### **MODULE-V**

- DISCRETE AND CONTINUOUS RANDOM VARIABLES
- CUMULATIVE DISTRIBUTION FUNCTION
- PROBABILITY MASS FUNCTION
- PROBABILITY DENSITY FUNCTION
- EXPECTATION
- VARIANCE
- MOMENT GENERATING FUNCTION
- INTRODUCTION TO BINOMIAL, POISSON AND NORMAL DISTRIBUTION.

### Random Variables

- If a real variable X be associated with the outcome of a random experiment, then since the values which X takes depend on chance, it is called a random variable.
- For example, if a random experiment E consists of tossing a pair of dice, the sum X of the two numbers which turn up have values 2,3,...,12 depending on chance. Then X is the random variable. It is a function whose values are real numbers and depend on chance.

### Discrete Random Variables

- If a random variable takes a finite set of values it is called discrete random variables.
- Example the number of heads in 4 tosses of a coin is a discrete random variable as it cannot assume values other than 0,1,2,3,4.
- Another example where the number of aces in a draw of 2 cards from a well shuffled deck is a random variable as it can takes the values 0,1,2 only.

### Discrete Probability Distribution(DPD)

 Suppose a discrete variate X is the outcome of some experiment.If the probability that X takes the values x<sub>i</sub> is p<sub>i</sub>,then

$$P(X=x_i)=p_i \text{ or } p(x_i) \text{ for } i=1,2,...$$

where

i)p(
$$x_i$$
) $\geq 0$  for all values of i,

$$ii)\sum p(x_i)=1$$

The set of values  $x_i$  with their probabilities  $p_i$  constitute a discrete probability distribution of the discrete variable X.

Example: The DPD for X, the sum of the numbers which turn on tossing a pair of dice is given by the following table:

| X=xi  | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|-------|------|------|------|------|------|------|------|------|------|------|------|
| P(xi) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 |

Since there are 6x6=36 equally likely outomes and each has the probability 1/36.When X=2 for 1 outcome,i.e.(1,1);X=3 for two outcomes (1,2) and (2,1) and so on.

### Question

A random variable X has the following probability function:

| x    | 0 | 1 | 2  | 3  | 4  | 5              | 6               | 7                  |
|------|---|---|----|----|----|----------------|-----------------|--------------------|
| p(x) | 0 | k | 2k | 2k | 3k | k <sup>2</sup> | 2k <sup>2</sup> | 7k <sup>2</sup> +k |

- i. Find k,
- ii. Evaluate P(X<6),P(X≥6),P(3<X≤6)
- iii. Find the maximum value of x so that  $P(X \le x) > 1/2$ .

### SOLUTION

i) 
$$\sum_{x=0}^{7} p(x) = 1$$

$$0+k+2k+2k+3k+k^2+2k^2+7k^2+k=1$$

ii) 
$$P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)$$
  
=0+k+2k+2k+3k+k<sup>2</sup>  
=81/100  
 $P(X\ge6)=P(X=6)+P(X=7)=2k^2+7k^2+k=19/100$   
 $P(3$ 

iii. $P(X \le 1) = k = 1/10 < 1/2$ ;  $P(X \le 2) = k + 2k = 3/10 < 1/2$ ;  $P(X \le 3) = k + 2k + 2k = 5/10 = 1/2$ ;  $P(X \le 4) = k + 2k + 2k + 2k + 3k = 8/10 > 1/2$ .

The maximum value of x so that  $P(X \le x) > 1/2$  is 4.

## DISTRIBUTION FUNCTION OR CUMULATIVE DISTRIBUTION FUNCTION

The distribution function F(x) of the discrete variate X is defined by

 $F(x)=P(X \le x) = \sum_{i=1}^{\infty} p(x_i)$  where x is any integer.

## MEAN AND VARIANCE OF RANDOM VARIABLES

Let  $X : x_1, x_2, ..., x_n$  $P(X): p_1, p_2, ..., p_n$  be a discrete probability distribution.

Mean = $\mu = \sum x_i p_i / \sum p_i$ 

Variance= $\sigma^2 = \sum p_i(x_i - \mu)^2$ 

Standard deviation=V(Variance)

### CONTINUOUS RANDOM VARIABLES

- A continuous random variable is one which can assume any value within an interval.
- Examples: The height/weight of a group of individuals.
- The probability distribution of a continuous variate x is defined by a function f(x) such that the probability of the variate x falling in the small interval x-(1/2)dx to x+(1/2)dx.
- $P(x-(1/2)dx \le x \le x+(1/2)dx)=f(x)dx$ . Then f(x) is called the probability density function.

### PROBABILITY DENSITY FUNCTION

The density function f(x) is always positive and

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

(The total area under the probability curve and the x-axis is unity)

### **DISTRIBUTION FUNCTION**

- If  $F(x)=P(X \le x) = \int_{-\infty}^{\infty} f(x) dx$
- F(x) is defined as the cumulative distribution function or the distribution function of the continuous variate X.
   It is the probability that the value of the variate X will be ≤x.
- The distribution function F(x) has the following properties:
  - i.F'(x)= $f(x) \ge 0$ ,so that F(x) is non-decreasing function.
  - ii. $F(-\infty)=0$ ; iii) $F(\infty)=1$ .

iv)P(a 
$$\leq x \leq b$$
) =  $\int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx = F(b) - F(a)$ 

#### **PROBLEMS**

Is the function defined as follows a density function?

$$f(x) = e^{-x}, x \ge 0$$
  
= 0, x < 0

Clearly  $f(x) \ge 0$  for every x in (1,2) and

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} 0.dx + \int_{0}^{\infty} e^{-x} dx = 1$$

The function f(x) satisfies the requirements for a density function.

# EXPECTATION, VARIANCE AND MOMENT GENERATING FUNCTION

- The mean value (μ) of the probability distribution of a variate X is commonly known as its expectation and denoted by E(X).
- If f(x) is the probability density function of the variate X,then

$$E(X) = \sum\limits_i x_i f(x_i)$$
 Dicrete Distribution  $E(X) = \sum\limits_{-\infty}^{\infty} x f(x) dx$  Continuous Distribution

#### **VARIANCE**

Discrete Distribution

$$\sigma^2 = \sum_{i} (x_i - \mu)^2 f(x_i)$$

**Continuous Distribution** 

$$\sigma^2 = \int_{-\infty}^{\infty} (x_i - \mu)^2 f(x_i)$$

### **Problems**

A variate X has the probability distribution

### MOMENT GENERATING FUNCTION

 The moment generating function of the discrete probability distribution of the variate X about the value x=a is defined as the expected value of e<sup>t(x-a)</sup> and is denoted by

 $M_a(t)=\sum p_i e^{t(x_i-a)}$  which is a function of the parameter t only.

- $M_a(t) = e^{-at} \sum p_i e^{tx}$
- If f(x) is the density function of a continuous variate X then m.g.f of this continuous probability distribution about x=a is given by:

$$M_a(t) = \int_{-\infty}^{\infty} e^{t(x-a)} f(x) dx$$

### **PROBLEMS**

Find the m.g.f of the exponential distribution

$$f(x) = \frac{1}{c} e^{\frac{-x}{c}}, 0 \le x \le \infty, c > 0$$

Find its mean and standard deviation.

$$M_{o}(t) = \int_{0}^{\infty} e^{tx} \frac{1}{c} e^{-\frac{x}{c}} dx = \frac{1}{c} \int_{0}^{\infty} e^{(t-1/c)x} dx$$

$$= 1 + ct + c^{2}t^{2} + c^{3}t^{3} + ...$$

$$mean = \frac{d}{dt} \left[ M_{o}(t) \right]_{t=0}$$

$$= c$$
Standard deviation = 
$$\frac{d^{2}}{dt^{2}} \left[ M_{o}(t) \right]_{t=0}$$

### BINOMIAL DISTRIBUTION

- It is concerned with trials of a repetitive nature in which only the occurrence or non-occurrence, success or failure, acceptance or rejection, yes or no of a particular event is of interest.
- Let there be n independent trials in an experiment. Let a random variable X denote the number of successes in these n trials. Let p be the probability of a success and q that of a failure in a single trial so that p+q =1. The probability of r successes in n trials

 $P(X=r)= {}^{n}C_{r} p^{r} q^{n-r}$ , where p+q =1 and r=0,1,2,...,n.

The above distribution is called binomial probability distribution and X is called the binomial variate.

### NOTE

- In binomial distribution:
  - 1.n, the number of trials is finite.
    - 2.Each trial has only two possible outcomes called success and failure.
    - 3.All the trials are independent.
    - 4.p(and hence q) is constant for all the trials.

# MEAN AND VARIANCE OF THE BINOMIAL DISTRIBUTION

- Mean  $\mu = \sum_{r=0}^{n} rP(r) = \sum_{r=0}^{n} r \cdot {^{n}C_{r}} q^{n-r} p^{r} = np$
- Variance  $\sigma^2 = \sum_{r=0}^{n} r^2 P(r) \mu^2 = npq$

### Problem

 In 256 sets of 12 tosses of a coin, in how many cases one can expect 8 heads and 4 tails.

$$P(Head)=1/2$$
 and  $P(tail)=1/2$ .

$$P(X=8) = {}^{12}C_8(\frac{1}{2})^8(\frac{1}{2})^4 = \frac{495}{4096}$$

The expected number of such cases in 256 sets=256\*P(X=8)=30.9=31(approx)

### Problem

 In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2.Out of 1000 such samples, how many would be expected to contain at least 3 defective parts.

Here mean number of defectives 2=np=20p

Probability of defective part is p=2/20=.1

Probability of non-defective is q=.9

The probability of at least three defectives in a sample of 20=1-(prob. That either none, or one, or two are non-defective parts)

=1-
$$\left[{}^{20}C_{0}(0.9)^{20} + {}^{20}C_{1}(0.1)(0.9)^{19} + {}^{20}C_{2}(0.1)^{2}(0.9)^{18}\right]$$
  
=.323

### POISSON DISTRIBUTION

If the parameters n and p of a binomial distribution are known , we can find the distribution.But when n is very large and p is very small, binomial distribution is very labourious. As  $n \rightarrow \infty$  and  $p \rightarrow 0$  such that np always remains finite say  $\lambda$ , we get the Poisson approximation to the binomial distribution.

P(X=r)= 
$$\frac{\lambda^r e^{-\lambda}}{!r}$$
 r=0,1,2,...where  $\lambda$ =np.

# Mean and Variance of the Poisson Distribution

• Mean 
$$\mu = \sum_{r=0}^{\infty} r P(r) = \lambda$$

• Variance 
$$\sigma^2 = \sum_{r=0}^{\infty} r^2 P(r) = \lambda$$

The mean and variance of the Poisson distribution are equal to  $\lambda$ .

### **Problems**

If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction.

Mean= $\lambda$ =np=2000\*0.001=2

Probability that more than 2 will get a bad reaction=1-[prob. That no one gets a bad reaction+prob that one gets a bad reaction +prob that two get bad reaction]

 $=1-[e^{-m}+me^{-m}+m^2e^{-m}/!2]=1-5/e^2=.32$ 

### Problem

A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which neither car is used and proportion of days on which some demand is refused. (e<sup>-1.5</sup>=.2231)

$$\lambda = 1.5$$

Proportion of days on which neither car is used=Probability of there being no demand for the car=m<sup>0</sup>e<sup>-m</sup>/!0=e<sup>-1.5</sup>=.2231.

Proportion of days on which some demand is refused=Probability for the number of demands to be more than two=1-P( $x \le 2$ )=1-( $e^{-m}+me^{-m}+m2e^{-m}$ /!2)

$$=1-e^{-1.5}(1+1.5+(1.5)^2/2)=.1912625$$

### NORMAL DISTRIBUTION

- The normal distribution is a continuous distribution.
- It can be derived from the binomial distribution in the limiting case when n, the number of trials is very large and probability of a success is close to ½.
- The general equation of the normal distribution is given by:

 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-1(\frac{x-\mu}{\sigma})^2}{2}}$ 

Where the variable x can assume all values from  $-\infty$  to  $\infty$ . $\mu$  and  $\sigma$  called the parameters of the distribution are the mean and standard deviation of the distribution and  $-\infty$ , $\sigma$ >0.x is called the normal variate and f(x) is called the probability density function of the normal distribution.

If a variable x has the normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , we briefly write x:N( $\mu$ , $\sigma$ <sup>2</sup>)

### NORMAL CURVE

- The graph of the normal distribution is called the normal curve.
- It is bell shaped and symmetrical about the mean  $\mu$ .



### Normal Curve

- The two tails of the curve extend from +∞ to -∞ towards the positive and negative directions of the x-axis and gradually approaches the x-axis without ever meeting it.
- The curve is unimodal and the mode of the normal distribution coincides with its mean μ.The line x=μ divides the area under the normal curve above x-axis into two equal parts.
- The median of the distribution also coincides with its mean and mode.
- The area under the normal curve between any two given ordinates  $x=x_1$  and  $x=x_2$  represents the probability of values falling into the given interval.
- The total area under the normal curve above the x-axis is 1.

### STANDARD FORM OF THE NORMAL DISTRIBUTION

• If X is a normal random variable with mean  $\mu$  and standard deviation  $\sigma$ , then the random variable Z is

$$Z = rac{X - \mu}{\sigma}$$

The random variable Z is called the standardized normal random variable.

The probability density function for the normal distribution in standard form is given by

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2} * z^2}$$

### NOTE

 If f(z) is the probability density function for the normal distribution, then

$$P(z_1 \le Z \le z_2) = \int_{z_1}^{z_2} f(z) dz = F(z_2) - F(z_1)$$
where  $F(z) = \int_{-\infty}^{z} f(z) dz = P(Z \le z)$ 

The function F(z) defined above is called the distribution function for the normal distribution.

- The probabilities  $P(z_1 \le Z \le z_2)$ ,  $P(z_1 < Z \le z_2)$  and  $P(z_1 \le Z < z_2)$  are all regarded to be the same.
- $F(-z_1)=1-F(z_1)$

### **Problems**

A sample of 100 dry battery cells tested to find the length of life produced the following results:

$$x = 12hours, \sigma = 3hours$$

Assuming the data to be normally distributed, what percentage of battery cells are expected to have life

i)more than 15 hours ii)less than 6 hours iii)between 10 and 14 hours

### Solution

• Let x be the length of life of battery cells  $z=(x-\frac{1}{2})/\sigma=(x-12)/3$ 

i)x=15,z=
$$1/2$$

$$P(x>15)=P(z>1)=P(0  
=0.5-.3413=.1587$$



Criss cross lines show shaded area

### Solution

ii)When 
$$x=6,z=-2$$
  
 $P(x<6)=P(z<-2)=P(z>2)=P(0  
 $=0.5-.4772=0.0228$$ 



### solution

