
MODULE 4 
 
The mechanical properties, among all the properties of plastic materials, are often the most important properties 
because virtually all service conditions and the majority of end-use applications involve some degree of mechanical 
loading. Nevertheless, these properties are the least understood by most design engineers. The material selection for 
a variety of applications is quite often based on mechanical properties such as tensile strength, modulus, elongation, 
and impact strength. 
The basic understanding of stress–strain behavior of plastic materials is of utmost importance to design engineers. 
One such typical stress–strain (load-deformation) diagram is illustrated in Figure 2-1. For a better understanding of 
the stress–strain curve, it is necessary to define a few basic terms that are associated with the stress–strain diagram. 

 

Stress. The force applied to produce deformation in a unit area of a test specimen. Stress is a ratio of applied load 
to the original cross-sectional area expressed in lb/in.2. 
Strain. The ratio of the elongation to the gauge length of the test specimen, or simply stated, change in length per 
unit of the original length (⊗l/l). It is expressed as a dimensionless ratio. 
Elongation. The increase in the length of a test specimen produced by a tensile load. 
Yield Point. The fi rst point on the stress–strain curve at which an increase in strain occurs without the increase in 
stress. 
Yield Strength. The stress at which a material exhibits a specifi ed limiting deviation from the proportionality of 
stress to strain. Unless otherwise specified, this stress will be at the yield point. 
Proportional Limit. The greatest stress at which a material is capable of sustaining the applied load without any 
deviation from proportionality of stress to strain (Hooke’s Law). This is expressed in lb/in.2. 



Modulus of Elasticity. The ratio of stress to corresponding strain below the proportional limit of a material. It is 
expressed in F/A, usually lb/in.2 This is also known as Young’s modulus. A modulus is a measure of material’s 
stiffness. 
Ultimate Strength. The maximum unit stress a material will withstand when subjected to an applied load in 
compression, tension, or shear. This is expressed in lb/in.2. 
Secant Modulus. The ratio of the total stress to corresponding strain at any specific point on the stress–strain 
curve. It is also expressed in F/A or lb/in.2. 
 
The stress–strain diagram illustrated in Figure 2-1 is typical of that obtained in tension for a constant rate of loading. 
However, the curves obtained from other loading conditions, such as compression or shear, are quite similar in 
appearance. The initial portion of the stress–strain curve between points A and C is linear and it follows Hooke’s 
law, which states that for an elastic material the stress is proportional to the strain. The point C at which the actual 
curve deviates from the straight line is called the proportional limit, meaning that only up to this point is stress 
proportional to strain. The behavior of plastic material below the proportional limit is elastic in nature and therefore 
the deformations are recoverable. The deformations up to point B in Figure 2-1 are relatively small and have been 
associated with the bending and stretching of the interatomic bonds between atoms of plastic molecules as shown in 
Figure 2-2a. This type of deformation is instantaneous and recoverable. There is no permanent displacement of the 
molecules relative to each other. The deformation that occurs beyond point C in Figure 2-1 is similar to a 
straightening out of a coiled portion of the molecular chains (Figure2-2b). There is no intermolecular slippage and 
the deformations may be recoverable ultimately, but not instantaneously. The extensions that occur beyond the yield 
point or the elastic limit of the material are not recoverable (Figure 2-2c). There deformations occur because of the 
actual displacement of the molecules with respect to each other. The displaced molecules cannot slip back to their 
original positions and, therefore, a permanent deformation or set occurs. These three types of deformations, as 
shown in Figure 2-2, do not occur separately but are superimposed on each other. The bonding and the stretching of 
the interatomic bonds are almost instantaneous. However, the molecular uncoiling is relatively slow. Molecular 
slippage effects are the slowest of all three deformations 

 

The polymeric materials can be broadly classifi ed in terms of their relative 
softness, brittleness, hardness, and toughness. The tensile stress–strain diagrams 
serve as a basis for such a classifi cation (6). The area under the stress–strain 



curve is considered as the toughness of the polymeric material. Figure 2-4a illustrates typical tensile stress–strain 
curves for several types of polymeric 
materials. 
A soft and weak material is characterized by low modulus, low yield stress, and a moderate elongation at break 
point. Polytetrafl uoroethylene (PTFE) is a good example of one such type of plastic material. 
A soft but tough material shows low modulus and low yield stress, but very high elongation and high stress at break. 
Polyethylene is a classic example of these types of plastics. 
A hard and brittle material is characterized by high modulus and low elongation. It may or may not yield before 
breaking. One such type of polymer is general purpose phenolic. 
A hard and strong material has high modulus, high yield stress, usually high ultimate strength, and low elongation. 
Acetal is a good example of this class of materials. 
A hard and tough material is characterized by high modulus, high yield stress, high elongation at break, and high 
ultimate strength. Polycarbonate is considered a hard and tough material. Figure 2-4b illustrates the relation between 
ductility and strength. 
 

 

TENSILE TESTS (ASTM D 638, ISO 527-1) 
Tensile elongation and tensile modulus measurements are among the most important indications of strength in a 
material and are the most widely specified properties of plastic materials. Tensile test, in a broad sense, is a 
measurement of the ability of a material to withstand forces that tend to pull it apart and to determine to what extent 
the material stretches before breaking. Tensile modulus, an indication of the relative stiffness of a material, can be 
determined from a stress–strain diagram. Different types of plastic materials are often compared on the basis of 
tensile strength, elongation, and tensile modulus data. Many plastics are very sensitive to the rate of straining and 
environmental conditions. 
Apparatus 
The tensile testing machine of a constant-rate-of-crosshead movement is used. It has a fi xed or essentially stationary 
member carrying one grip, and a movable member carrying a second grip. Self-aligning grips employed for holding 
the test specimen between the fixed member and the movable member prevent alignment problems. A controlled-
velocity drive mechanism is used. Some of the commercially available machines use a closed-loop servo-controlled 
drive mechanism to provide a high degree of speed accuracy. 
Test Specimens and Conditioning 
Test specimens for tensile tests are prepared many different ways. Most often, they are either injection molded or 
compression molded. The specimens may also be prepared by machining operations from materials in sheet, plate, 
slab, or similar form. Test specimen dimensions vary considerably depending upon the requirements and are 



described in detail in the ASTM book of standards. Figure 2-9 shows ASTM D 638 Type I tensile test specimen 
most commonly used for testing rigid and semirigid plastics. 
The specimens are conditioned using standard conditioning procedures. Since the tensile properties of some plastics 
change rapidly with small changes in temperature, it is recommended that tests be conducted in the standard 
laboratory atmosphere of 23 } 2°C and 50 } 5 percent relative humidity. 
Test Procedures 
A. Tensile Strength 
The speed of testing is the relative rate of motion of the grips or test fixtures during the test. There are basically five 
different testing speeds specified in the ASTM D638 Standard. The most frequently employed speed of testing is 0.2 
in./min. Whenever possible, the speed indicated by the specification for the material being tested should be used. If a 
test speed is not given, appropriate speed that causes rupture between 30 sec and 5 min should be chosen. The test 
specimen is positioned vertically in the grips of the testing machine. The grips are tightened evenly and firmly to 
prevent any slippage. The speed of testing is set at the proper rate and the machine is started. As the specimen 
elongates, the resistance of the specimen increases and is detected by a load cell. This load value (force) is recorded 
by the instrument. Some machines also record the maximum (peak) load obtained by the specimen, which can be 
recalled after the completion of the test. The elongation of the specimen is continued until a rupture of the specimen 
is observed. Load value at break is also recorded. The tensile strength at yield and at break (ultimate tensile strength) 
are calculated. 
B. Tensile Modulus and Elongation 
Tensile modulus and elongation values are derived from a stress–strain curve. An extensometer is attached to the 
test specimen as shown in Figure 2-10a. The extensometer is a strain gauge type of device that magnifi es the actual 
stretch of the specimen considerably. Reliability of the strain measurement is affected by the traditional contact 
extensometers due to the actual physical contact with the test specimen. In recent years, many test equipment 
manufacturers have developed noncontact measurement systems based on optical, video and laser devices to 
overcome problems associated with contact extensometers. 
 
FLEXURAL PROPERTIES (ASTM D 790, ISO 178) 
The stress–strain behavior of polymers in fl exure is of interest to a designer as well 
as a polymer manufacturer. Flexural strength is the ability of the material to 
withstand bending forces applied perpendicular to its longitudinal axis. The stresses 
induced by the fl exural load are a combination of compressive and tensile stresses. 
This effect is illustrated in Figure 2-16. Flexural properties are reported are reported 
and calculated in terms of the maximum stress and strain that occur at the outside 
surface of the test bar. Many polymers do not break under fl exure even after a large 
defl ection that makes determination of the ultimate fl exural strength impractical 
for many polymers. In such cases, the common practice is to report fl exural yield 
strength when the maximum strain in the outer fi ber of the specimen has reached 
5 percent. For polymeric materials that break easily under fl exural load, the specimen 
is defl ected until a rupture occurs in the outer fi bers. 

  
Figure 2-16. Forces involved in bending a simple beam. 
 



There are several advantages of fl exural strength tests over tensile tests (14). If a material is used in the form of a 
beam and if the service failure occurs in bending, then a fl exural test is more relevant for design or specifi cation 
purposes than a tensile test, which may give a strength value very different from the calculated strength of the outer 
fi ber in the bent beam. The fl exural specimen is comparatively easy to prepare without residual strain. The 
specimen alignment is also more difficult in tensile tests. Also, the tight clamping of the test specimens creates stress 
concentration points. One other advantage of the fl exural test is that at small strains, the actual deformations are 
suffi ciently large to be measured accurately. 
There are two basic methods that cover the determination of flexural properties of plastics. Method 1 is a three-point 
loading system utilizing center loading on a simple supported beam. A bar of rectangular cross section rests on two 
supports and is loaded by means of a loading nose midway between the supports. The maximum axial fiber stresses 
occur on a line under the loading nose. A closeup of a specimen in the testing apparatus is shown in Figure 2-17. 
This method is especially useful in determining flexural properties for quality control and specification purposes. 
Method 2 is a four-point loading system utilizing two load points equally spaced from their adjacent support points, 
with a distance between load points of one-third of the support span. In this method, the test bar rests on two 
supports and is loaded at two points (by means of two loading noses), each an equal distance from the adjacent 
support point. This arrangement is shown schematically in Figure 2-18. 
Method 2 is very useful in testing material that do not fail at the point of maximum stress under a three-point loading 
system. The maximum axial fiber stress occurs over the area between the loading noses. 
Apparatus 
Quite often, the machine used for tensile testing is also used for flexural testing. The upper or lower portion of the 
movable crosshead can be used for flexural testing. The loading nose and support must have cylindrical surfaces. 
The radius of the nose and the nose support should be at least 1/8 in. to avoid excessive indentation or failure due to 
stress concentration directly under the loading nose. A strain gauge type of mechanism called a deflectometer or 
compressometer is used to measure defl ection in the specimen. 
Test Specimens and Conditioning 
The specimens used for fl exural testing are bars of rectangular cross section and are cut from sheets, plates, or 
molded shapes. The common practice is to mold the specimens to the desired fi nished dimensions. The specimens 
are conditioned in accordance with Procedure A of ASTM methods D618 as explained in Chapter 11 of this book. 
The specimens of size 1/8 ⋅ 1/2 ⋅ 4 in. are the most commonly used. 
Test Procedures and Calculations 
The test is initiated by applying the load to the specimen at the specifi ed crosshead rate. The defl ection is measured 
either by a gauge under the specimen in contact with it in the center of the support span or by measurement of the 
motion of the loading nose relative to the supports. A load–defl ection curve is plotted if the determination of fl 
exural modulus value is desired. 
The maximum fi ber stress is related to the load and sample dimensions and is calculated using the following 
equation: 

 
where S = stress (psi); P = load (lb); L = length of span (in.); b = width of specimen (in.); d = thickness of specimen 
(in.). 
Flexural strength is equal to the maximum stress in the outer fibers at the moment of break. This value can be 
calculated by using the above stress equation by letting load value P equal the load at the moment of break. 
For materials that do not break at outer fiber strains up to 5 percent, the flexural yield strength is calculated using the 
same equation. The load value P in this case is the maximum load at which there is no longer an increase in load 
with an increase in deflection. 
Modulus of Elasticity (Flexural Modulus) 
The fl exural modulus is a measure of the stiffness during the fi rst or initial part of the bending process. The fl 
exural modulus is represented by the slope of the initial straight-line portion of the stress–strain curve and is 
calculated by dividing the change in stress by the corresponding change in strain. The procedure to calculate flexural 
modulus is similar to the one described previously for tensile modulus calculations. 
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they do aid in the understanding and analysis of the behaviour of viscoelastic 
materials. Some of the more important models will now be considered. 

(a) Maxwell Model 
The Maxwell Model consists of a spring and dashpot in series at shown in 
Fig. 2.34. This model may be analysed as follows. 

Fig. 2.34 The Maxwell model 

Stress-Strain Relations 
The spring is the elastic component of the response and obeys the relation 

O'1 - -  ~ ' E 1  (2.27) 

where Crl and el are the stress and strain respectively and ~ is a constant. 
The dashpot is the viscous component of the response and in this case the 

stress t~2 is proportional to the rate of strain e2, ie 

~2 = ~" k2 (2.28) 

where r/is a material constant. 

Equilibrium Equation 
For equilibrium of forces, assuming constant area 

Applied Stress, c r -  tTl = ~2 (2.29) 

Geometry of Deformation Equation 
The total strain, e is equal to the sum of the strains in the two elements. 
So 

~--- ~l -~" ~2 (2.30) 
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From equations (2.27), (2.28) and (2.30) 

1 1 
k = 'Sbl +--0"2 

r/ 

1 1 
k - - �9 b- + - �9 o- (2.31) 

o 

This is the governing equation of the Maxwell Model. It is interesting 
to consider the response that this model predicts under three common time- 
dependent modes of deformation. 

(i) Creep 

If a constant stress, cro, is applied then equation (2.31) becomes 

1 
= -.tro (2.32) 

r/ 

which indicates a constant rate of increase of strain with time. 
From Fig. 2.35 it may be seen that for the Maxwell model, the strain at any 

time, t, after the application of a constant stress, tro, is given by 

Cro e ( t ) = - (  + tr~ 
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Hence, the creep modulus, E(t), is given by 

E(t) = = ( 2 . 3 3 )  
e ( t )  r /4- /~t  

(ii) Relaxation 

If the strain is held constant then equation (2.31) becomes 

1 1 
0 =  - - & + - . o r  

Solving this differential equation (see Appendix B) with the initial condition 
e = Cro at t = to then, 

- ~ t  
cr(t) = croe n (2.34) 

tr(t) =tro e-t/TR (2.35) 

where TR = r//~ is referred to as the relaxation time. 
This indicates that the stress decays exponentially with a time constant of 

r//~ (see Fig. 2.35). 

(iii) Recovery 

When the stress is removed there is an instantaneous recovery of the elastic 
strain, e I , and then, as shown by equation (2.31), the strain rate is zero so that 
there is no further recovery (see Fig. 2.35). 

It can be seen therefore that although the relaxation behaviour of this model 
is acceptable as a first approximation to the actual materials response, it is 
inadequate in its prediction for creep and recovery behaviour. 

(b) Kelvin or Voigt Model 

In this model the spring and dashpot elements are connected in parallel as 
shown in Fig. 2.36. 

Fig. 2.36 The Kelvin or Voigt Model 
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Stress-Strain Relations 
These are the same as the Maxwell Model and are given by equations (2.27) 

and (2.28). 

Equilibrium Equation 
For equilibrium of forces it can be seen that the applied load is supported 

jointly by the spring and the dashpot, so 

cr = crl + or2 (2.36) 

Geometry of Deformation Equation 
In this case the total strain is equal to the strain in each of the elements, i.e. 

e = el = e2 (2.37) 

From equations (2.27), (2.28) and (2.36) 

cr = ~. el + Ok2 

or using equation (2.37) 

tr = ~. e + r/. k (2.38) 

This is the governing equation for the Kelvin (or Voigt) Model and it is 
interesting to consider its predictions for the common time dependent defor- 
mations. 

(i) Creep 
If a constant stress, %, is applied then equation (2.38) becomes 

a o = ~ . e + O ~  

and this differential equation may be solved for the total strain, e, to give 

I e(t) = ~ l - e -  

where the ratio r//~ is referred to as the retardation time, TR. 
This indicates an exponential increase in strain from zero up to the value, 

tro/~, that the spring would have reached if the dashpot had not been present. 
This is shown in Fig. 2.37. As for the Maxwell Model, the creep modulus may 
be determined as 

oo [ ,] ,  
E(t) = 6(0 = ~" 1 - e - ~  (2.39) 
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(ii) Relaxation 
If the strain is held constant then equation (2.38) becomes 

That is, the stress is constant and supported by the spring element so that the 
predicted response is that of an elastic material, i.e. no relaxation (see Fig. 2.37) 

(iii) Recovery 
If the stress is removed, then equation (2.38) becomes 

0 = ~ . e + o ~  

Solving this differential equation with the initial condition e = e' at the time 
of stress removal, then 

e ( t )  = e ' e -  ~ (2.40) 

This represents an exponential recovery of strain which is a reversal of the 
predicted creep. 

(c) More Complex Models 
It may be seen that the simple Kelvin model gives an acceptable first approx- 
imation to creep and recovery behaviour but does not account for relaxation. 
The Maxwell model can account for relaxation but was poor in relation to creep 
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and recovery. It is clear therefore that some compromise may be achieved by 
combining the two models. Such a set-up is shown in Fig. 2.38. In this case 
the stress-strain relations are again given by equations (2.27) and (2.28). The 
geometry of deformation yields. 

Total strain, e = e~ + e2 -I- ek (2.41) 

Fig. 2.38 Maxwell and Kelvin models in series 

where ek is the strain response of the Kelvin Model. From equations (2.27), 
(2.28) and (2.41). 

tro trot Cro[ _~gz!] 
g ( t ) = -~l "~" g] " + -~2 1 --  e ~2 (2.42) 

From this the strain rate may be obtained as 

~ = r b cro -~t 
~- ~e ,~2 (2.43) 
r/1 r/2 

The response of this model to creep, relaxation and recovery situations is the 
sum of the effects described for the previous two models and is illustrated in 
Fig. 2.39. It can be seen that although the exponential responses predicted in 
these models are not a true representation of the complex viscoelastic response 
of polymeric materials, the overall picture is, for many purposes, an acceptable 
approximation to the actual behaviour. As more and more elements are added 
to the model then the simulation becomes better but the mathematics become 
complex. 

Example 2.12 An acrylic moulding material is to have its creep behaviour 
simulated by a four element model of the type shown in Fig. 2.38. If the creep 
curve for the acrylic at 14 MN/m 2 is as shown in Fig. 2,40, determine the 
values of the four constants in the model. 
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Fig. 2.40 Creep curve for acrylic at 20~ 

Solution The spring element constant, ~1, for the Maxwell model may be 
obtained from the instantaneous strain, e~. Thus 

~1 = O'~ = 14 - 2 8 0 0  MN/m 2 
el  0 . 0 0 5  

The dashpot constant, 01, for the Maxwell element is obtained from the slope 
of the creep curve in the steady state region (see equation (2.32)). 

tro 14 
r/1 = ~ = = 1.2 x 107 MN.hr/m 2 

e 1.167 x 10 - 6  

= 4.32 x 10 l~ MN.s/m 2 
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The spring constant, ~2, for the Kelvin-Voigt element is obtained from the 
maximum retarded strain, e2, in Fig. 2.40. 

~2 - -  0.o = 14 = 7000 MN/m 2 
e2 (0.7 --  0 . 5 ) 1 0  - 2  

The dashpot constant, 0z, for the Kelvin-Voigt element may be determined 
by selecting a time and corresponding strain from the creep curve in a 
region where the retarded elasticity dominates (i.e. the knee of the curve 
in Fig. 2.40) and substituting into equation (2.42). If this is done then 02 = 
3.7 x 108 MN.s/m 2. 

Having thus determined the constants for the model the strain may be 
predicted for any selected time or stress level assuming of course these are 
within the region where the model is applicable. 

(d) Standard Linear Solid 

Another model consisting of elements in series and parallel is that attributed to 
Zener. It is known as the Standard Linear Solid and is illustrated in Fig. 2.41. 
The governing equation may be derived as follows. 

Fig. 2.41 The standard linear solid 

Stress-Strain Relations 
As shown earlier the stress-strain relations are 

0.1 ~ ~IE1 

0" 2 = ~ 2 E 2  

0"3 "-- ~3~3 

(2.44) 

(2.45) 

(2.46) 

Equilibrium Equation 
In a similar manner to the previous models, equilibrium of forces yields. 

0.1 "-0"3 

tr = trl + a2 (2.47) 




