MA107-Mathematics-II Topics-Module-IV
 Department of Mathematics
 Birla Institute of Technology, Mesra Ranchi-835215.

MODULE-IV

- FUNCTIONS OF COMPLEX VARIABLE
- LIMIT,CONTINUITY,DIFFERENTIABILITY
- ANALYTICITY
- CAUCHY REIMANNS EQUATIONS
- HARMONIC FUNCTIONS
- HARMONIC CONJUGATE
- CAUCHY'S THEOREM
- CAUCHY'S INTEGRAL THEOREM

CONTINUED...

- TAYLOR'S \& LAURENT SERIES EXPANSIONS
- SINGULARITIES AND TYPES OF SINGULARITY
- RESIDUES
- RESIDUE THEOREM

1. Complex Variables \& Functions

Complex numbers: $\quad £=\{z=x+i y ; \forall x, y \in i\}$
(Ordered pair of real numbers)

Complex conjugate :

$$
z^{*}=x-i y
$$

Polar representation: $\quad z=r e^{i \theta}=r e^{i(\theta+2 \pi n)}$

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} & & \text { modulus } \\
\theta & =\tan ^{-1} \frac{y}{x} & & \text { argument }
\end{aligned}
$$

Multi-valued function \rightarrow single-valued in each branch
E.g., $\quad z^{1 / m}=r^{1 / m} e^{i(\theta+2 \pi n) / m} \quad$ has m branches.

$$
\ln z=\ln r+i(\theta+2 \pi n) \quad \text { has an infinite number of branches. }
$$

Limit of a function, continuity and differentiability

- The limit of $f(z)$ as z approaches z_{0} is w_{0}.

$$
\lim f(z)=w_{0}
$$

- $f(z)$ is said to be contiñous at $z=z_{0}$ if

$$
\lim f(z)=f\left(z_{0}\right)
$$

- Let $f(z)$ be a single valued function of the variable z,then

$$
f^{\prime}(z)=\lim \frac{f(z+\delta z)-f(z)}{\delta z}
$$

Provided limit exists and is independent of the path along which $\boldsymbol{s} \rightarrow \mathbf{0}$

Analytic Function

- A function $f(z)$ is said to be analytic at a point z_{0}, if $f(z)$ is differentiable not only at z_{0} but at every point of some neighbourhood of z_{0}.
- A point where the function ceases to be analytic is called a singular point.
- Analytic function is always differentiable and continuous.But converse not true.

Necessary condition for $f(z)$ to be analytic

- The necessary conditions for a function $f(z)=u+i v$ to be analytic at all the points in a region R are:
i. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
ii. $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ provided $\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}$ exist.
conditions (i) and (ii) also called Cauchy Riemann equations.

2. Cauchy Reimann

Conditions

Derivative : $\quad \frac{d f(z)}{d z}=f^{\prime}(z)=\lim _{\delta z \rightarrow 0} \frac{\delta f(z)}{\delta z}=\lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}$

$$
\text { where limit is independent of path of } \delta z \rightarrow 0 \text {. }
$$

Let

$$
f(z)=u(z)+i v(z)
$$

$\rightarrow \quad \delta z=\delta x+i \delta y \quad \delta f=\delta u+i \delta v \quad \rightarrow \quad \frac{\delta f}{\delta z}=\frac{\delta u+i \delta v}{\delta x+i \delta y}$
$\delta z=\delta x \quad \rightarrow \quad \lim _{\delta z \rightarrow 0} \frac{\delta f}{\delta z}=\lim _{\delta x \rightarrow 0}\left(\frac{\delta u}{\delta x}+i \frac{\delta v}{\delta x}\right)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
$\delta z=\delta y \quad \rightarrow \quad \lim _{\delta z \rightarrow 0} \frac{\delta f}{\delta z}=\lim _{\delta y \rightarrow 0}\left(-i \frac{\delta u}{\delta y}+\frac{\delta v}{\delta y}\right)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}$
$\therefore f^{\prime}$ exists $\quad \rightarrow \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \& \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad$ Cauchy-Reiman equations

$$
\begin{array}{ll}
z=x+i y & f(z)=u(z)+i v(z) \\
f^{\prime} \text { exists } \quad \rightarrow \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text { Conditions } \quad \text { Cauchy-Reimann }
\end{array}
$$

$$
f(z)=f(x, y) \quad \rightarrow \quad \delta f=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \delta y=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \delta y
$$

If the CRCs are satisfied, $\quad \delta f=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(\delta x+i \delta y)$

$$
\rightarrow \quad \frac{\delta f}{\delta z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad \text { is independent of path of } \delta z \rightarrow 0 .
$$

i.e., $\quad f^{\prime}$ exists $\quad \leftrightarrow \quad$ CRCs satisfied.

C-R EQUATIONS IN POLAR FORM

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \\
& \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
\end{aligned}
$$

Proof do yourself

Example 11.2.1. z^{2} is Analytic $z=x+i y$

$$
\begin{gathered}
f(z)=z^{2}=x^{2}-y^{2}+2 i x y=u+i v \\
\rightarrow \quad \begin{array}{l}
u=x^{2}-y^{2} \\
v=2 x y
\end{array} \rightarrow \quad \frac{\partial u}{\partial x}=2 x=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x}
\end{gathered}
$$

$\therefore f^{\prime}$ exists \& single-valued \forall finite z.
i.e., z^{2} is an entire function.

Example 11.2.2.2* is Not Analytic ${ }^{x+i y}$

$$
\begin{gathered}
f(z)=z^{*}=x-i y=u+i v \\
\rightarrow \quad \begin{array}{l}
u=x \\
v=-y
\end{array} \rightarrow \quad \frac{\partial u}{\partial x}=1 \neq-1=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=0=-\frac{\partial v}{\partial x}
\end{gathered}
$$

$\therefore f^{\prime}$ doesn't exist $\forall z$, even though it is continuous every where.
i.e., z^{2} is nowhere analytic.

Harmonic Functions

CRCs $\quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

By definition, derivatives of a real function f depend only on the local behavior of f.
But derivatives of a complex function f depend on the global behavior of f.

$$
\begin{aligned}
& \text { Let } \psi(z)=u+i v \\
& \psi \text { is analytic } \rightarrow \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
& \therefore \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}=-\frac{\partial^{2} u}{\partial y^{2}} \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
\end{aligned}
$$

i.e., The real \& imaginary parts of ψ must each satisfy a 2-D Laplace equation.
($u \& v$ are harmonic functions)

$$
\text { CRCs } \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Contours of $u \& v$ are given by

$$
u(x, y)=c \quad v(x, y)=c^{\prime}
$$

$$
\rightarrow \quad d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0 \quad d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=0
$$

Thus, the slopes at each point of these contours are

$$
m_{u}=\left(\frac{d y}{d x}\right)_{u}=-\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} \quad m_{v}=\left(\frac{d y}{d x}\right)_{v}=-\frac{\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}}
$$

CRCs $\quad \rightarrow \quad m_{u} m_{v}=-1$
at the intersections of these 2 sets of contours
i.e., these 2 sets of contours are orthogonal to each other.

Method to find the conjugate function

- If $f(z)=u+i v$ and u is known.
- To find v,conjugate function.
- Method:

We know $\quad d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y$
using Cauchy Riemann equations, replace

$$
v_{x} \text { by }-u_{y} \text { and } v_{y} \text { by } u_{x}
$$

$$
\begin{aligned}
d v & =\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y \\
v & =-s \frac{\partial u}{\partial y} d x+j \frac{\partial u}{\partial x} d y
\end{aligned}
$$

Method to find conjugate function

- $V=v(x, y)$ is given we need to find u.

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y
$$

using Cauchy Riemann equations, replace

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{y}} \text { by }-\mathrm{v}_{\mathrm{x}} \text { by and } \mathrm{u}_{\mathrm{x}} \text { by } \mathrm{v}_{\mathrm{y}} \\
& \boldsymbol{d u}=\frac{\partial v}{\partial y} d x-\frac{\partial v}{\partial x} d y \\
& u=s \frac{\partial v}{\partial y} d x-s \frac{\partial v}{\partial \boldsymbol{x}} d \boldsymbol{y}
\end{aligned}
$$

Problems

Q. Let $f(z)=u(x, y)+i v(x, y)$ be an analytic function. If $u=3 x-2 x y$, find v and express $f(z)$ in terms of z.

$$
\begin{aligned}
& d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y \\
& d v=\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y \\
& v=-1 \frac{\partial u}{\partial y} d x+1 \frac{\partial u}{\partial x} d y \\
& \mathrm{dv}=2 \mathrm{xdx}+(3-2 \mathrm{y}) \mathrm{dy} \\
& \mathrm{v}=\int 2 \mathrm{~d} \mathrm{dx}+\int(3-2 \mathrm{y}) \mathrm{dy}=\mathrm{x}^{2}+3 \mathrm{y}-\mathrm{y}^{2}+\mathrm{C} \\
& \mathrm{f}(\mathrm{z})=\mathrm{iz}^{2}+3 \mathrm{z}+\mathrm{ic}
\end{aligned}
$$

domain D is a domain
such that every simple closed contour within it encloses only points of D.

The set of points interior to a

simply closed contour is an

example.

The Cauchy - Goursat

theorem for a simply

connected domain D is

as follows:

Theorem: If a function f is

 analytic throughout a simply connected domain D , then$$
\int_{C} f(z) d z=0
$$

for every closed contour C lying in D .

Result: Let C_{1} and C_{2} denote
positively oriented simple
closed contours, where C_{2} is
interior to C_{1}.

If a function f is analytic in the closed region consisting of those contours and all
points between them, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Ex. 1 Evaluate

$$
\begin{gathered}
\int_{C} f(z) d z \\
\text { when } f(z)=z e^{-z}, \\
\text { C: }|z|=1 . \\
\text { Ans: } 0 \text { (Why??) }
\end{gathered}
$$

Ex. 2 Evaluate

$$
\int_{C} f(z) d z
$$

when
$f(z)=\frac{z^{2} \sin z}{z-4}, \quad C:|z|=2$.
Ans: 0 (Why??)

Os 3/154. Let C_{0} denote the circle $\left|z-z_{0}\right|=R$, taken counter clockwise using the parametric representation $z=z_{0}+\operatorname{Re}^{i \theta}(-\pi \leq \theta \leq \pi)$
for C_{0} to derive the following integrations:

> (a) $\int_{C_{0}} \frac{d z}{z-z_{0}}=2 \pi i$
> (b) $\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z=0, n= \pm 1, \pm 2, \ldots$
(c) $\int_{C_{0}}\left(z-z_{0}\right)^{a-1} d z=\frac{2 i R^{a}}{a} \sin (a \pi)$,

Sol. We have $\left|z-z_{0}\right|=R$

$$
\begin{aligned}
& \Rightarrow z-z_{0}=\operatorname{Re}^{i \theta} \\
& \Rightarrow d z=\operatorname{Re}^{i \theta} . i d \theta
\end{aligned}
$$

a)

$$
\begin{aligned}
I & =\int_{C_{0}} \frac{d z}{z-z_{0}}=\int_{-\pi}^{\pi} \frac{\operatorname{Re}^{i \theta} \cdot i d \theta}{\operatorname{Re}^{i \theta}} \\
& =i(\pi-(-\pi))=2 \pi i
\end{aligned}
$$

$$
\begin{aligned}
I & =\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z \\
& =\int_{-\pi}^{\pi} R^{n-1} e^{i(n-1) \theta} \cdot \operatorname{Re}^{i \theta} d \theta \\
& =0 \quad(\text { after simplification })
\end{aligned}
$$

$I=\int_{C_{0}}\left(z-z_{0}\right)^{a-1} d z$

$$
=\int_{-\pi}^{\pi} R^{a-1} e^{i(a-1) \theta} \cdot \operatorname{Re}^{i \theta} d \theta
$$

$$
=\frac{2 i R^{a}}{a} \operatorname{Sin}(a \pi)
$$

Exercise:

- Does Cauchy - Goursat Theorem hold separately for the real or imaginary part of an analytic function $f(z)$? Justify your answer.

Cauchy Integral Formula

Let f be analy tic every where inside and on a simple closed contour C , taken in the positive sence, then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}$.

Derivative Formula

Supposethat a function f is analytic every whereinside and on a simple closed contour C , taken in the positive sence. If z_{0} is any point interior to C , then

$$
\text { b) } \quad f^{\prime \prime}\left(z_{0}\right)=\frac{(2)!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{3}}
$$

c)

$$
f^{(n)}\left(z_{0}\right)=\frac{(n)!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} .
$$

Theorem:

If $f(z)$ is analytic at z_{0}, then its
derivatives of all orders exist at z_{0}
and are themselves analytic at z_{0}.

Qs.1(a)/163: Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate the following integral $\int_{C} \frac{\cos z d z}{z\left(z^{2}+8\right)}$.

Ans : $\pi i / 4$.

Qs. 2(b)/163: Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
$g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$

$$
\begin{array}{r}
\text { Sol: } \int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}=\int_{C} \frac{d z}{(z+2 i)^{2}(z-2 i)^{2}} \\
=2 \pi i \frac{d}{d z}\left(\frac{1}{(z+2 i)^{2}}\right)_{z=2 i}
\end{array}
$$

$$
=\frac{\pi}{16}
$$

Qs.4/163: Let C be any simple closed contour, described the positive sense in the z - plane and write

Show that

$$
g(w)=6 \pi i w
$$

when w is inside C and that

when w is outside C .

Case I : Let w is inside C.

$$
\begin{aligned}
& \text { Let } f(z)=z^{3}+2 z . \\
& \begin{aligned}
g(w) & =\int_{C} \frac{f(z)}{(z-w)^{3}} d z \\
& =\frac{2 \pi i}{2} f^{\prime \prime}(w)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=z^{3}+2 z \\
& \Rightarrow f^{\prime}(z)=3 z^{2}+z \\
& \Rightarrow f^{\prime \prime}(z)=6 z \\
& \Rightarrow f^{\prime \prime}(w)=6 w
\end{aligned}
$$

$\therefore I=g(w)=6 \pi i w$
 Case 2. When w is outside C,
 then by Cauchy Goursat
 Theorem $g(w)=0$.

Os. 5/163: Show that if f is analytic within and on a simple closed contour C and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Sol. Let

$$
\begin{aligned}
& I_{1}=\int_{C} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z \text { and } \\
& I_{2}=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
\end{aligned}
$$

Case I: Let Z_{0} is inside C ,

 then$$
\begin{aligned}
I_{1} & =\int_{C} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\left.2 \pi i f^{\prime}(z)\right|_{z=z_{0}} \\
& =2 \pi i f^{\prime}\left(z_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \\
& =2 \pi i f^{\prime}\left(z_{0}\right) \\
& \therefore I_{1}=I_{2} .
\end{aligned}
$$

Case II: Let z_{0} is outside C

Then $I_{1}=I_{2}=0$.

(WHY ???)

Morera's Theorem:

If a function $f(z)$ is continuous

throughout in a domain D and if

$$
\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0
$$

for every closed contour C lying
in D, then $f(z)$ is analytic in D.

LIOUVILLE'S THEOREM

If f is entire and bounded in the complex plane, then $f(z)$ is constant throughout the plane.

Theorem: Suppose that
(i) C is a simple closed contour, described in the counter-clockwise direction,
(ii) $\mathrm{C}_{\mathrm{k}}(\mathrm{k}=1,2, \ldots ., \mathrm{n})$ are finite no. of simple closed contours, all described in the clockwise direction, which are interior to C and whose interiors are disjoin.
closed region consisting of all points within and on C except for the pointsinterior to C_{k}, then

$$
\int_{C} \mathrm{f}(\mathrm{z}) \mathrm{dz}+\sum_{k=1}^{n} \int_{C_{k}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0
$$

Ex. Evaluate $\int_{C} \frac{d z}{z\left(z^{2}+1\right)}$ for all possible choices of the contour C that does not pass through any of the points 0 , $\pm i$.

Solution:

Case 1. Let C does not enclose 0 , $\pm i$.

Then

$$
I=\int_{C} \frac{d z}{z^{2}+1}=0 \text { by } C G \text { Theorem. }
$$

Case 2a. Let C encloses only

 0.Then $I=\int_{C} \frac{d z}{z\left(z^{2}+1\right)}$

$$
=\int_{C} \frac{f(z) d z}{z-0}, f(z)=\frac{1}{\left(z^{2}+1\right)}
$$

$$
=2 \pi i f(0)
$$

$$
=2 \pi i
$$

Exercise:

Case 2b. Let C encloses only i .
Ans: $\mathrm{I}=-\pi \mathrm{i}$

Case 2c. Let C encloses only -i.
Ans: $\mathrm{I}=-\pi \mathrm{i}$

Case 3 a). Let C encloses only $0,-\mathrm{i}$.
then
$I=\int_{C_{0}} \frac{d z}{z(z+i)(z-i)}+\int_{C_{-i}} \frac{d z}{z(z+i)(z-i)}$
where C_{0} and $\mathrm{C}_{-\mathrm{i}}$ are sufficiently small circles around 0 and -i resp.

$$
\begin{aligned}
= & \frac{1}{\int_{C_{0}}} \frac{(z+i)(z-i)}{z} d z \\
& +\int_{C_{-i}} \frac{1}{(z(z-i)} \\
(z+i) & \\
= & (2 \pi i)\left(-\frac{1}{i^{2}}\right)+(2 \pi i)\left(\frac{1}{-i(-2 i)}\right) \\
= & \pi i
\end{aligned}
$$

Case 3 b). Let C encloses only 0 , i. then
$I=\int_{C_{0}} \frac{d z}{z(z+i)(z-i)}+\int_{C_{i}} \frac{d z}{z(z+i)(z-i)}$

$$
\begin{aligned}
I & =\int_{C_{0}} \frac{\frac{1}{(z+i)(z-i)}}{z} d z \\
& +\int_{C_{i}} \frac{1}{\frac{z(z+i)}{(z-i)} d z} \\
& =2 \pi i+(2 \pi i)\left(\frac{1}{i .2 i}\right) \\
& =\pi i
\end{aligned}
$$

Case 3 c). Let C encloses only $-i,+i$. Then

$$
\begin{aligned}
I & =\int_{C_{i}} \frac{\frac{1}{z(z+i)}}{z-i} d z \\
& +\int_{C_{-}} \frac{\frac{1}{z(z-i)}}{(z+i)} d z \\
& =(2 \pi i)\left(\frac{1}{i .2 i}\right)+(2 \pi i)\left(\frac{1}{-i .-2 i}\right) \\
& =-2 \pi i
\end{aligned}
$$

Case 3 d). Let C encloses all of the points $0,-i,+i$. Then

$$
\begin{aligned}
I & =\int_{C_{0}} \frac{\frac{1}{z^{2}+1}}{z} d z+\int_{C_{i}} \frac{\frac{1}{z(z+i)}}{z-i} d z \\
& +\int_{C_{-i}} \frac{\frac{1}{z(z-i)}}{(z+i)} d z \\
& =2 \pi i-\pi i-\pi i \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
I & =\int_{C_{0}} \frac{\overline{z^{2}+1}}{z} d z+\int_{C_{i}} \frac{z(z+i)}{z-i} d z \\
& +\int_{C_{-i}} \frac{1}{\frac{z(z-i)}{(z+i)} d z} \\
& =2 \pi i-\pi i-\pi i \\
& =0
\end{aligned}
$$

Taylor's Theorem: Suppose that a function $f(z)$ is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$ centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad\left(\left|z-z_{0}\right|<R_{0}\right)
$$

where

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} \quad(n=0,1,2 \ldots . .)
$$

Maclaurin Series

TaylorSeries about the point

$\mathrm{z}_{0}=0$ is called Maclaurin series, i.e.

$$
f(z)=\sum^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}, \quad\left(|z|<R_{0}\right)
$$

Examples:

$$
\begin{aligned}
& \text { 1. } e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad(|z|<\infty) \\
& \text { 2. } \quad \sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}, \\
& \quad(|z|<\infty)
\end{aligned}
$$

3. $\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}$,
$(|z|<\infty)$
4. $\sinh z=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}$,
$(|z|<\infty)$

$$
\begin{aligned}
& \text { 5. } \cosh z=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}, \\
& \text { 6. } \frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}, \quad(|z|<\infty)
\end{aligned}
$$

7.
 $$
\frac{1}{1+z}=\sum_{n=0}^{\infty}(-1)^{n} z^{n}
$$

$$
(|z|<1)
$$

Laurent's Theorem: Suppose that a function $\mathrm{f}(\mathrm{z})$ is analytic throughout an annular domain $R_{1}<\left|z-z_{0}\right|<R_{2}$ centered at Z_{0} and let C denote any positively oriented simple closed contour around z_{0} and lying in that domain.

Then, at each point in domain $f(z)$ has the series representation

$$
\begin{array}{r}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \\
\left(R_{1}<\left|z-z_{0}\right|<R_{2}\right)
\end{array}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1,2 \ldots . .)
$$

and

$$
b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}} \quad(n=0,1,2, \ldots)
$$

Example:

Find the Laurent series

 representation of$$
f(z)=\frac{z}{(z-1)(z-3)}
$$

when

$$
\begin{aligned}
& \text { (a) } \mathrm{D}_{1}: 0<|z|<1 \\
& \text { (b) } \mathrm{D}_{2}: 1<|z|<3 \\
& \text { (c) } \mathrm{D}_{3}: 3<|z|<\infty
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathrm{f}(\mathrm{z}) & =\frac{\mathrm{z}}{(\mathrm{z}-1)(\mathrm{z}-3)} \\
& =-\frac{1}{2(z-1)}+\frac{3}{2(z-3)}
\end{aligned}
$$

(a) Consider the domain

$$
\mathrm{D}_{1}: 0<|z|<1
$$

Then $f(z)$ is analytic in D_{1}.

$\begin{array}{lll}1 & 3\end{array}$

$\mathrm{f}(\mathrm{z})=-\frac{1}{2(z-1)}+$

$$
2(z-1) \quad 2(z-3)
$$

$$
\begin{array}{ll}
1 & 3
\end{array}
$$

$$
=\frac{2}{2(1-1}-\square
$$

$$
2(1-z) \quad 2 \times 3\left(1-\frac{z}{3}\right)
$$

$$
=\frac{1}{2} \sum_{n=0}^{\infty} z^{n}-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
$$

$$
\Rightarrow \mathrm{f}(\mathrm{z})=\frac{1}{2} \sum_{n=0}^{\infty} z^{n}-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
$$

$$
=\frac{1}{2} \sum_{n=0}^{\infty}\left(1-\frac{1}{3^{n}}\right) z^{n}
$$

(b) Consider the domain

$$
\mathrm{D}_{2}: 1<|z|<3
$$

Then $f(z)$ is analyticin D_{2}.

$$
\begin{aligned}
f(z) & =-\frac{1}{2(z-1)}+\frac{3}{2(z-3)} \\
& =-\frac{1}{2 z\left(1-\frac{1}{z}\right)}-\frac{3}{2 \times 3\left(1-\frac{z}{3}\right)} \\
& =-\frac{1}{2 z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
\end{aligned}
$$

$$
\Rightarrow \mathrm{f}(\mathrm{z})=-\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
$$

(c) Consider the domain

$$
\mathrm{D}_{3}: 3<|z|<\infty .
$$

Then $f(z)$ is analyticin D_{3}.

 Note that$$
\frac{1}{|z|}<\frac{3}{|z|}<1
$$

$$
\begin{aligned}
f(z) & =-\frac{1}{2(z-1)}+\frac{3}{2(z-3)} \\
& =-\frac{1}{2 z\left(1-\frac{1}{z}\right)}+\frac{3}{2 \times z\left(1-\frac{3}{z}\right)} \\
& =-\frac{1}{2 z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}+\frac{3}{2 z} \sum_{n=0}^{\infty}\left(\frac{3}{z}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathrm{f}(\mathrm{z}) & =-\frac{1}{2 z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}+\frac{3}{2 z} \sum_{n=0}^{\infty}\left(\frac{3}{z}\right)^{n} \\
& =-\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{3^{n+1}}{z^{n+1}} \\
& =-\frac{1}{2} \sum_{n=0}^{\infty}\left(1-3^{n+1}\right) \frac{1}{z^{n+1}}
\end{aligned}
$$

Excercise:

Show that, when $0<|z-1|<2$, the Laurent series representation of

$$
f(z)=\frac{z}{(z-1)(z-3)}
$$

is

$$
f(z)=-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+1}}-\frac{1}{2(z-1)}
$$

RESIDUE

(1) Consider a function $\mathrm{f}(\mathrm{z})$ \&

$$
\text { let } z=\frac{1}{w} . \text { Then }
$$

$f(z)=\mathrm{f}\left(\frac{1}{\mathrm{w}}\right)=g(w)$
(i) $\mathrm{f}(\mathrm{z})$ is said to be analy tic at infinity if $g(w)$ is analytic at $\mathrm{w}=0$.
(ii) $f(z)$ is said to be singular at
infinity if $g(w)$ is singular at $\mathrm{w}=0$.
(2) Zero of an analytic function : Let $f(z)$ is analy tic in a domain D. If $\mathrm{f}\left(\mathrm{z}_{0}\right)=0$ for some $\mathrm{z}=\mathrm{z}_{0}$, then $\mathrm{z}=\mathrm{Z}_{0}$ is called zero of $\mathrm{f}(\mathrm{z})$.

If $\mathrm{f}\left(\mathrm{z}_{0}\right)=f^{\prime}\left(z_{0}\right)=f^{\prime \prime}\left(z_{0}\right)=\ldots$
 $$
=f^{(n-1)}\left(z_{0}\right)=0, \text { but }
$$

$f^{(n)}\left(z_{0}\right) \neq 0$, then $z=z_{0}$ is called ZERO OF ORDER n of $f(z)$.
i.e. $\quad z=z_{0}$ is called zero
of order n of $f(z)$ if
$f(z)=\left(z-z_{0}\right)^{n} g(z)$,
where $g\left(z_{0}\right) \neq 0$.
(3)Singula r Point of a fn $f(z)$:
(i) If a function $f(z)$ fails to be analytic at a point z_{0}, but it
is analy tic at some point in
every nbd of z_{0}, then z_{0} is called Singular Point of $f(z)$.
(ii) Isolated Singularit y

The point z_{0} is called an isolated singularit y of $f(z)$ if
(a) Z_{0} is a singular point of $\mathrm{f}(\mathrm{z})$
(b) $\mathrm{f}(\mathrm{z})$ is analyticin a deleted nbd

$$
\mathrm{N}: 0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\in .
$$

(4) (i) Let z_{0} is an isolated

singularit y of $f(z)$

$\Rightarrow \exists \mathrm{R}>0$ such that $\mathrm{f}(\mathrm{z})$ is
analytic in $0<\left|z-z_{0}\right|<R$.

Hence $f(z)$ has Laurent series expansion:

$$
\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

$$
0<\left|z-z_{0}\right|<R
$$

where $a_{n}=\frac{1}{2 \pi i} \int_{c} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}$,

$$
b_{n}=\frac{1}{2 \pi i} \int_{c} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}}
$$

C is any positively oriented simple closed contour around z_{0} and lying in the puctureddisc $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<R$.
(ii) $\sum^{\infty} b_{n}\left(z-z_{0}\right)^{-n}$ is called

$$
\mathrm{n}=1
$$

principal part (PP) of the Laurent series, i.e.

$$
\begin{aligned}
\mathrm{PP} & =\sum_{\mathrm{n}=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n} \\
& =\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots \ldots
\end{aligned}
$$

If $b_{k} \neq 0$, for some k, say $k=m$, and $\mathrm{b}_{\mathrm{n}}=0 \quad \forall n>m$, then

$$
\mathrm{PP}=\frac{\mathrm{b}_{1}}{\mathrm{z}-\mathrm{z}_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)}+\ldots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

Then the singularit $\mathrm{y} \mathrm{z}=\mathrm{z}_{0}$ of $\mathrm{f}(\mathrm{z})$ is called POLE OF ORDER m .

If $\mathrm{m}=1$, then z_{0} is a pole of order 1 and is called a SIMPLE POLE.

(iii) If an analytic function $f(z)$

has a singularit y other than a pole, then this singularit y is known as ESSENTIAL

$$
\text { SINGULARITY of } f(z) \text {, i.e. }
$$

if $b_{n} \neq 0$ for infinitely many n,
then the singularit y_{0} is called ESSENTIAL SINGULARITY
of $f(z)$.
(iv) If $\mathrm{b}_{\mathrm{n}}=0 \quad \forall n$,
then the singularit z_{0} is called REMOVABLE SINGULARITY
of $f(z)$.

RESIDUE:

The PP of the Laurent series is given by
$\mathrm{PP}=\sum^{\infty} b_{n}\left(z-z_{0}\right)^{-n}$,
where

$$
n=1
$$

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}}
$$

If $\mathrm{n}=1$, then

$\mathrm{b}_{1}=\frac{1}{2 \pi i} \int_{c} f(z) d z$

is called RESIDUE of $f(z)$
 at $\mathrm{z}=\mathrm{z}_{0}$,
 and we write

$$
\begin{aligned}
\mathrm{b}_{1} & =\operatorname{Re} s_{z=z_{0}} f(z) \\
& =\operatorname{coeff} \text { of } \frac{1}{z-z_{0}}
\end{aligned}
$$

Residue Theorem:

Let C be a positively oriented

 simple closed contour. Suppose that $f(z)$ is analy tic within and on C except for a finite number of singular points $\mathrm{Z}_{\mathrm{k}}(k=1,2, \ldots n)$ inside C.
Then

How to find residue of a given $f n f(z)$:

$$
E x 1: \text { Let } \mathrm{f}(\mathrm{z})=\frac{\sin \mathrm{z}}{\mathrm{z}^{4}}, \quad 0<|z|<\infty .
$$

$$
\text { Now } f(z)=\frac{1}{z^{4}}(\sin z)
$$

$$
=\frac{1}{z^{4}}\left(z-\frac{z^{3}}{(3)!}+\frac{z^{5}}{(5)!}-\frac{z^{7}}{(7)!}+\ldots .\right)
$$

$$
\begin{gathered}
f(z)=\frac{1}{z^{3}}-\frac{1}{(3)!} \cdot \frac{1}{z}+\frac{1}{(5)!} \cdot z-\frac{1}{(7)!} z^{3}+\ldots . \\
0<|z|<\infty
\end{gathered}
$$

$P P=-\frac{1}{(3)!} \cdot \frac{1}{z}+\frac{1}{z^{3}}$
Note that $z=0$ is a pole of order ???

Hence

Ex 2. Find the residue of
$f(z)=\exp (1 / z)$, and hence evaluate

$$
\int_{c} f(z) d z, \quad C:|z|=1 .
$$

Soln :

$f(z)=\exp \left(\frac{1}{z}\right)$

$$
=1+\frac{1}{z}+\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{3!} \frac{1}{z^{3}}+\ldots .
$$

Note: $\mathrm{z}=0$ is an essential

singularit y of $f(z)$.

$$
=\operatorname{Re}_{z=0} f(z)
$$

$$
=1
$$

Hence

c

Ex 3. Find the residue of

$f(z)=\exp \left(1 / z^{2}\right), \quad$ and
hence evaluate

$$
\int_{c} f(z) d z, \quad C:|z|=1
$$

Hints:

$$
\begin{aligned}
& \text { 1. } \mathrm{z}=0 \text { is an essential } \\
& \text { singularit } \mathrm{y} \text { of } \mathrm{f}(\mathrm{z}) \text {. } \\
& \text { 2. } \mathrm{b}_{1}=\underset{z=0}{\operatorname{Re} s} f(z)=0 \text {. } \\
& \text { 3. } I=0 .
\end{aligned}
$$

How to find the residues ?

We have

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

Case IA: Let $\mathrm{z}=\mathrm{z}_{0}$ is a simple

 pole of $f(z)$. Then$$
\mathrm{f}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}
$$

$$
\Rightarrow\left(z-z_{0}\right) f(z)
$$

$$
=b_{1}+\left(z-z_{0}\right) \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

$$
\Rightarrow \lim _{z \rightarrow-0}\left(z-z_{0}\right) f(z)=b_{1}
$$

$$
z \rightarrow z_{0}
$$

$=\operatorname{Res}_{z=z_{0}} f(z)$

CaseIB : Let $\mathrm{f}(\mathrm{z})$ has a simple pole

 at $\mathrm{z}=\mathrm{z}_{0}$ and $\mathrm{f}(\mathrm{z})$ is of the form$$
f(z)=\frac{\mathrm{p}(z)}{\mathrm{q}(z)},
$$

where
(i) $p(z) \& q(z)$ are analytic

$$
\text { at } \mathrm{Z}=\mathrm{Z}_{0}
$$

(ii) $\mathrm{p}\left(\mathrm{Z}_{0}\right) \neq 0$, and
(iii) $q(z)$ has a simple zero
at $\mathrm{Z}=\mathrm{Z}_{0}$,

Then

$$
\begin{aligned}
\operatorname{Re} s_{z=z_{0}} f(z) & =\operatorname{Re} s_{z=z_{0}} \frac{p(z)}{q(z)} \\
& =\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
\end{aligned}
$$

CaseII : Let z_{0} be a pole of order $\mathrm{m}>1$

for the function $f(z)$.

Then $\mathrm{f}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$

$$
+\frac{b_{1}}{\left(z-z_{0}\right)}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots .+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

$$
\Rightarrow\left(z-z_{0}\right)^{m} f(z)
$$

$$
=\left(z-z_{0}\right)^{m} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

$$
+b_{1}\left(z-z_{0}\right)^{m-1}+b_{2}\left(z-z_{0}\right)^{m-2}
$$

$$
+\ldots . .+b_{m-1}\left(z-z_{0}\right)+b_{m}
$$

$\operatorname{Let} \phi(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right)^{m} f(z)$ then
$\underset{\mathrm{z}=\mathrm{z}_{0}}{\mathrm{Res}} f(z)=b_{1}$
$=$ coeff. of $\left(\mathrm{z}-\mathrm{z}_{0}\right)^{m-1}$ in the
expansion of $\phi(z)$

$$
=\frac{\phi^{(\mathrm{m}-1)}\left(z_{0}\right)}{(m-1)!}
$$

by Tay lor's Thm

Thus if z_{0} is a pole of order $\mathrm{m}>1$ of $f(z)$, then

$\operatorname{Res}_{\mathrm{z}=\mathrm{z}_{0}} f(z)=\frac{\phi^{(\mathrm{m}-1)}\left(z_{0}\right)}{(m-1)!}$

$$
=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}}\left[\phi^{m-1}(z)\right]
$$

$\mathrm{Res}_{\mathrm{z}=\mathrm{z}_{0}} f(z)$

$$
=\frac{1}{(m-1)!} \lim _{z \rightarrow z 0}\left[\frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z)\right]
$$

Ex1.

Find the residue of $f(z)$ at
 $$
\mathrm{z}=0 \text { and } \mathrm{z}=-1, \text { where }
$$

$$
f(z)=\frac{1}{z+z^{2}}
$$

Soln :

Note that

$$
z=0 \text { and } z=-1
$$

are simple poles of $f(z)$.
$\therefore{ }_{\mathrm{z}=0}^{\text {Res }} f(z) \lim _{\mathrm{z} \rightarrow 0}(z-0) f(z)$

$$
=\lim _{z \rightarrow 0}\left(\frac{1}{1+z}\right)=1
$$

$\therefore \operatorname{Res}_{\mathrm{z}=-1} f(z)=\lim _{\mathrm{z} \rightarrow 0}(z+1) f(z)$

$$
=\lim _{z \rightarrow-1}\left(\frac{1}{z}\right)=-1
$$

Q. 2 (a) Evaluate $\mathrm{I}=$ $\mathrm{c}:|\mathrm{z}|=3 z^{2}$

Soln :

Clearly, $z=0$ is a poleof order 2

$$
\text { of } \quad f(z)=\frac{e^{-z}}{z^{2}}
$$

Now

$$
\begin{aligned}
\mathrm{I} & =\int_{\mathrm{c}:|\mathrm{z}|=3} f(z) d z \\
& =2 \pi i \sum_{z=z_{k}} \operatorname{Re} s f(z),
\end{aligned}
$$

$$
f(z)=\frac{e^{-z}}{z^{2}}
$$

$$
\therefore \operatorname{Re} s_{z=0} f(z)=\frac{1}{(2-1)!} \cdot \lim _{z \rightarrow 0}\left[\frac{d}{d z}\left(z^{2} f(z)\right)\right]
$$

$$
=\lim _{z \rightarrow 0}\left[\frac{d}{d z} e^{-z}\right]
$$

$$
\begin{aligned}
\Rightarrow \operatorname{Re} s_{z=0} f(z) & =\lim _{z \rightarrow 0}\left(-e^{-z}\right) \\
& =-1
\end{aligned}
$$

$$
\therefore I=-2 \pi i
$$

Q. 2 (b) Evaluate

$$
\mathrm{I}=\int_{\mathrm{c}:|z-3|=1} \frac{e^{-z}}{z^{2}} d z
$$

Ans: $\quad \mathrm{I}=0$ (WHY ???)

Ex2(c). Evaluate

$I=\int_{c:|z|=3} \frac{e^{-z}}{(z-1)^{2}}$.
Soln :

$$
\begin{aligned}
& z=1 \text { is pole of order } 2 \text { of } \\
& \qquad f(z)=\frac{e^{-z}}{(z-1)^{2}}
\end{aligned}
$$

$$
=-\left.e^{-z}\right|_{z=1}=-\frac{1}{\rho}
$$
 e

$$
\therefore I=-\frac{2 \pi i}{e}
$$

$$
\begin{aligned}
& \text { (c) } \mathrm{I}=\int_{|\mathrm{z}|=3} z^{2} \cdot e^{\frac{1}{z}} d z \\
& \text { Let } \mathrm{f}(\mathrm{z})=\mathrm{z}^{2} e^{\frac{1}{z}} \\
& \Rightarrow z=0 \text { is an essential } \\
& \text { singularit } y \text { of } \mathrm{f}(\mathrm{z})
\end{aligned}
$$

$$
\begin{aligned}
f(z) & =z^{2}\left(1+\frac{1}{z}+\frac{1}{2!} \cdot \frac{1}{z^{2}}+\frac{1}{3!} \cdot \frac{1}{z^{3}}+\frac{1}{4!} \frac{1}{z^{4}}+\ldots\right) \\
& =z^{2}+z+\frac{1}{2!}+\frac{1}{3!} \cdot \frac{1}{z}+\frac{1}{4!} \cdot \frac{1}{z^{2}}+\ldots
\end{aligned}
$$

$$
\operatorname{Re} s
$$

$$
\therefore I=2 \pi i \times \frac{1}{6}=\frac{\pi i}{3}
$$

(d)

$\mathrm{I}=\int_{|\mathrm{z}|=3} \frac{z+1}{z^{2}-2 z} d z$
Let $\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}+1}{\mathrm{z}^{2}-2 z}=\frac{z+1}{z(z-2)}$
$\Rightarrow z=0 \quad \& z=2$ are simple poles

$$
\begin{aligned}
\operatorname{Re} s_{z=0}^{s} f(z) & =\lim _{\mathrm{z} \rightarrow 0} z f(z) \\
& =\lim _{\mathrm{z} \rightarrow 0} \frac{z+1}{z-2} \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re} s_{z=2} f(z)=\lim _{z \rightarrow 2}(z-2) f(z) \\
& =\frac{3}{2} \\
& \therefore I=2 \pi i \sum \operatorname{Re} s f(z) \\
& \quad=2 \pi i\left(-\frac{1}{2}+\frac{3}{2}\right)=2 \pi i .
\end{aligned}
$$

Q.3, p. 233

Let $f(z)$ be analytic at z_{0},
and consider

$$
g(z)=\frac{f(z)}{z-z_{0}}
$$

Then Show that

(a) If $\mathrm{f}\left(\mathrm{z}_{0}\right) \neq 0$,

then z_{0} is a simple pole

of $g(Z)$ and

$$
\operatorname{Re}_{\mathrm{z}=\mathrm{z}_{0}} \boldsymbol{g} \quad \mathrm{~g}(\mathrm{z})=\mathrm{f}\left(\mathrm{Z}_{0}\right)
$$

(b) If $\mathrm{f}\left(\mathrm{z}_{0}\right)=0$,

then z_{0} is a
removable singularit y of $g(z)$
and $\operatorname{Re} s \mathrm{~g}(\mathrm{z})=0$.

$$
\mathrm{z}=\mathrm{Z} 0
$$

Sol: $\because \mathrm{f}(\mathrm{z})$ is analytic at z_{0}

$\Rightarrow \mathrm{f}(\mathrm{z})$ has Taylor's series
expansion about $\mathrm{z}_{0}, \&$

$$
f(z)=\mathrm{f}\left(\mathrm{z}_{0}\right)+\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right)
$$

$$
+\left(z-z_{0}\right)^{2} \frac{f^{\prime \prime}\left(z_{0}\right)}{2!}
$$

$$
+\left(z-z_{0}\right)^{3} \frac{f^{\prime \prime \prime}\left(z_{0}\right)}{3!}+\ldots
$$

$\Rightarrow g(z)=\underline{f(z)}$

$$
\begin{aligned}
& z-z_{0} \\
= & \frac{f\left(z_{0}\right)}{z-z_{0}}+f^{\prime}\left(z_{0}\right) \\
+ & \left(z-z_{0}\right) \frac{f^{\prime \prime}\left(z_{0}\right)}{2!} \\
+ & \left(z-z_{0}\right)^{2} \frac{f^{\prime \prime \prime}\left(z_{0}\right)}{3!}+\ldots
\end{aligned}
$$

(a) Clearly if $f\left(z_{0}\right) \neq 0$, Then
principal part (P.P) of
$\mathrm{g}(\mathrm{z})$ is

$$
=\underline{f\left(z_{0}\right)}
$$

$$
z-z_{0}
$$

$\therefore z_{0}$ is a simple pole of $g(z)$

and

$=f\left(z_{0}\right)$
(b) If $f\left(z_{0}\right)=0$, then p.p.of $g(z)$
is 0
$\Rightarrow \mathrm{b}_{\mathrm{n}}=0 \forall n$
$\Rightarrow z=z_{0}$ is a removable
singularit y of $g(z)$, and
$\underset{\mathrm{z}=z_{0}}{\operatorname{Res}} g(z)=0$
$Q .4(\mathrm{a}) \mathrm{I}=\int_{\mathrm{c}} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)}, c:|z-2|=2$
Let $f(z)=\frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)}$

Then $1,3 i,-3 i$ are simple poles of $f(z)$

$$
\begin{aligned}
& \therefore{ }_{\mathrm{Z}=1}^{\operatorname{Res}} f(z)=\left[\frac{3 z^{3}+2}{z^{2}+9}\right] \|_{z=1} \\
& =\frac{5}{10}=\frac{1}{2} \\
& \therefore I=2 \pi i \times_{z=1}^{\operatorname{Res}} f(z)=\pi i
\end{aligned}
$$

$$
\text { (b) c: }|\mathrm{z}|=4
$$

Then $1,3 i,-3 i$ are all inside C

$\therefore{ }_{z=1}^{\operatorname{Res}} f(z)=\frac{1}{2}$

$$
\operatorname{Re} s f(z)=\frac{3 z^{3}+2}{}
$$

$$
\operatorname{Re} s_{z=3 i} f(z)=\left.\frac{1}{(z-1)(z+3 i)}\right|_{z=3 i}
$$

$$
-81 i+2
$$

$$
=\overline{(3 i-1)(6 i)}
$$

$$
2-81 i
$$

$$
=\overline{-18-6 i}
$$

$$
\begin{aligned}
\operatorname{Res}_{z=-3 i} f(z) & =\left.\frac{3 z^{3}+2}{(z-1)(z-3 i)}\right|_{z=-3 i} \\
& =\frac{+81 i+2}{(-3 i-1)(-6 i)} \\
& =\frac{2+81 i}{-18+6 i}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sum \operatorname{Res} f(z) \\
& \qquad \begin{array}{l}
\therefore \frac{1}{2}+\frac{2+81 i}{6 i-18}-\frac{2-81 i}{6 i+18} \\
=3
\end{array} \\
& \therefore I=2 \pi i \sum \operatorname{Res} f(z)=6 \pi i
\end{aligned}
$$

$Q .5(b) I=\int_{c} \frac{d z}{z^{3}(z+4)}, c:|z+2|=3$
Let $\quad f(z)=\frac{1}{z^{3}(z+4)}$

$\Rightarrow z=0$ is a pole of
order 3 and
$\mathrm{Z}=-4$ is a simple pole
\& both lie inside

$$
\begin{aligned}
\therefore \operatorname{Res}_{z=0} f(z) & =\left.\frac{1}{2} \cdot \frac{d^{2}}{d z^{2}}\left[\frac{1}{z+4}\right]\right|_{z=0} \\
& =\frac{1}{4^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Res} f(z)=\left.\frac{1}{z^{3}}\right|_{z=-4}=-\frac{1}{4^{3}} \\
& z=-4 \\
& \therefore I=2 \pi i\left(\frac{1}{4^{3}}-\frac{1}{4^{3}}\right)=0
\end{aligned}
$$

