DEPARTMENT OF MATHEMATICS
 BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI
 MA107 Mathematics-II, Session: (SP-2020)
 Tutorial - 2 (Module II)

1. Determine the singular points of the following differential equations and examine whether they are regular or not
a) $\left(x^{2}+4\right)(x-3)^{3} y^{\prime \prime}+(x-3)^{3} y^{\prime}+y=0$
b) $y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{x^{2}}\right) y=0$
c) $x^{2} y^{\prime \prime}+y^{\prime}+3 x y=0$
d) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$
e) $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$
f) $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$
g) $x^{2}\left(1-x^{2}\right) y^{\prime \prime}+\frac{2}{x} y^{\prime}+4 y=0$
2. Consider the equation $y^{\prime \prime}+x y^{\prime}+y=0$.
a) Find its general solution $y=\sum a_{n} x^{n}$ in the form $y=a_{0} y_{1}(x)+a_{1} y_{2}(x)$, where $y_{1}(x)$ and $y_{2}(x)$ are power series.
b) Use the ratio test to verify that the two series $y_{1}(x)$ and $y_{2}(x)$ converges for all x.
c) Show that $y_{1}(x)$ is the series expansion of $e^{-x^{2} / 2}$, use this fact to find the second independent solution.
3. Find the solution of the following equations in power series
a) $x y^{\prime}=3(y+1)$
b) $y^{\prime \prime}-3 y^{\prime}+2 y=0$
c) $2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0$
4. Use Frobenius method to find the solutions of the following equations
a) $x y^{\prime \prime}+y^{\prime}+x y=0$
b) $x y^{\prime \prime}+3 y^{\prime}+4 x^{3} y=0$
c) $x\left(2+x^{2}\right) y^{\prime \prime}-y^{\prime}-6 x y=0$
d) $4 x y^{\prime \prime}+2 y^{\prime}+y=0$
e) $x(1-x) y^{\prime \prime}+4 y^{\prime}+2 y=0$
f) $9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0$.
5. Express the following expression in terms of Legendre polynomials
a) $2-x+3 x^{2}$
b) $x^{3}-7 x^{2}-28 x-15$
6. Prove that
a) $P_{n}(1)=1$
b) $P_{n}(-1)=(-1)^{n}$
c) $P_{n}^{\prime}(1)=\frac{1}{2} n(n+1)$
d) $P_{n}^{\prime}(-1)=\frac{1}{2}(-1)^{n}[n(n+1)]$
e) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
7. Prove that $\int_{-1}^{1} P_{n}(x)\left(1-2 x t+t^{2}\right)^{-1 / 2} d x=\frac{2 t^{n}}{2 n+1}$.
8. (Recurrence relations for $P_{n}(x)$) To show that
9. $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x), n \geq 1$
10. $n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)$
11. $(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)$
12. $(n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)$
13. $\left(1-x^{2}\right) P_{n}^{\prime}(x)=n\left(P_{n-1}(x)-x P_{n}(x)\right)$
14. $\left(1-x^{2}\right) P_{n}^{\prime}(x)=(n+1)\left(x P_{n}(x)-P_{n+1}(x)\right)$
15. $(2 n+1)\left(x^{2}-1\right) P_{n}^{\prime}(x)=n(n+1)\left(P_{n+1}(x)-P_{n-1}(x)\right)$ (Beltrami's result)
16. Show that when n is an integer $J_{-n}(x)=(-1)^{n} J_{n}(x)$
17. Prove that
a) $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)$
b) $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin (x)$
c) $\left[J_{1 / 2}(x)\right]^{2}+\left[J_{-1 / 2}(x)\right]^{2}=\frac{2}{\pi x}$
18. Write the general solution of the following equations (in terms of Bessel functions)
a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-25\right) y=0$
b) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{9}{16}\right) y=0$
19. (Recurrence relations for $J_{n}(x)$) To show that
a) $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$
b) $\frac{d}{d x}\left\{x^{-n} J_{n}(x)\right\}=-x^{-n} J_{n+1}(x)$
c) $J_{n}^{\prime}(x)=J_{n-1}(x)-(n / x) J_{n}(x)$
d) $J_{n}^{\prime}(x)=(n / x) J_{n}(x)-J_{n+1}(x)$
e) $J_{n-1}(x)+J_{n+1}(x)=(2 n / x) J_{n}(x)$
f) $2 J_{n}^{\prime}(x)=J_{n-1}(x)-J_{n+1}(x)$
20. Evaluate $\int x^{3} J_{3}(x) d x$

Solution: Hint : from Recurrence relation $12(a)$ and $12(b)$

$$
\begin{gathered}
\int x^{n} J_{n-1}(x) d x=x^{n} J_{n}(x)+c \\
\int x^{-n} J_{n+1}(x) d x=-x^{-n} J_{n}(x)+c
\end{gathered}
$$

