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MODULE-IV 
• FUNCTIONS OF COMPLEX VARIABLE 

• LIMIT,CONTINUITY,DIFFERENTIABILITY 

• ANALYTICITY 

• CAUCHY REIMANNS EQUATIONS 

• HARMONIC FUNCTIONS 

• HARMONIC CONJUGATE 

• CAUCHY’S THEOREM 

• CAUCHY’S INTEGRAL THEOREM 

 



CONTINUED… 

• TAYLOR’S & LAURENT SERIES EXPANSIONS 

• SINGULARITIES AND TYPES OF SINGULARITY 

• RESIDUES 

• RESIDUE THEOREM 

 

 

 



1. Complex Variables & Functions 

 ; ,z x i y x y    £ ¡Complex numbers : 
(Ordered pair of  
real numbers ) 

Complex conjugate : *z x i y 

Polar representation : iz r e 
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Multi-valued function     single-valued in each branch  

E.g.,     has m branches. 

    has an infinite number of branches. 
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Limit of a function,continuity and 
differentiability 

• The limit of f(z) as z approaches z0 is w0. 

      

•    f(z) is said to be continuous at z=z0 if 

        

• Let f(z) be a single valued function of the variable 
z,then  

                        

    Provided limit exists and is independent of the 
path along which  
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Analytic Function 

• A function f(z) is said to be analytic at a point 
z0 ,if f(z) is differentiable not only at z0 but at 
every point of some neighbourhood of z0. 

• A point where the function ceases to be 
analytic is called a singular point. 

• Analytic function is always differentiable and 
continuous.But converse not true. 



Necessary condition for f(z) to be 
analytic 

• The necessary conditions for a function f(z)=u+iv 
to be analytic at all the points in a region R are: 

i. 

 

ii.                   provided ux,uy,vx,vy exist.     

      conditions (i) and (ii) also called Cauchy Riemann 

       equations. 
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2. Cauchy Reimann 
Conditions  
 

 
d f z

f z
d z

Derivative : 
 

0
lim
z

f z

z






   
0

lim
z

f z z f z

z





 


where limit is independent of path of  z  0. 
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   is independent of path of   z  0. 

  
 
  
 
 

 f  exists               &   Cauchy- Reimann  
      Conditions 
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If the CRCs are satisfied, 

     f z u z i v z z x i y 
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i.e.,  f  exists   CRCs satisfied.   



C-R EQUATIONS IN POLAR FORM 
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Proof do yourself 



Example 11.2.1. z2 is Analytic 
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 f  exists & single-valued  finite z. 

i.e.,   z2 is an entire function. 



Example 11.2.2. z* is Not Analytic z x i y 

  *f z z x i y   u iv 
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 f  doesn’t exist  z,  even though it is continuous every where. 

i.e.,   z2 is nowhere analytic. 



 
 
 

Harmonic 
Functions 

By definition, derivatives of a real function f depend only on the local behavior of f. 

But derivatives of a complex function f depend on the global behavior of f. 
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i.e., The real & imaginary parts of  must each satisfy a 2-D Laplace equation. 

 ( u & v are harmonic functions ) 
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CRCs 

Contours of u & v are given by  ,u x y c

 0
u u

du d x d y
x y

 
  
 

 ,v x y c

0
v v

dv d x d y
x y

 
  
 

i.e., these 2 sets of contours are orthogonal to each other. 

 ( u & v are complementary ) 
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Thus, the slopes at each point of these contours are 
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CRCs    at the intersections of these 2 sets of contours 1u vm m  



Method to find the conjugate function 

• If f(z)=u+iv and u is known. 

• To find v,conjugate function. 

• Method: 

         We know 

      using Cauchy Riemann equations, replace  

         vx by –uy and vy by ux    
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Method to find conjugate function 

• V=v(x,y) is given we need to find u. 

 

 

 

 using Cauchy Riemann equations, replace  

         uy by -vx by  and ux by vy  
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Problems 
Q.Let f(z)=u(x,y)+iv(x,y) be an analytic function.If 

u=3x-2xy,find v and express f(z) in terms of z. 
 
 
 
 
 
                         dv=2xdx+(3-2y)dy 
                       v=∫2xdx+∫(3-2y)dy=x2+3y-y2+c 
                     f(z)=iz2+3z+ic 
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Defn: A simply connected 

domain D is a domain 

such that every simple 

closed contour within it 

encloses only points of D. 



The set of points interior to a 

simply closed contour is an 

example.  



A domain that is not 

simply connected is said 

to be multiply connected 

for example, the annular 

domain between two 

concentric circles. 



 The Cauchy – Goursat 

theorem for a simply 

connected domain D is 

as follows: 



 Theorem: If a function f is 

analytic throughout a simply 

connected domain D, then  

   
0)( 

C

dzzf
     

for every closed contour C 

lying in D. 



Result: Let C1 and C2 denote 

positively oriented simple 

closed contours, where C2 is 

interior to C1 .  



 If a function f is analytic in 

the closed region consisting 

of those contours and all 

points between them, then 
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Ex.1   Evaluate  

         
 dzzf
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    when   zzezf  , 

C: |z|=1. 

Ans:  0  (Why??) 

 



Ex.2   Evaluate  
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Ans:  0  (Why??) 

 



Qs 3/154. Let C0 denote the circle 
Rzz  0 , taken counter clockwise 

using the parametric representation         

   izz Re0   
 

for C0  to derive the following 

integrations:  
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Exercise: 

• Does Cauchy – Goursat Theorem 
hold separately for the real or 
imaginary part of an analytic 
function f(z) ?  Justify your 
answer. 

 



Cauchy Integral Formula 
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Theorem:  

   If  f(z)  is analytic at z0, then its 

derivatives of all orders exist at z0 

and are themselves analytic at z0. 



Qs.1(a)/163: Let C denote the 

positively oriented boundary of the 

square whose sides lie along the 

lines 2x  and 2y . Evaluate 

the following integral 
.
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Ans :  i/4. 



Qs. 2(b)/163: Find the value 

of the integral of g(z) around 

the circle 2 iz  in the 

positive sense when  
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Qs.4/163: Let C be any simple 

closed contour, described the 

positive sense in the z- plane and 

write  
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Show that 

    
  iwwg 6

 

  when w is inside C and that  

            
  0wg

  

when w is outside C. 
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Case 2. When w is outside C,  

then by Cauchy Goursat  

Theorem    0wg . 

 



Qs. 5/163: Show that if f is 

analytic within and on a simple 

closed contour C and z0 is not on 

C, then  
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Sol.  Let  
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Case I: Let z0 is inside C, 

then  
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Case II: Let z0 is outside C 

 

      Then    I1 = I2 = 0.      

 

                 (WHY ???) 



Morera’s Theorem: 

D.in  analytic is f(z) then D,in 

lying Ccontour  closedevery for 

,0f(z)dz          

if and  Ddomain  ain  throughout

 continuous is f(z)function  a If
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LIOUVILLE’S THEOREM 

 

If f is entire and bounded in 

the complex plane, then f(z) 

is constant throughout the 

plane.  



Theorem:   Suppose that 

(i) C is a simple closed contour, 
described in the counter-clockwise 
direction, 

 

(ii) Ck (k = 1, 2, …., n) are finite no. of 
simple closed contours, all described 
in the clockwise direction, which are 
interior to C and whose interiors are 
disjoin. 
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Ex. Evaluate  
C

zz

dz

)1( 2   for all 

possible choices of the 

contour C that does not pass 

through any of the points 0, 

i . 



Solution:  

 

Case 1. Let C does not enclose 0, 

i . 
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Case 2a. Let C encloses only 
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Exercise: 

 

Case 2b. Let C encloses only i. 

Ans:  I = -i 

 

Case 2c. Let C encloses only -i. 

Ans:  I = -i 

 



Case 3 a). Let C encloses 

only 0, -i. 

then  
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sufficiently small circles 

around 0 and –i resp. 
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Case 3 b). Let C encloses 

only 0, i. 

then  
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Case 3 c). Let C encloses only -i, +i. 

Then  
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Case 3 d). Let C encloses all of 

the points 0, -i, +i. 

Then  
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Taylor’s Theorem: Suppose that 

a function f(z) is analytic 

throughout a disk 00 Rzz   

centered at z0 and with radius R0. 

Then f(z) has the power series 

representation    



 
     00

0

0 , Rzzzzazf
n

n
n 



  

where    
  

.....)2,1,0(
!

0  n
n

zf
a

n

n  



Maclaurin Series 

)(,
!

)0(
)(

 e. i.  series,

Maclaurin  called is  0z

point  about the SeriesTaylor 

0

0

)(

0

Rzz
n

f
zf n

n

n












Examples: 

)(                                    

,
)!12(

)1(sin.2

)(,
!

.1

0

12

0






















z

n

z
z

z
n

z
e

n

n
n

n

n
z



)(                                    

,
)!12(

sinh.4

)(                                    

,
)!2(

)1(cos.3

0

12

0

2
























z

n

z
z

z

n

z
z

n

n

n

n
n



)1(         ,
1

1
.6

)(                                    

,
)!2(

cosh.5

0

0

2




















zz
z

z

n

z
z

n

n

n

n



)1(                                

  ,)1(
1

1
.7

0











z

z
z n

nn



Laurent’s Theorem: Suppose 

that a function f(z) is analytic 

throughout an annular domain 

201 RzzR   centered at z0 and 

let C denote any positively 

oriented simple closed contour 

around z0 and lying in that 

domain.  



Then, at each point in domain f(z) 

has the series representation  
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