar with the different type of electrical discharges.			
Module-1	Relation of plasma physics to ordinary electromagnetic field, Fluid equation of motion, Fluid drifts perpendicular to B, Fluids drifts parallel to B, Plasma approximation.	[8]		
Module-2	Diffusion and mobility in weakly ionized gases, Decay of a plasma by diffusion, steady state solution, Recombination, diffusion across a magnetic field, collision in fully ionized plasma.	[8]		
Module-3	Mechanics of coulomb collisions, Physical meaning of resistivity, Numerical value of resistivity, Single fluid MHD equations, Diffusion in fully ionized plasma, Bohm diffusion and Neoclassical diffusion.	[8]		
Module-4	Concepts of elementary kinetic theory of plasmas, The meaning of distribution function, Boltzmann and Vlasov equation	[8]		
Module-5	Electrical discharges, Electrical breakdown in gases, glow discharge, Self sustained discharges, Paschen curve, High frequency electrical discharge in gases, electrode less discharge, capacitively and Inductively coupled plasmas,	[8]		

- 2. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984
- 3. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004
- 4. Plasma Physics (Plasma State of Matter) S. N. Sen, Pragati Prakashan, 1999

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment							
Assignment	10							
Seminar before a commitee	10							
Three Quizes	30 (10+10+10)							
End Sem Examination Marks	50							

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks				\checkmark	
Quiz 1	\checkmark	\checkmark			
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment -

Student Feedback on Faculty Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Objectives	1	2	3	4	5
А	Η	L	L	L	L
В	Μ	Н	L	L	L
С	Μ	М	Н	L	L
D	Μ	L	L	Н	L
Е	L	L	L	L	Η

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes											
Outcome #	a	В	С	d	E	f	g	Н	i	j	K	1
1	М	Н	Μ	Μ	М	Н						
2	М	Н	L	Μ	Μ	Н						
3	М	Н	Η	Μ	М	Н						
4	Μ	Н	Η	Μ	Μ	Н						
5	Μ	Н	L	Μ	Μ	Н						

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2						
CD2	Tutorials/Assignments	CO2	CD1 CD2						
CD3	Seminars	CO3	CD1 CD2						
CD4	Mini projects/Projects	CO4	CD1 CD2						
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2						
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self- learning such as use of NPTEL materials and internets								
CD9	Simulation								

	Lect			Topics to be covered	Tex	t	COs	Actual	Methodo	Remarks	
No.	No.	Date	No.	ropies to be covered	Boo		mapped	Content	logy	by	
		Build	1,00		Refere		mappea	covered	used	Faculty if	
					Nce			covercu	ubeu	any	
1	L1-			Relation of plasma		T3					
	L5			physics to ordinary							
				electromagnetic field,							
				Fluid equation of motion,							
	L6-			Fluid drifts perpendicular		T3					
	L10			to B, Fluids drifts parallel	R1						
				to B, Plasma							
	L11-			approximation Diffusion and mobility in	T2	T3					
	L11- L15			weakly ionized gases,		15					
	LIJ			Decay of a plasma by	K1						
				diffusion,							
	L16-			steady state solution,	T2	T3					
	L20			Recombination, diffusion		_					
				across a magnetic field,							
				collision in fully ionized							
				plasma.							
	L21-			Mechanics of coulomb		T3					
	L25			collisions, Physical							
				meaning of resistivity, Numerical value of							
				Numerical value of resistivity,							
	L26-			Single fluid MHD	т2	T3					
	L20- L30				R1	15					
	L30			fully ionized plasma,	111						
				Bohm diffusion and							
				Neoclassical diffusion.							
	L31-			Concepts of elementary	T2	T3					
	L35			kinetic theory of plasmas,	R 1						
	L36-			The meaning of	T2	T3					
	L40			distribution function,	R1						
				Boltzmann and Vlasov							
				equation							
	L41-			Electrical discharges,		R 1					
	L45			Electrical breakdown in							

	gases, glow discharge, Self sustained discharges, Paschen curve,
L46- L50	High frequency electrical T1 R1 discharge in gases, electrode less discharge, capacitively and Inductively coupled plasmas, ECR Plasmas, Electrical arcs .

COURSE INFORMATION SHEET

Course code: PH 529 Course title: Plasma Confinement Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:PE VI / VII Branch: PHYSICS Name of Teacher: Group : E

Option 2

Group : F	<u>Option 2</u>	
Code: PH 529	Title: Plasma Confinement	L-T-P-C [3-1-0-4]
Course O	bjective	
1. To lea	arn about the fundamental and basics of plasma confinement.	
2. To lea	arn about the Magnetic confinement scheme and related heating machanicsm.	
3. To lea	arn about the transport of plasma.	
4. To lea	arn about plasma-surface interaction.	
5. To lea	arn about the Magnetohydrodynamics generator.	
Course O		
	e familiar with the plasma confinement for thermonuclear fusion.	
	ave an idea how plasma can be confined magnetically.	
	niliar with the transport of plasma and its role in thermonuclear fusion.	
	niliar with plasma surface interaction and its role in fusion.	
5. Be fan	niliar with the energy generation by MHD generator.	
Module-1	Nuclear Fusion and plasma physics: Fusion as energy source, Fusion reactions, Controlled thermonuclear fusion and fusion reactor, Lawson criterion, Ignition, Fuel resources, Reactor economics, Plasma confinement schemes, Magnetic	[8]
Module-2	confinement, Inertial confinement, Laser-Fusion . Magnetic confinement: Larmor orbits, particle drifts, Magnetic mirror, Z-pinch, Theta-pinch, spheromak, Tokamak, safety factor, plasma beta, Aspect-ratio, Flux surfaces, plasma current, Grad-Shafranov equation, collisions, kinetic equation, Fokker-Planck equation, collision times, resistivity, plasma heating, Ohmic heating, RF heating, Neutral beam heating.	[8]
Module-3	Collisional Transport: Classical transport – minimal dissipation, diffusion, random walk estimate, heat conductivity, Fluid evolution in a torus – transport closure, radial fluxes, neoclassical transport, Surface flows, Axis symmetric fluxes.	[8]
Module-4	Plasma-surface interaction: Plasma surface interactions, Boundary layer, Recycling, Atomic and molecular processes, Desorption and wall cleaning, Sputtering, Arcing, Limiters, Divertors, Heat flux, Evaporation and heat transfer, Tritium inventory. Radiation from Plasma	[8]
Module-5	MHD Generator: Magnetohydrodynamic Generator, Basic theory, Principle of working, The fuel in MHD, Magnet in MHD Generator.	[8]
Reference		
	asma Physics (Plasma State of Matter) S. N. Sen, Pragati Prakashan, 1999	
	agnetic Fusion Technology, T J Dolan, 2014	
	asma Physics and Fusion energy, J P Freidberg Cambridge University Press, 2008	
4. To	okamaks, J wessen, Oxford Science Publication, 1987	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks	\checkmark		\checkmark		\checkmark
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	М	L	L	L
В	М	Н	L	L	L
С	L	L	Н	L	L
D	L	Μ	Μ	Н	L
Е	L	Μ	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #					Pro	rogram Outcomes						
Outcome #	a	b	c	d	E	f	g	Н	Ι	j	k	1
1	Μ	Н	Μ	Μ	Н	Н						
2	М	Н	Μ	Μ	Η	Н						
3	Μ	Н	Μ	Μ	Н	Η						
4	Μ	Н	Μ	Μ	Η	Н						
5	Μ	Н	Μ	Μ	Н	Н						

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2			
CD2	Tutorials/Assignments	CO2	CD1 CD2			
CD3	Seminars	CO3	CD1 CD2			
CD4	Mini projects/Projects	CO4	CD1 CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

		Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.	Toples to be covered	Book		Content		by
INO.	INO.	Date	INO.		JOOK	mapped		Useu	2
					/ D.f		covered		faculty if
					Refere				any
					Nces				
1	L1-			Nuclear Fusion and					
	L5			plasma physics:					
				Fusion as energy					
				source, Fusion					
				reactions, Controlled					
				thermonuclear fusion					
				and fusion reactor,					
				Lawson criterion,					
				Ignition,					
	L6-			Fuel resources,					
	L10			Reactor economics,					
				Plasma confinement					
				schemes, Magnetic					
				confinement, Inertial					
				confinement, Laser-					
				Fusion.					
	L11-			Magnetic confinement:					
	L15			Larmor orbits, particle					
				drifts, Magnetic					
				mirror, Z-pinch,					
				Theta-pinch,					
				spheromak, Tokamak,					
				safety factor, plasma					
				survey racion, prasma					

	heta Aspect ratio		
I 1C	beta, Aspect-ratio,		
L16-	Flux surfaces, plasma		
L20	current, Grad-		
	Shafranov equation,		
	collisions, kinetic		
	equation, Fokker-		
	Planck equation,		
	collision times,		
	resistivity, plasma		
	heating, Ohmic		
	heating, RF heating,		
	Neutral beam heating.		
L21-			
	1		
L25	Classical transport –		
	minimal dissipation,		
	diffusion, random		
	walk estimate, heat		
	conductivity,		
L26-	Fluid evolution in a		
L30	torus – transport		
	closure, radial fluxes,		
	neoclassical transport,		
	Surface flows, Axis		
1.21	symmetric fluxes		
L31-	Plasma-surface		
L35	interaction: Plasma		
	surface interactions,		
	Boundary layer,		
	Recycling, Atomic and		
	molecular processes,		
L36-	Desorption and wall		
L40	cleaning, Sputtering,		
	Arcing, Limiters,		
	Divertors, Heat flux,		
	Evaporation and heat		
	transfer, Tritium		
	inventory. Radiation		
	from Plasma		
Y 41			
L41-	MHD Generator:		
L45	Magnetohydrodynami		
	c Generator, Basic		
	theory,		
L46-	Principle of working,		
L50	The fuel in MHD,		
	Magnet in MHD		
	Generator.		

COURSE INFORMATION SHEET

Course code: PH 530 Course title: Waves and Instabilities in Plasma Pre-requisite(s): Co- requisite(s): Credits: 4L:4 T:0 P:0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : E Option 3

Code: PH 530	Title: Waves and Instabilities in Plasma L-T-P [4-0-0-4]					
Course (Dbjective					
	arn the fundamental and basics of Plasma waves.					
2. To le	arn about the electromagnetic waves.					
	arn about the Landau Damping.					
4. To le	arn about the different type of instabilities.					
5. To le	arn about the MHD stability.					
Course o	utcome:					
	be familiar with the plasma waves.					
2. Be al	ble to handle electromagnetic waves mathematically.					
3. Be al	ble to derive mathematically Landau damping related concept.					
4. Will	be familiar with the different type of instabilities.					
5. Be al	ble to handle MHD stability mathematically.					
Module-1	Representations of waves, group velocity, Plasma Oscillations, Electron plasma waves, sound waves, ion waves, validity of plasma approximations, comparison of ion and electron waves, electrostatic electron oscillations perpendicular to B.	[8]				
Module-2	Electrostatic ion waves perpendicular to B, The lower hybrid frequency, electromagnetic waves with B=0, Experimental applications, electromagnetic waves perpendicular to B, Cutoffs and resonances, electromagnetic waves parallel to B, Whistler mode, Faraday rotation.	[8]				
Module-3	Hydromagnetic waves, Magnetosonic waves, Alfven waves, Plasma oscillations and Landau damping, A physical derivation of Landau damping.	[8]				
Module-4	Equilibrium and stability, Hydromagnetic equilibrium, Diffusion of magnetic field into a plasma, Classification of instabilities, two stream instability, The gravitational instability, Resistive drift waves.	[8]				
Module-5	MHD stability, Energy principle, Kink instability, Internal kink, tearing modes, Resistive layer, Tearing stability, Mercier criterion, Ballooning modes, Beta limit.	[8]				
Referenc	es					
1. T	okamaks, J Wessons, 1987, Oxford Science Publication.					
2. In	troduction to Plasma Physics f F Chen.					
3. T	he theory of plasma waves, T H Stix, 1962, McGraw-Hill New York.					
4. I	Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004					

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation</u> procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment				
Assignment	10				
Seminar before a commitee	10				
Three Quizes	30 (10+10+10)				
End Sem Examination Marks	50				

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz 1					
Quiz 2			\checkmark		
Quiz 3				\checkmark	

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes								
Course Objectives	1	2	3	4	5			
А	Н	Μ	L	L	L			
В	Μ	Η	L	L	L			
С	Μ	Μ	Η	L	L			
D	L	L	L	Η	М			
Ε	L	L	L	М	Н			

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes										
Outcome #	a	b	С	D	Е	f	g	Н	i	j	k	1
1	Μ	Н	Μ	Μ	Η	Н						
2	М	Н	Μ	Μ	Η	Н						
3	Μ	Н	Η	Μ	Η	Н						
4	Μ	Н	Μ	Μ	Η	Н						
5	L	Н	L	Μ	Η	Н						

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Ou	tcome Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2					
CD2	Tutorials/Assignments	CO2	CD1 CD2					
CD3	Seminars	CO3	CD1 CD2					
CD4	Mini projects/Projects	CO4	CD1 CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Metho	Remar
No.	No.	ative	No.		Book /	Map	Content	dolog	ks by
		Date			Refere	ped	covered	у	faculty
					nces			used	if any
1	L1-			Representations of waves, group	T2 T3				
	L5			velocity, Plasma Oscillations, Electron	R1				
				plasma waves, sound waves, ion waves,					
	L6-			validity of plasma approximations,	T2 T3				
	L10			comparison of ion and electron waves,	R1				
				electrostatic electron oscillations					
				perpendicular to B.					
	L11-			Electrostatic ion waves perpendicular to	T2 T3				
	L15			B, The lower hybrid frequency,	R1				
				electromagnetic waves with B=0,					
				Experimental applications,					
	L16-			electromagnetic waves perpendicular to	T2 T3				
	L20			B, Cutoffs and resonances,	R1				
				electromagnetic waves parallel to B,					
				Whistler mode, Faraday rotation					
	L21-			Hydromagnetic waves, Magnetosonic	T2 T3				
	L25			waves, Alfven waves,	R1				
	L26-			Plasma oscillations and Landau					
	L30			damping, A physical derivation of					
				Landau damping					
	L31-			Equilibrium and stability,	T1 T2				
	L35			Hydromagnetic equilibrium, Diffusion	R1				
				of magnetic field into a plasma,					
	L36-			Classification of instabilities, two stream	T1 T2				
	L40			instability, The gravitational instability,	R1				
				Resistive drift waves.					
	L41-			MHD stability, Energy principle, Kink	T1 T2				
	L45			instability, Internal kink,	R1				
	L46-			tearing modes, Resistive layer, Tearing	T1 T2				
	L50			stability, Mercier criterion, Ballooning	R1				
				modes, Beta limit.					

COURSE INFORMATION SHEET

Course code: PH 519 Course title: Physics of Thin Films Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Dr. Sanat Mukherjee

Group : E

Option 4

Same given as above (in Group B)

Generic Elective Papers offered to I. M.Sc. Programmes of other Departments

PH 109 Physics- I 50 Lectures

Course Objectives: This course enables the students

1.	To know the basic theories of Electrostatics and Magnetostatics.
2.	To get the basic knowledge of Electromagnetic theory.
3.	To gather a general information of Nuclear Physics.
4.	To make acquainted with the theories of Physical Optics.
5.	To have some basic knowledge of the Special Theory of Relativity.
	2. 3. 4.

Course Outcomes

After the completion of this course, students will be:

1.	Able to implement the theories of Electrostatics and Magnetostatics for different physical problem.
2.	Able to understand the practical and theoretical approaches of Electromagnetic theory.
3.	Understanding about the Nuclear Reactor, Source of Sun Energy etc.
4.	Acquainted with the theories of Physical Optics and its relevant results observed in practice.
5.	Acquainted with the Special Theory of Relativity and its applications.

Code: PH 109	Title: Physics- I	L-T-P-C 3-1-0-4
Module I	Electromagnetic Theory I:	[10]
	Gauss's law and its applications, electric potential, relation between E and V, capacitance, energy density of an electric field, dielectrics, dielectric constant, dielectric polarization, three electric vectors E , D , P , boundary conditions for E and D at interface between two dielectrics	
Module II	Electromagnetic Theory II:	[10]
	Ampere's law, Biot-Savart law, inductance, energy density of a magnetic field, Gauss's law in magnetism, three magnetic vectors H, B, M, boundary conditions for B and H, Faraday's Law, Displacement current, Maxwell's equations in free space, plane electromagnetic waves in free space, Poynting vector, pressure and momentum of EM	[]
	waves	
Module III	Nuclear physics	[5]
	Nuclear forces, binding energy, liquid drop model, fission, nuclear reactors, fusion,	
X 1 1 X 7	energy processes in stars, controlled thermonuclear reactions.	[1 =]
Module IV	Physical Optics: Huygen's construction for propagation of a wavefront, superposition principle, conditions	[15]
	for interference of light, coherence, Young's double-slit experiment, Newton's rings, Diffraction, Fraunhofer diffraction by a single slit, diffraction grating (qualitative),	
	Polarization, polarizers, Malus' Law, Brewster's Law, Double Refraction	
Module V	Special Theory of Relativity: Postulates, Galilean transformations, Lorentz transformation, length contraction, time dilation, velocity addition, mass change and Einstein's mass energy relation, Application os Relativity in GPS system.	[10]
Text Books: Modules 1 an	d 2: E.M. theory	
1. Halliday, R	Resnick, Walker, Fundamentals of Physics, 6 th Edition, John Wiley & Sons, 2004 th, Introduction to Electrodynamics, 3 rd Edition.	
Modules 4:	O. Sadiku, Elements of Electromagnetics, 4 th Edition, Oxford University Press, (2012).	
1. Halliday, F	Resnick, Walker, Fundamentals of Physics, 6 th Edition, John Wiley & Sons, 2004	
	ak, Optics, 5 th Edition, Tata McGraw Hill, 2012	
3. Jenkins and 5. Module 3 and 5.	d White: Fundamentals of Optics	
	Beiser, Concept of Modern Physics, 6 th Edition, Tata McGraw Hill, 2009	

PH110 Physics- I Lab

PH 111 Physics II (50 lectures)

Course Objectives: This course enables the students

	To get the basic knowledge of Thermodynamics and Statistical Physics
1.	To know the basic theories of Quantum mechanics
2.	To gather a general information of Laser Physics.
3.	To have some basic knowledge of dielectric materials.
4.	To have some basic knowledge of magnetic materials.

Course Outcomes

After the completion of this course, students will be:

1.	Able to understand the practical and theoretical approaches of Thermodynamics and Statistical Physics.
2.	Able to implement the theories of Quantum mechanics for microscopic particles and the concerned nanoscience.
3.	Understanding about the Laser source, Optical fibres, holography etc.
4.	Acquainted with the properties and applications of dielectric materials.
5.	Acquainted with the properties and applications of magnetic materials.

Code: PH 111	Title: Physics II	L-T-P-C 3-1-0-4
Module I	Thermodynamics and Statistical Physics Zeroth law, first law, second law, entropy, heat transfer, steady state one-dimensional heat conduction. Elementary ideas, comparison of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.	[12]
Module II	Quantum mechanics Planck's theory of black-body radiation, Compton effect, wave particle duality, De Broglie waves, Davisson and Germer's experiment, uncertainty principle, physical interpretation of wave function and its normalization, expectation value. Schrodinger equation in one dimension, solutions of time-independent Schrodinger equation for free particle, particle in an infinite square well, potential barrier and tunneling.	[10]
Module III	Lasers and applications Emission of light by atoms, spontaneous and stimulated emission, Einstein's A and B coefficients, laser: population-inversion, properties of laser radiation, Ruby & He-Ne lasers, applications of lasers, elementary ideas of holography and fiber optics.	[10]
Module IV	Dielectrics properties Dielectric constant and polarization of dielectric materials. Types of polarization. Equation for internal field in liquids and solids (one dimensional). Ferro and Piezo electricity. Frequency dependence of dielectric constant. Important applications of dielectric materials.	[10]
Module V	Magnetic properties Classification of dia, para and ferro-magnetic materials. Hysterisis in ferromagnetic materials. Soft and hard magnetic materials, Applications.	[8]
2. Physics for E	of Modern Physics, A. Beiser (AB), Mc Graw Hill Int. Ed. 2002 Engineers, M. R. Srinivasan, New Age International, 1996. s of Thermodynamics, 6th Ed., Sonntag, Borgnakke & Van Wylen, John Wiley & Sons.	

PH 112 Physics II Lab

Open Elective Papers offered for Minor in Engineering Physics of B.Tech. Programme

	PE	Subjects	L-T-P-C
		Theory Papers	
Odd	PE-I	Advanced Mathematical Physics	3-0-0-3
Semester		Nano Materials and Applications	3-0-0-3
Odd	PE-II	Computational Physics	3-0-0-3
Semester		Materials Science and Nanotechnology	3-0-0-3
		Experimental Technique	3-0-0-3
Even	PE-III	Nonconventional Sources of Energy	3-0-0-3
Semester		• Introduction to Nuclear and Particle Physics	4-1-0-5
		Nuclear Hazard and Waste Managements	4-1-0-5
Even	PE-IV	Atmospheric Physics	3-0-0-3
Semester		Advanced Experimental Technique	3-0-0-3
		Lab Papers	
Odd	PE-I	Advanced Mathematical Physics	0-0-2-2
Semester		Nano Materials and Applications	0-0-2-2
Odd	PE-II	Computational Physics	0-0-2-2
Semester		Experimental Technique	0-0-2-2
Even Semester	PE III	Nonconventional Sources of Energy	0-0-2-2
Even	PE-IV	Atmospheric Physics	0-0-2-2
Semester		Advanced Experimental Technique	0-0-2-2