DEPARTMENT OF MATHEMATICS
 BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI
 MA107 Mathematics-II, Session: (SP-2020)
 Tutorial - 5 (Module V)

1. Let X be a random variable with probability density function

$$
f(x)=k(2 x-1) \text { for } x=1,2,3 \ldots, 12
$$

for some constant k. What is the value of k. Also, find the cumulative distribution of X.
2. Find the probability density function of the random variable X whose cumulative distribution function is

$$
F(x)= \begin{cases}0.00 & \text { if } x<-1 \\ 0.25 & \text { if }-1 \leq x<1 \\ 0.50 & \text { if } 1 \leq x<3 \\ 0.75 & \text { if } 3 \leq x<5 \\ 1.0 & \text { if } x \geq 5\end{cases}
$$

Also, find
a) $P(X \leq 3)$
b) $P(X=3)$
c) $P(X<3)$
3. The random variable X has density function

$$
f(x)= \begin{cases}(k+1) x^{2} & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

find the value of constant k.
4. A random variable X has a cumulative distribution function

$$
F(x)= \begin{cases}\frac{x}{2} & \text { if } 0<x \leq 1 \\ x-\frac{1}{2} & \text { if } 1<x \leq \frac{3}{2}\end{cases}
$$

a) $P(X \leq 0.5)$
b) $P(X \geq 0.5)$
c) $P(X \leq 1.25)$
d) $P(X=1.25)$
5. Let the distribution of X for $x>0$ be

$$
F(x)=1-\sum_{k=0}^{3} \frac{x^{k} e^{-x}}{k!}
$$

What is the density function of X for $x>0$
6. Let X is a continuous random variable with probability density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} & \text { if } 7<x<9 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the cummulative distribution function of X.
7. Let X be a random variable with cumulative distribution function

$$
F(x)= \begin{cases}1-e^{-x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

what is the $P\left(0 \leq e^{X} \leq 4\right)$.
8. Let X be a random variable with probability density function

$$
f(x)= \begin{cases}\frac{x}{8} & \text { for } x=1,2,5 \\ 0 & \text { otherwise }\end{cases}
$$

Find
a) $E(X)$
b) $\operatorname{Var}(X)$
c) $E(2 X+3)$
d) $\operatorname{Var}(2 X+3)$
9. Let X is a random variable with density function

$$
f(x)= \begin{cases}\theta x+\frac{3}{2} \theta^{\frac{3}{2}} x^{2} & \text { for } 0<x<\frac{1}{\sqrt{\theta}} \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$. What is the expected value of X.
10. Let X is a random variable with density function

$$
f(x)= \begin{cases}1.4 e^{-2 x}+0.9 e^{-3 x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

then what is the expected value of X.
11. If the moment generating function for the random variable X is $M(t)=k\left(2+3 e^{t}\right)^{4}$, what is the value of k.
12. Let X be a random variable with density function

$$
f(x)= \begin{cases}a e^{-a x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $a>0$. if $M(t)$ denotes the moment generating function of X, what is $M(-3 a)$.
13. Let X be a random variable with density function

$$
f(x)= \begin{cases}\frac{2 x}{\overline{k^{2}}} & 0 \leq x \leq k \\ 0 & \text { otherwise }\end{cases}
$$

For what value of k is the variance of X equal to 8 .
14. What is the probability of getting exactly 3 heads in 5 flips of a fair coin.
15. On six successive flips of a fair coin, what is the probability of observing 3 heads and 3 tails.
16. What is the probability that in 3 rolls of a pair of six-sided dice, exactly one total of 7 is rolled.
17. In a family of 4 children, what is the probability that there will be exactly two boys.
18. A Quiz is conducted which is consisting of 20 MCQs (multiple choices questions) with every MCQ having its four options out of which only one is correct. A person answered randomely all the questions. What is the probability (a) exactly 5 questions are correct (b) exactly 10 questions are correct.
19. A random variable X has a Poisson distribution with a mean of 3 . What is the probability that X is bounded by 1 and 3 , that is $P(1 \leq X \leq 3)$.
20. If X is any random variable with mean μ and variance $\sigma^{2}>0$, then what are the mean and variance of the random variable $Y=\frac{X-\mu}{\sigma}$.
21. If $X \sim N\left(\mu, \sigma^{2}\right)$, then the random variable $Y=\frac{X-\mu}{\sigma} \sim N(0,1)$.
22. If X be a normal distribution with mean 2 and variance 4 , then find the $P(X>2)$.
\qquad

1. $k=\frac{1}{144}, \quad F(1)=$ $\frac{1}{\frac{144}{9}}, F(2)=\frac{4}{144}, F(3)=$ $\frac{9}{144}, \ldots, F(12)=1$.
2. $f(-1)=f(1)=f(3)=$ $f(5)=0.25, \quad P(X \leq$ 3) $=0.75, \quad P(X=3)=$ $0.25, P(X<3)=0.5$
3. $k=2$.
4. $F(x)= \begin{cases}0 & x \leq 7 \\ \frac{x-7}{2} & 7<x<9 \\ 1 & x \geq 9\end{cases}$
5. 12 because $k \geq 0$
6. $\frac{5}{16}$
7. $\frac{3}{4}$
8. $\frac{5}{16}$
9. (a)3.75, (b)2.6875,
(c)10.5, (d) 10.75
10. $\frac{25}{72}$
11. $\frac{17}{24 \sqrt{\theta}}$
12. $\frac{3}{8}$
13. $P(X \leq 0.5)=0.25, P(X \geq$ $0.5)=P(X \leq 1.25)=$ $0.75, P(X=1.25)=0$
14. $\frac{9}{20}$
15. $\frac{1}{625}$
16. (a) 0.2023 , (b) 0.0099
17. $12 e^{-3}$
18. $\frac{1}{6} x^{3} e^{-x}$
19. $\frac{1}{4}$
20. $E(Y)=0, \operatorname{Var}(Y)=1$
21. 0.5
