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Find a vector normal to the surface at the given point
a) f(z,y) =ynz+zy*
b) flz,y) =22° =3 (2® +y*) x + tan~'(zz) at (1,1, 1)

¢) f(z,y,2) =e"Weosz+ (y+ 1)sin~(z) at (0, 0, %)

Find the constants a and b so that the surface az®-byz = (a + 2)x is orthogonal to the surface
4a* — yz + 2° = 4 at the point (1,1, —2).

Find the directional derivative of the function at the given point P, in the direction of the vector A
a) f(x,y) =2y —3y°, Po(5,5), A = 4i + 3]
b) f(r,y,2) = 3" cos(yz), Po(0,0,0), A = 2i +j — 2k

Find the direction in which the functions increase and decrease most rapidly at the given point F .
Find also the directional derivative of the function in that direction

a) f(z,y) =2 +zy+y> P(-1,1)
b) flz,y,z) =In(z® +y* + 1) +y + 62, Py(1,1,0)

Find the directional derivative of f(z,y) = x*y2” along the curve x = ¢ *,y = 2sinu+1,2 = u—cosu
at the point P where u =0

In what direction from (3,1, —2) is the directional derivative of ¢ = 2%y — 22* maximum. Find also
the magnitude of this maximum.

Evaluate div R and curl R and div (curl R) where
a) R = (2% — 2+ 4a%y%2) — 2%k
b) B = (x—y)% + "] + zye™k

Find the work done in moving a particle once around a cirgle C'in the X YAplane, of th9 circle has centre
at the origin and radius 2 and if the force field is given by F' = (2x—y+22)i+(z+y+2)j+(3x—2y—52)k.

Find the circulation of F around the curve C' where F = yi + zJ + zk and C is the circle 2% + Y =
1,z =0.

Find the work done by the force If F= yz%%—xz}%—xyl% acting along the curve given by R = t3€+t23+tl%
fromt=1tot=3.

Show that F' = (2zy + 23)% +22) + 3222k is a conservative force field. Find the scalar potential. Find
also the work done in moving an object in this field from (1,—2,1) to (3,1,4).
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Evaluate [ (102 — 22y*)dz — (32%y?)dy along the path x* — 6zy® = 41>

(0,0)

Applying Green’s theorem to evaluate f e sin(2y)dx + €** cos(2y)dy, where C is the ellipse 9(z —
c

1)? +4(y — 3)* = 36.

Applying Green’s theorem to evaluate j{ (2% + 3y)dx + (2z — € )dy, where C is the circle (z — 1)? +
c

(y—5)°=4.

Verify Green’s theorem ]{(xy + y*)dx + 2*dy , where C is bounded by the curve y = z,y = 2°.
c

Find the surface area of the portion of the cylinder 2* + z? = 4 lying inside the cylinder 2 + y* = 4.

Find the surface area of the portion of the sphere 2> +y*+2? = 9 lying inside the cylinder 2?4+y*—32 = 0

Evaluate / / yzi+ zx) + :Uyl%, where S is the surface of the sphere 2% +14* + 22 = a? in the first octant.

By Gauss’s Divergence theorem evaluate / / vdydz + y*dzdr + 2z(vy — x — y)dwdy where S is the
s
surface of the cube 0 <2 <1,0<y<1,0<2< 1.

By transforming to a triple integral evaluate, / / w3dydz + x*zdxdy where S is the closed surface

S
bounded by the planes z = 0,z = 6 and cylinder y* + 2 = d°.
Apply divergence theorem to evaluate / / (x + 2)dydz + (y + 2)dzdx + (x + y)dxdy, where S is the

S
surface of the sphere 2% + 9> + 2* = 4.



