
MODULE 2 

Polymer Morphology—Introduction 

Studies of physical form, arrangement and structure of the molecules of a material system relates to its 
morphology. Polymer morphology covers the study of the arrangement of macromolecules into 
amorphous and crystalline regions and the overall physical structure of the molecular aggregates. 

In molecules including those of polymers, fixed arrangements of atoms that remain normally unaltered 
and which can be altered only by breaking and reforming of primary valence bonds, are commonly 
referred to as configurations. On the other hand, arrangements of molecular segments that can be altered 
by rotation of segments or groups of atoms around single bonds are referred to as conformations. 
Different modes of chain growth (and sometimes chain termination) give rise to different configurations 
including head-to-tail, head-to-head or tail-to-tail arrange-ments (Sec. 6.2), stereospecific or random 
arrangements given by isotactic, syndiotactic and atactic structures (Sec. 1.5.6) in vinyl polymers, and 
structures arising from 3, 4, or 1, 2 addition and cis and trans isomers from 1, 4 addition in diene 
polymers (Sec. 5.9). 

7.22. Development of Crystallinity 

Morphological studies about polymers are primarily related to the molecular pattern and physical 
behaviour of the crystalline regions of crystallizable polymers. Amorphous, semicrystalline and highly 
crystalline polymers are known, but it is difficult or even impossible to attain 100% crystallinity in bulk 
polymers. It is also difficult, if not impossible, according to the latest studies based on electron microscopy 
and other approaches, to obtain solid amorphous polymers completely devoid of any degree of molecular 
order or crystallinity. A whole spectrum of structures ranging from total disorder, and different kinds and 
degrees of order to very high degree of (if not total) order may describe the physical state of a given 
polymeric system depending on test environment, thermomechanical treatment to which the polymer has 
been subjected and the chemical environment from which the polymer has been isolated. Moreover, the 
collected data for the degree of crystallinity may vary according to the employed method of estimation. 
The crystallinity data given in Table 7.2 must, therefore, be regarded as approximate. 

Table 7.2. Approximate degree of crystallinity (%) for different polymers 

Polyethylene (low density) 60–80 

Polyethylene (high density) 80–98 

Polypropylene (fibre) 55–60 

Nylon (polyamide fibre) 55–60 

Terylene (polyester fibre) 55–60 

Cellulose (cotton fibre) 65–70 

Cellulose (viscose rayon fibre) 35–40 

Gutta percha 50–60 

Natural rubber (crystallized) 20–30 
Polymers having crystallites in excess of 50% are generally recognized to be crystalline. Cellulose 
derivatives used as fibres have crystallinity lower than that shown by cellulose. The predominantly linear 
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ammonium (cationic) end-groups are readily detected and estimated using an acid or anionic dye such as 
disulphine blue VN150 or bromophenol blue dye in aqueous acidic (0.01 N HCl) solution and taking the 
polymer in chloroform solution. For quantitative purposes, equal volumes of the aqueous dye solutions 
(10 mg/litre) and dilute solution of a polymer in the appropriate organic solvent (0.05–0.5%) are intimately 
shaken together in a stoppered tube, allowed to settle for distinct separation of layers (centrifuged if 
necessary) and the colour developed in the organic layer is then measured spectrophotometrically with 
the help of a calibration curve prepared for a relatively low molecular weight appropriate model compound 
such as stearic acid, sodium lauryl sulphate, cetyl trimethyl ammonium bromide or lauryl amine. 

6.10.2. Dye-Interaction Technique 

Solution of a number of basic and acid dyes in aqueous buffer solutions when extracted with benzene, 
toluene and similar solvents, yields an organo extract of the dye base of dye acid, whose colour depends 
on the pH of the solution extracted, though the colour of the dye in the aqueous layer may not be pH 
sensitive. A simple example is the well-known basic dye methyl violet 3B (gentian violet) which, though 
practically insoluble in benzene is but little extracted by benzene from aqueous solution of pH up to about 
7.0. It gives a light violet extract at pH 7.0 and an unstable deep brown extract at about pH 9.0. A strongly 
alkaline solution produces brown yellow benzene extract of the dye. The dye shows practically no colour 
change in aqueous solution over the whole pH range. The most sensitive extracts are obtained from more 
strongly alkaline solutions. Traces of a compound bearing —COO–,  or  functional 
groups sharply change the colour of the benzene extract to violet. Basic dyes of the rhodamine 6G class 
extracted in benzene from aqueous solution (10 mg/litre) at pH 10–12 also give yellow extracts of high 
acid sensitivity. Micronormal acid solutions in benzene e.g. formic acid, stearic acid, etc.) can be easily 
detected by these reagents. The colour change for the sensitive rhodamine dye reagents in the dye 
interaction test is from yellow to pink [often with fluorescence if the concentration of the (acid) anionic 
groups is relatively high]. The basic dye reagents (benzene extracts) are quite stable and retain their 
sensitivity if preserved over NaOH pellets in the dark. For quantitative purposes, equal volumes of the dye 
reagent and dilute (benzene) solution of an acid or of a polymer purified appropriately are mixed together 
and the extent of colour change brought about, depending on the nature and concentration of the acid 
present41, is measured spectrophotometrically taking the help of a suitable calibration curve.24 

For the detection of bases such as amines or basic end-groups (amino end-groups) in polymers, almost 
all phthalein dyes, particularly the halogenated ones are highly sensitive and they can be successfully 
used after extraction with benzene from their aqueous solution (50 mg/litre) at pH 3–4. Eosin A, eosin 
saure L neu, erythrosin J or erythrosin pur and rose Bengal give sensitive benzene extracts as dye 
reagents for detection of basic and cationic end-groups. For quantitative measurements, equal volumes 
of a selected dye reagent and benzene solution of a polymer are mixed together. The colour change 
(colourless to pink/yellow to pink/pale brown to pink, as the case may be) brought about in proportion to 
the concentration of the base or basic end-group present is measured spectrophotometrically using a 
calibration curve given by a long chain model compound such as lauryl amine or cetyl trimethyl 
ammonium bromide. For end-group analysis by the dye techniques, tests for acid end-groups are not 
interfered with by the presence of basic end-groups and vice versa. 

The dye techniques suited for the analysis of selected ionic (acidic or basic) end-groups can also be used 
for the analysis of non-ionizable end-groups after conveniently modifying them to ionizable groups. Before 
subjecting the polymers to dye tests using the highly sensitive dye reagents, it is necessary that they are 
scrupulously purified by a process of repeated precipitation to free them from low molecular weight (ionic) 
acidic or basic contaminants. 

Hydroxyl (OH) end-groups in a polymer are not responsive to dye tests. They can be conveniently 
transformed into dye test responsive carboxyl (—COOH) groups by phthalation25 (heating 0.2–0.5 g of 
polymer dissolved in 5 ml pyridine with excess of phthalic anhydride at 90–100°C for 6 h). 
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length, but also on branching (including its nature and frequency), cross-linking, end-groups present and 
on changes in chemical structure on aging. 

6.14. Gel Permeation Chromatography 

A chromatographic process is one in which the solute is transferred between two phases, one of which is 
stationary while the other is moving, and the transfer is often allowed to take place in a long column. In 
gel permeation chromatography the same solvent or liquid is allowed to form the two phases in the 
column packed with a microporous gel such that the stationary phase is that part of the solvent which is 
inside the porous gel particles and the mobile phase is made by the solvent remaining outside. The 
driving force behind the transfer of solute polymer molecules between the two phases is diffusional in 
nature and it gives rise to a difference in concentrations of solute in the two phases, the transfer process 
being also largely restricted by the solute molecules' capacity to penetrate or permeate through the pore 
structure of the gel. The gels used are typically hard, incompressible polymers, those most commonly 
used being microporous polystyrene (cross-linked with divinyl benzene) prepared by a suspension 
technique using a suitable inert solvent–non-solvent media. Another material commonly used is porous 
glass. The pores in the gels used are nearly of the same size as that of the polymer molecules. 

A known amount of polymer in a known volume of dilute solution is injected into a solvent stream flowing 
down the column. The solute polymer molecules flow past the porous beads of the gel and at the same 
time diffuse into their inner pore structures according to size distribution of the solute polymer molecules 
and the pore size distribution of the gel. A fractionation of the polymers is achieved in the process in view 
of the fact that the entry of the larger molecules into the pores of the gel are more restricted or completely 
hindred due to relatively low pore sizes, and they flow out of the gel column faster, spending less time 
inside the gel. The smaller molecules follow just the opposite trend as they spend more time inside the 
gel. The largest among the solute molecules emerge first while the smallest of them emerge last from the 
gel column. The technique, very commonly known as the "gel permeation chromatography" (GPC), allows 
separation of polymer molecules by their size. For a properly selected gel, the smallest of the solute 
polymer molecules find most of the stationary phase accessible. 

The method initially requires empirical calibration of a column or a set of columns with gels of graded pore 
size to yield a calibration curve50 such as the one shown in Fig. 6.12 relating a molecular size parameter, 
[η]M, [see Eq. (6.50) in Sec. 6.15] and retention volume such that with its help a plot of amount of solute 
versus retention volume of a test polymer known as its chromatogram, Fig. 6.13, can be transformed into 
a molecular size distribution curve from which a molecular weight distribution curve can be drawn. The 
GPC is a neat and fast technique for both analytical and preparative work applicable to both linear and 
branched polymers, requiring a sample size of only a few milligrams and the analysis is usually complete 
in a time scale of 2–5 h. 
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to elution as a consequence and then, the size exclusion basis of GPC separation loses its relevance. 
Such a phenomenon would lead to larger elution volumes and to relatively low molecular weights than 
actual. The ion-containing polymers tend to aggregate in solvents of low polarity and in case of such 
macromolecular aggregation, fractionation and molecular weight determination based on separation 
according to molecular size in solution are largely affected. Analysis of such polymers by GPC can be 
reliably done only if the charged groups are turned non-ionic or by selecting an eluent solvent system 
which would prevent adsorption of polymers in the gel columns and would also eliminate macromolecular 
aggregation. It is important to have a good knowledge about the history of a polymer including its method 
of synthesis and its microstructure particularly with reference to the presence of charged groups (end 
groups or branch or repeat units) before attempting to know more about it by employing gel permeation 
chromatography 


