DEPARTMENT OF MATHEMATICS
 BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI
 MA107 Mathematics-II, Session: (SP-2020)
 Tutorial - 3 (Module III)

1. Find the Fourier series of $f(x)=\pi^{2}-x^{2}$ in $-\pi<x<\pi$.

Solution:

$$
\begin{gathered}
a_{n}=-\frac{4}{n^{2}} \cos (n \pi), n=1,2,3, \ldots \\
a_{0}=\frac{4}{3} \pi^{2} \text { and } b_{n}=0, n=1,2,3, \ldots
\end{gathered}
$$

2. Find the Fourier series for the function $f(x)$ if $f(x)$ is defined in $-\pi<x<\pi$ as

$$
f(x)= \begin{cases}0 & -\pi<x<0 \\ \sin x & 0<x<\pi\end{cases}
$$

Hence deduce that

$$
\frac{1}{4}(\pi-2)=\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\cdots
$$

Solution:

$$
\begin{gathered}
a_{n}= \begin{cases}\frac{2}{\pi} \frac{1}{(1+n)(1-n)} & \mathrm{n} \text { is even } \\
0 & \mathrm{n} \text { is odd }\end{cases} \\
b_{1}=\frac{1}{2}, b_{n}=0, n=2,3,4, \ldots
\end{gathered}
$$

Hence FS

$$
f(x) \approx \frac{1}{\pi}-\frac{2}{\pi}\left(\frac{\cos 2 x}{1 \cdot 3}+\frac{\cos 4 x}{3 \cdot 5}+\frac{\cos 6 x}{5 \cdot 7}+\cdots\right)+\frac{1}{2} \sin x
$$

Since series will converge to $f(x)$ for $x=\frac{\pi}{2}$ so

$$
1=\frac{1}{\pi}-\frac{2}{\pi}\left(\frac{\cos \pi}{1 \cdot 3}+\frac{\cos 2 \pi}{3 \cdot 5}+\frac{\cos 3 \pi}{5 \cdot 7}+\cdots\right)+\frac{1}{2} \sin \left(\frac{\pi}{2}\right)
$$

\Longrightarrow

$$
\frac{1}{4}(\pi-2)=\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\cdots
$$

3. Obtain a Fourier expression for $\sqrt{1-\cos x}$ in the interval $-\pi<x<\pi$.

Solution: Hint:

$$
f(x)=\sqrt{1-\cos x}=\sqrt{2} \sin \left(\frac{x}{2}\right)
$$

Now try to find the fourier series for $\sqrt{2} \sin \left(\frac{x}{2}\right)$.
4. Find the Fourier series for the function

$$
f(x)= \begin{cases}-h & -\pi<x<0 \\ h & 0<x<\pi\end{cases}
$$

here, $h \neq 0$. Hence deduce that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

Solution: f is an odd function thus $A_{n}=0$ for all n.

$$
B_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{4 h}{n \pi} & \text { if } n \text { is odd }\end{cases}
$$

Thus, the Fourier series is given by

$$
f(x) \approx \frac{4 h}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\ldots\right)
$$

Since series will converge to $f(x)$ for $x=\frac{\pi}{2}$ so

$$
\begin{gathered}
f\left(\frac{\pi}{2}\right)=h=\frac{4 h}{\pi}\left(\frac{\sin \left(\frac{\pi}{2}\right)}{1}+\frac{\sin \left(\frac{3 \pi}{2}\right)}{3}+\frac{\sin \left(\frac{5 \pi}{2}\right)}{5}+\ldots\right) \\
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
\end{gathered}
$$

5. Determine the half-range Fourier sine series for $f(x)=x(\pi-x)$ in $0<x<\pi$. Hence deduce

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}=\frac{\pi^{3}}{32}
$$

Solution: In order to find half-range Fourier sine series for $f(x)$ we need to do odd-periodic extension of $f(x)$

$$
f_{o}(x)= \begin{cases}x(\pi-x) & 0<x<\pi \\ x(\pi+x) & -\pi<x<0 \\ f_{o}(x+2 \pi) & \text { otherwise }\end{cases}
$$

Now we will find the FS for this new function $f_{o}(x)$

$$
\begin{gathered}
a_{n}=0, n=0,1,2, \ldots\left(\text { since } f_{o}(x) \text { is odd function }\right) \\
\qquad b_{n}= \begin{cases}\frac{8}{\pi n^{3}} & \mathrm{n} \text { is odd } \\
0 & \mathrm{n} \text { is even }\end{cases}
\end{gathered}
$$

Hence FS for $f_{o}(x)$ in $-\pi<x<\pi$ is

$$
f_{o}(x) \approx \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{(2 n-1)^{3}}
$$

Since series will converge to $f_{0}(x)$ for $x=\frac{\pi}{2}$ so

$$
\begin{gathered}
\frac{\pi}{2}\left(\pi-\frac{\pi}{2}\right)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{(2 n-1) \pi}{2}\right)}{(2 n-1)^{3}} \\
\Longrightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}=\frac{\pi^{3}}{32}
\end{gathered}
$$

6. Determine the half-range Fourier sine series for $f(x)=e^{x}$ in $0<x<\pi$.

Solution: Hint: Odd-periodic extension of $f(x)$

$$
f_{o}(x)= \begin{cases}e^{x} & 0<x<\pi \\ -e^{-x} & -\pi<x<0 \\ f_{o}(x+2 \pi) & \text { otherwise }\end{cases}
$$

Now find the fourier series for this odd-periodic extension
7. Determine the half-range Fourier cosine series for $f(x)=\sin (k x)$ for some k which is not an integer.

Solution: Let $f(x)$ be a function defind on $0<x<L$.
Even-periodic extension of $f(x)$

$$
f_{e}(x)= \begin{cases}\sin (k x) & 0<x<L \\ -\sin (k x) & -L<x<0 \\ f_{e}(x+2 L) & \text { otherwise }\end{cases}
$$

Clearly $b_{n}=0$ for $n=1,2,3, \ldots$

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} \sin (k x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

which after integrating gives

$$
a_{n}=\frac{2 k L}{(k L+n \pi)(k L-n \pi)}[1-\cos (k L)]
$$

The required fourier series for $f(x)=\sin (k x)$ in $0<x<L$ is given by

$$
\frac{1}{L}\left[\frac{1-\cos (k L)}{k}\right]+\sum_{n=1}^{\infty} \frac{2 k L}{(k L+n \pi)(k L-n \pi)}[1-\cos (k L)] \cos \left(\frac{n \pi x}{L}\right)
$$

8. Obtain the half range Fourier cosine series for

$$
\begin{cases}0 & 0<x<\frac{\pi}{2} \\ \pi-x & \frac{\pi}{2}<x<\pi\end{cases}
$$

Solution: Hint: Even-periodic extension of $f(x)$

$$
f_{e}(x)= \begin{cases}0 & 0<x<\frac{\pi}{2} \\ \pi-x & \frac{\pi}{2}<x<\pi \\ \pi+x & -\pi<x<-\frac{\pi}{2} \\ 0 & -\frac{\pi}{2}<x<0 \\ f_{e}(x+2 \pi) & \text { otherwise }\end{cases}
$$

Now find the Fourier series for $f_{e}(x)$.
9. Form a partial differential equation by the method of elimination of arbitrary constants from the following
a) $z=a(x+y)+b(x-y)+a b t+c$ where z, x, y and t are variables and others are constant.
b) $z=a x^{3}+b y^{3}$.
c) $\log (a z-1)=x+a y+b$.
d) $\frac{x}{a}+\frac{y}{b}-\frac{z}{a b}=0$.
10. Form a partial differential equation by the method of elimination of arbitrary function from the following
a) $x y z=f(x+y+z)$
b) $z=f\left(x^{2}-y^{2}\right)$
c) $F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
d) $F\left(a x+b y+c z, x^{2}+y^{2}+z^{2}\right)=0$
11. Solve the partial diferential equation
a) $\left(x^{2}+y^{2}+z^{2}\right) p-2 x y q=-2 x z$
b) $p z-q z=z^{2}+(x+y)^{2}$
c) $(y+z) p+(z+x) q=x+y$
d) $(m z-n y) p+(n x-l z) q=l y-m x$
e) $p+3 q=5 z+\tan (y-3 x)$
12. Find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the initial temperature is $\sin \frac{\pi x}{2}+3 \sin \frac{5 \pi x}{2}$.
13. A tightly stretched string with fixed end points $x=0$ and $x=\pi$ is initially at rest in its equilibriu position. If it is set vibrating by giving to each of its points an initial velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0.03 \sin x-$ $0.04 \sin 3 x$ then find the displacement $y(x, t)$ at any point of string at any time t.
14. The temperature distribution in a bar of length π, which is perfectly insulated at the ends $x=0$ and $x=\pi$ is governed by the partial differential equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$. Assuming the initial temperature as $u(x, 0)=f(x)=\cos 2 x$, find the temperature distribution at any instant of time.
15. Solve the equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$, representing the vibration of a string of length l, fixed at both ends, given that $y(0, t)=0, y(1, t)=0, y(x, 0)=f(x)$ and $\frac{\partial}{\partial t} y(x, 0)=0,0<x<l$.

