Ti te
(18) $08 / 2018$

Liquid-Liquid Extraction

Liquid-Liquid extraction is a mass transfer operation in which a solution (solute with carrier 2quial) is brought into intimate contact with a second immisise or slightly miscible liquid (solvent) in order to transfer solute from the feed to the solvent.
The two liquid phases that have different densities are then separated.
The solute rich phase is called (solvent stream) the extract. The residual feed stream that may have a little of solute left in it is called the raffinate.

An extraction process involves for major steps.
(1) Bringing the feed and solvent into intimate contact.
(11) Separate the extract and raffinate phases that have different densities
(iii) Removal and recovery of the solute from the extract phase by distillation, evoperation, crystallization eft.
(IV) Removal and recovery of solvent from each phase usually by distillation.

The separation of a liquid mixture or solution by distillation is operationally simpler than extraction. In a typical LLE process, only about 15% of the capital cost goes towards the extractor and the remaining 85% goes towards the distillation colum, and over equipments for solvent recovery and pouch purification.
Examples of $\angle L E$:
(1) Extraction of aromatics ($B T X$)

BTX removal from kerosene \& jet frees using solvents such as furfural, Sulphalane (Tetrahydrothiophene -1, 1-dioxide) N -methyl pyrrolidone ($N M P$), methyl-Iso butyl Keto (M IBK) etc.
They selectively remove aromatics and wikely polar compounds.
(11) Recovery and concentration of Antibiotics by solvent Extraction
Why not distillation?
pores

 thive Camplorexta：the sollonte（C），the carsier Wyuid in the feed（A），and she extrating sollent（3）

Phe peaphse of Rericietion os $83 t$ ）
Offern me of compomont may seaweye than B
Orte canvier macy thave pure than one eiguin
（V1）N⿰亻⿱丶⿻工二又⿴囗十 The feed

（11）sokeot＇mays be imhlasea or may be imixed whthe ather solvort．

（1）moncavit atremination of ligraid－lyenid equiexbrtame． $2+t a=$
tiperous mixing for bong thme
 to ensone equitiovirum condifier ivanked
（quidilibivan cetf at constand＋Kmi．）
arioceate tod duty

sepurate ay decandetion Th．nole／mess prections of A, B, and C is then colnolote in both of the phases．
and pletter awom an a surim 86
NoPad R Rativato $g a+m$
clastification of ternary systems
The solute (C) Among three components (A), (B), and (C) three binary mixtures may be formed.
$A-B, B-C$, and $C-A=$
Among these mixture solute C is present in both of phases (Mandatory)
$\left.\begin{array}{l}\text { i.e in feed : } A-C \\ \text { and Extract } B-C\end{array}\right]$
Depending on the miscibility behavier of $A-B$, the ternary LLE Can be classified as
(1) The carrier (A) and solvent (B) are practically immis ole. The equilibrium in such a system may be represented in the form of a ' x-y' plot.
(11) $A \& B$ are partially miscible. such system is called type- I ternary sffem. About 75% temary liquids falls under this category.
(III) Both solutecoand carrie y (A) have limited miscibility with the solvent
i.e. pains $B-C$, \& $A-B$ are partially miscible

It means that not only carrier A, butalso solute c is partially miscible in solvent
B.

Graphical representation of Liquid-liquid equilibrium dots
(2) It is not possible to represent a phase or the equilibrium of two phases in contact in terms of the three concentrations using tenormal rectanguer coordinate system
The are three main way through which the concentrations of ternary mixture a represented.
(a) Equilateral triangular diagram
(b) A right angle triangular diagram in which only two concentrations are plotted.
(c) Using the mars/mole fraction of solute and that of solvent in the too phases on solvent free basis using rectangular coordinate
(a) Equilateral Triangular diagram:-
$\left.\begin{array}{l}\text { Binary mix } \\ \text { of } A \& C, \\ B=0\end{array}\right)$

Binary mixture of ($\mathrm{BkC}, \mathrm{A}=0$)

$$
|P 0|+\left|q_{0}\right|+|80|=|C T|
$$

Binary mixture of
 ($A \& B, C=0$)
liguid-lintiny equalibrium data prextoutcilon in tha equilateral 大riangulen Cerordinuta pr type-s Atyetom N \qquad "

Not necesmy thet these Roins shoued be

Reffivele Nr^{m}

Tie lines
2- Mhat region
For type -2 sftem

No plait point in type-2 Stytem because. ruffinste and extract phases do not mect.
(b) right-angled triangular diagram (m this anyं wwo canpainives an be uny, uswely whert tor
colite cons. ale uat
\star

Raffinate am$\left(x_{c}\right.$ vs $\left.x_{B}\right)$
$\operatorname{sig}_{8}^{2} x^{2040}$
 extrad arm (yevs y_{β}) rie lines
x_{4}, y_{c}

*) In right-angled trianglar diagram the mass fraction of ate solute in the two phases at equilibrium are plotted against the corresponding mass fractions of the solvent.

A, B, C x_{A}, x_{B}, x_{C} in raffinate y_{A}, y_{B}, y_{C} in ex fret \rightarrow for extract
(C) Rectangular plot of the solute and of the solvent mas fractions in thew phases on solvent - free basis \qquad
\qquad
A, B, C we have three components $x_{A}, x_{B_{1}}, x_{2}$ are three mass fractions in raffinate
y_{A}, y_{B}, y_{C} are three mass fractions in extract.
Now for the solvent free basis New mills freetions wile: for salute in raffinate for solvent ion raffinate

$$
x=\frac{x_{C}}{x_{A}+x_{C}}
$$

for extract

$$
y=\frac{y_{c}}{y_{A}+y_{c}}
$$

$$
\begin{aligned}
& N_{R}=\frac{x_{B}}{x_{A}+x_{2}} \\
& N_{E}=\frac{y_{B}}{y_{A}+y_{c}}
\end{aligned}
$$

overall MB

$$
F+S=E+R=M .
$$

Solute balance

$$
\begin{gathered}
F x_{F}+s y_{s}=E y_{e}+R x_{R}=M x_{m} \\
x_{m} \text { is musprection + s.cutein mixes } \\
x_{m}=\frac{F x_{f}+s y_{s}}{M}=\frac{F x_{f}+s y_{s}}{F+s}
\end{gathered}
$$

$$
x_{m}=\frac{F x_{F}+5 y_{s}}{F+s}
$$

or

$$
\frac{F}{s}=\frac{x_{m}-y_{s}}{x_{F}-x_{m}}
$$

And

$$
\begin{gathered}
R x_{R}+E y_{E}=M x_{M}=(R+E) x_{M} \\
\frac{E}{R}=\frac{x_{M}-x_{R}}{y_{E}-x_{M}}
\end{gathered}
$$

Pip be ne prov and trial method the line hew to se she sight and passes through point M After getting (x, y) we can calculate E, and,

$$
E_{R}=\frac{M\left(x_{M}-x\right)}{(y-x)}, \quad R=M-E
$$

Multi-Tage crass-cument extraction
 overall Mass balance for nthstage

$$
R_{n-1}+S_{n}=M_{n}=E_{n}+R_{n}
$$

Mass balance of component c

$$
R_{n-1} x_{n-1}+s_{n} y_{s}=m_{n} x_{m, n}=E_{n} y_{n}+R_{n} x_{n}
$$

for First stage

$$
\begin{aligned}
& F+S_{1}=E_{1}+R_{1}=M_{1} \\
& x_{M, 1}=\frac{-F x_{F}+S_{1} r_{s}}{F+S_{1}} \text { or mesouse ele ertio of } \\
& \text { (f) } 1 \text { nowid } \\
& x_{M, 1}=\frac{x_{F}+S_{1}}{F+S_{1}} \\
& \text { onizo }
\end{aligned}
$$

For second stage

$$
R_{1}+B_{2}=E_{2}+R_{2}=M_{2}
$$

Solve

$$
8.8 .328 \cdot 4
$$

C.8.328.4
BK

Assignment

solvent recth phore is
x_{B}, y_{B}
for the simplicity constant copmitin ext rad so

Coumtercument Extraction.

Total MB of entire unit (over Enveloge-2)

$$
F+S=E_{1}+R_{N}=M
$$

Total solute balance

$$
\begin{equation*}
F x_{F}+s y_{s}=E_{1} y_{1}+R_{N} x_{N}=m x_{m} \tag{2}
\end{equation*}
$$

Total $M B$ of Envelope -2

$$
\begin{equation*}
R_{n-1}+s=E_{n}+R_{N} \tag{3}
\end{equation*}
$$

Solute balance:-

$$
\begin{equation*}
R_{n-1} x_{n-1}+s y_{s}=E_{n} y_{n}+R_{N} x_{N} \tag{4}
\end{equation*}
$$

From equation (1)

$$
E_{1}-F=S-R_{N}=\Delta
$$

from equation (3)

$$
\begin{aligned}
& E_{n}-R_{n-1}=S-R_{N}=\Delta \\
& E_{2}-R_{1}=S-R_{N} \\
& E_{2}-R_{2}=-N \text { Nonce point }
\end{aligned}
$$

Where. Δ is a difference point lying on the line $F E_{1}$ extended and also on line $R_{N} s$ extended.

For ideal stoyes
So ary R_{n} are in equilibriam

$$
E_{2}-R_{1}=S-R_{N}=\Delta
$$

$\underline{\underline{\text { solve }} 8.388 .4} \rightarrow \underline{\underline{\text { Assignment }}}$
LLE Equipments
17(1) The Mixer-sectier
(2) centrifugal exfractor
(3) Sprey Tomer
(4) Pucked extraction columin
(5) Rotary-Agitated Extraction Columns
selection of Exfractores
Important factors are:-
(a) Fluid profofies
(b) Residence time of exfraetor
(c) Cost and maintaince of the equipment
(c) The no of theorkical stage repuined.
(e) Trouglputs and phose ratio

When the solvent and carrier is completely imscible, computation becomes simplified. The solute concentrations are expressed on a c-pree basis.

The raffinate contains only $A \& c$ The extract contains only belle If feed contains $A \mathrm{~kg}$ of carrier and solvent contains $B \mathrm{~kg}$ of solvent then extract contains $B \mathrm{Bg}_{\mathrm{B}}$ And raffinate contrins $A \mathrm{~kg}_{\mathrm{g}}$
poor the Solute balance for any nth stage

$$
x^{\prime}=\frac{x_{c}}{1-x_{c}}, \overline{y^{\prime}=\frac{y_{c}}{1-y_{c}}}
$$

$$
\begin{aligned}
& y_{s}^{\prime} B_{n}=S_{n}^{\prime} \\
& R_{n-1}^{\prime} \\
& X_{n-1}^{\prime}
\end{aligned} \longrightarrow \begin{aligned}
& E_{n}^{\prime}=B_{n}, x_{n}^{\prime} \\
& R_{n}^{\prime}=A, x_{n}^{\prime}
\end{aligned}
$$

$$
x_{n-1}^{\prime} A+y_{s}^{\prime} B_{n}=y_{n}^{\prime} B_{n}+x_{n}^{\prime} A
$$

$$
-\frac{A}{B_{n}}=\frac{y_{s}^{\prime}-y_{n}^{\prime}}{x_{n-1}^{\prime}-x_{n}^{\prime}}
$$

Solid-Liquid Extraction (leaching)

Solid-Liquid extraction is the process for removing soluble constituents of a solid material using a suitable solvent.

Generally, slecble material is the target product, and inert solid. residue is a by-product or just a soled waste.

Eg. Extraction of copperfromits ores.

$$
\begin{aligned}
\begin{array}{c}
\begin{array}{c}
\text { Solvent } \\
\left(\mathrm{H}_{2} \mathrm{So4}\right)
\end{array} \\
\\
\\
\text { copper Solvent } \\
\text { waste solids } \\
\text { (underflow) }
\end{array} \\
\text { (overflow) }
\end{aligned}
$$

(overflow).
There are four steps are involved in leaching process:-
(1) Intimate contact of solid fled with the solvent
(II) Separation of solution from the solid
(III) Separation of the solvent
(IV) Recovery of the solvent from the moist solid

This process is different from dissolution as in dissolution approx. all of the solids are dissolved in the solvent whereas in leaching only soluble solute is dissolved ot he solvent and a substantial part of the solid does not dissolve.
parameters on the leaching depends
(1) physical characteristics of the solid
L porous or non porous
\longrightarrow shape and size
\rightarrow separation difficities (somelines) for pros) fort, porn production Scanned by CamScanner
(II) Solvent

Solvent should be able to dissolve most of the solute with high selectivity
(II) Temperature:-

Diffusivity of solute in solid as well as its miscibility with the solvent increases with temperature. viscosity of solvent becomes less at increased temperature, so the solvent can easily penetrate into the pores of the soliels. So extraction extraction rote is increased with increase in temperature
(iv) Agitation:-

Agitation calls the increase of the mass transfer coefficient. Solipparticles maybe break up into smaller particles causing a settling problem. If the solid particles offer the controlling resistance, the effect of agitation on the extraction rate is not effective.

Solid-ligpid equipronts
(1) Fixed bed contactor
(11) Dispersed contact in an agitated tank $\begin{array}{ll} \\ & \text { Batch mode } \\ & \text { continuous mode }\end{array}$
Based on the contacting patterns various equipments are used.
(1) Batch equipment
II) Continuous contact equipment \rightarrow The Holman extra Contimuas belt of
rotocel extract oo \rightarrow Bon otto \rightarrow continuous Horizontal basked eat red
Solid-Liquid Extraction Equilibrium

The equilibrium for SLE is obtained by mixing a known amount of solid in different amounts of solvent for some specified time to ensure equilibrium has reached.

300 Solvent

Generally two methods are used to represent SLE equilibrium data.
(I) Triangular Diagram:-

In this method a right-angled triangle is formed and mass fractions of solute streams $\left(x_{c}, y_{c}\right)$ are plotted cegainst the solvent concentrations $\left(x_{B / \text { min }} y_{B}\right)$. $\quad 100 \%(B)$ Solvent

(II) The Ponchon-Sawrit Diagram

In this method, the mass ratio x of the inert or carrier A to that of B and C together is plotted against the mass fraction of the solute on A-free basis in both underflow and over flow (i.e $z v s X_{c}$ and $z^{\prime} v s y_{c}$)
underflow

$$
\text { in } L E E z \text { and } z^{\prime} \text { are }
$$

$$
\begin{aligned}
& \text { underflow } \\
& X_{C}=\frac{x_{C}}{x_{B}+x_{C}}, \quad z=\frac{x_{A}}{x_{B}+x_{C}} \\
& Y_{C}\left.=\frac{y_{C}}{y_{B}+y_{C}}, \quad Z^{\prime}=\frac{y_{A}}{y_{B}+y_{C}}\right]
\end{aligned}
$$

Assignment
X_{c}, Y_{c}
$\frac{\text { Example: } 9.1}{\text { B.K-Durta }}$
9.2
9.4

Solid-liquid Extraction in a single
batch contact

$$
s, y_{s} \longrightarrow \quad v, y_{c c} \text { (overfocos) }
$$

Single stage batch contact
Total moss balance

$$
F+S=V+L=M \quad \begin{gathered}
\text { Mass balance } \\
\begin{array}{c}
m \text { is festal moss of } \\
\text { two stream })
\end{array}
\end{gathered}
$$

Solute balance

$$
\begin{aligned}
& \text { balance } \\
& F\left(x_{c}\right)_{F}+s\left(y_{c}\right)_{S}=L\left(x_{c}\right)_{L}+V\left(y_{c}\right)_{V}=M\left(x_{c}\right)_{M} \\
& \left(x_{c}\right)_{M}=\frac{F\left(x_{c}\right)_{F}+s\left(y_{c}\right)_{S}}{F+S}
\end{aligned}
$$

Using right triangle $s(0,1)$ fie sine truyenh M

Liquid Liquid Extraction

Feed + Solvent (immiscible) = Extract (solvent Rich)+ Raffinate (diluent rich)
 - Applications:

- Separation of dilute aqueous solution as it is economic compared to distillation
- Heat sensitive material as it is low temperature process long chain fatty acids from vegetable oils compared to high vacuum distillation
- More economic compared to chemical method -Uranium\& Vanadium, Hafnium \& Zirconium, Tungsten \& Molybdenum, purification of copper, phosphoric acid boric acid
- Close boiling mixtures like aromatic and paraffinic hydrocarbons
- From complex mixtures like penicillin

Equilateral triangular diagram

- If $R \mathrm{~kg}$ of R is mixed with E kg of E. The resulting composition will lie on line RE at M:

$$
\begin{aligned}
& \frac{R}{E}=\frac{\text { line } M E}{\text { line } l R M} \\
& =\frac{x_{E}-x_{M}}{x_{M}-x_{R}}
\end{aligned}
$$

- C added to original Mixture at D varies along line DC.

- $R+E=M$
- $R x_{R}+E x_{E}=M x_{M}$
- $R x_{R}+E x_{E}=R x_{M}+E x_{M}$
- $\frac{R}{E}=\frac{x_{E}-x_{M}}{x_{M}-x_{R}}=\frac{E P}{P S}=\frac{M E}{R M}$

- P= Plait point
- ab=tie line end point gives composition in extract phase and raffinate phase
- Composiiton in raffinate x
- Compostion in extract y

System one pair partially miscible two pairs fully miscible

One pair partially miscible A-B two pairs fully miscible $A-C$ and $B-C$

- Effect of temperature on equilibrium diagram
- t3>t2>t1
- As temperature increases region of homogeneity increases

Two pairs partially miscible $A-B$ and $B-C$ one pair fully miscible $A-C$

Flgure 10.5 System of three liquids, A-B and B-C partially miscible.

Rectangular coordinates

SELECTION OF SOLVENT

1. Selectivity should be more than 1

$$
\beta=\frac{W t \text { Frac C inE } / W t \text { Frac } A \text { inE }}{W t \text { Frac C inR } / W t \text { Frac } A \text { inR }}=\frac{y_{E}{ }^{*}(W t \text { Frac } A \text { inR })}{x_{R}{ }^{*}(W t \text { Frac } A \text { in })}
$$

2. Distribution coefficient : Large value

$$
\text { Deistribution coeff }=\frac{y_{E}{ }^{*}}{x_{R}{ }^{*}}
$$

3. Insoluble in solvent
4. Recoverable
5. Density - difference in densities of liquid phases.
6. Interfacial tension high - helps coalescence and separation
7. Chemically stable and inert to components
8. Low Viscosity, vapour press. , and freezing pt. for easy handling and storage
9. Non toxic nonflammable and low cost

Pyridine	Chlorobenzene	Water	Pyridine	Chlorobenzene	Water
0	99.95	0.05	0	0.08	99.92
11.05	88.28	0.67	5.02	0.16	94.82
18.95	79.90	1.15	11.05	0.24	88.71
24.10	74.28	1.62	18.90	0.38	80.72
28.60	69.15	2.25	25.50	0.58	73.92
31.55	65.58	2.87	36.10	1.85	62.05
35.05	61.00	3.95	44.95	4.18	50.87
40.60	53.00	6.40	53.20	8.90	37.90
49.0	37.8	13.2	49.0	37.8	13.2

10.1 Plot the equilibrium data on the following coordinate systems: (a) triangular; (b) x and y ugainst weight fraction $B ;(c) x$ against y.
10.2 Compute the selectivity of chlorobenzene for pyridine at each tie line, and plot selectivity tgainst concentration of pyridine in water.

Determine

	Water layer		Isopropyl ether layer		
Wt \% acetic acid, $100 x$	Water	Isopropyl ether	Acetic acid, $100 y^{*}$	Water	Isopropyl ether
0.69	98.1	1.2	0.18	0.5	99.3
1.41	97.1	1.5	0.37	0.7	98.9
2.89	95.5	1.6	0.79	0.8	98.4
6.42	91.7	1.9	1.93	1.0	97.1
13.30	84.4	2.3	4.82	1.9	93.3
25.50	71.1	3.4	11.40	3.9	84.7
36.70	58.9	4.4	21.60	6.9	71.5
44.30	45.1	10.6	31.10	10.8	58.1
46.40	37.1	16.5	36.20	15.1	48.7

Single stage extraction

$$
\begin{aligned}
& F+S=E_{1}+R_{1}=M \\
& F x_{F}+S y_{S}=E_{1} y_{1}+R_{1} x_{1}=M x_{M} \\
& x_{M}=\frac{F x_{F}+S y_{S}}{M} \\
& \text { STEPS: } \\
& \text { Locate } \mathrm{F} \text { and } \mathrm{S} \\
& \text { Locate } \mathrm{M} \text { on line FS at } x_{M} \\
& \text { Draw tie line through } \mathrm{M} \text { to } \\
& \text { get } E_{1} \text { and } R_{1}
\end{aligned}
$$

Multistage Cross Current Extraction

$F+S_{1}=E_{1}+R_{1}=M_{1}$
$F x_{F}+S_{1} y_{s}=E_{1} y_{1}+R_{1} x_{1}=M_{1} x_{M_{1}}$
$2^{\text {nd }}$ stage
$R_{1}+S_{2}=E_{2}+R_{2}=M_{2}$

$R_{1} x_{1}+S_{2} y_{s}=E_{2} y_{2}+R_{2} x_{2}=M_{2} x_{M_{2}}$
$3^{\text {rd }}$ stage
$R_{2}+S_{3}=E_{3}+R_{3}=M_{3}$
$R_{2} x_{F}+S_{3} y_{S}=E_{3} y_{3}+R_{3} x_{3}=M_{3} x_{M_{3}}$
Final Extract
$E_{1}+E_{2}+E_{3}=E$
$E y_{E}=E_{1} y_{1}+E_{2} y_{2}+E_{3} y_{3}$

1. Locate F and S

Locate M_{1} on line FS at $x_{M 1}$
Draw tie line through M 1 to locate E_{1} and R_{1}
Find y_{1} and x_{1}
2. Locate R1 and S

Locate M_{2} on line R1S at $x_{M 2}$
Draw tie line through M 2 to Locate E_{2} and R_{2}
Find y_{2} and x_{2}
3. Locate R2 and S

Locate M_{3} on line R2S at $x_{M 3}$
Draw tie line through M3 to locate E_{3} and R_{3} Find y_{3} and x_{3}

Multistage Counter current Extraction

- $F+S=M=R_{N p}+E_{1}$
- $F x_{F}+S y_{s}=M x_{M}=R_{N p} x_{N p}+E_{1} y_{1}$
- $R_{N p}-S=F-E_{1}=\Delta R=R_{1}-E_{2}=$
.. $=$ Difference point ΔR
- $\Delta R+S=R_{N P}$ and $\Delta R+E_{1}=F$

- Locate F,S,M, RNP
- Join RNP and M to get E1
- Join E1, F and extend
- Join S, RNp and extend to get $\Delta R p p o i n t$
- Draw tie line through E1 to get R1
- Join ΔR and $R 1$ extend toget E2
- Draw tie line through E2 to get R2
- Join ΔR and $R 1$ extend toget E2
- Repeat above two steps to get number of stages

Minimum solvent reauirement

LEACHING

Equilibrium relationship

Single stage leaching

Multistage counter current leaching

Leaching Process

- Step I - solid containing solute and inert mixed with solvent
- Step II - Agitation stopped and separated into solid free overflow and underflow
- Overflow = solvent containing dissolved solute
- Underflow or slurry stream = inert solid and adhering solution [containing solvent and dissolved solute, generally of same concentration as overflow]

Symbols

- Solute = A
- Inert solid = B
- Solvent =C
- Concentration of Inert solid:
- $N=\frac{\mathrm{kg} \text { of } B}{\mathrm{~kg} \text { of } A+\mathrm{kg} \text { of } C}=\frac{\mathrm{kg} \text { of inert }}{\mathrm{kg} \text { of solution }}$
- Concentration of solute
- In overflow liquid, $x_{A}=\frac{k g \text { of } A}{k g \text { of } A+k g \text { of } C}=\frac{k g \text { of solute }}{k g \text { of solution }}$
- In underflow liquid, $y_{A}=\frac{\mathrm{kg} \text { of } A}{\mathrm{~kg} \text { of } A+\mathrm{kg} \text { of } C}=\frac{\mathrm{kg} \text { of solute }}{\mathrm{kg} \text { of solution }}$

Equilibrium diagram for variable underflow and vertical tie line

- Equilibrium Diagram
- No solid in over flow-N=0 for overflow curve
- No adsorption of solute by solid
- concentration of withdrawn solution is same as that of solution associated with solidtie lines are vertical
- Distribution coefficient $=1$. and Distribution curve is $x=y$
- Solution retention changes with concentration - N varies with y

Equilibrium Diagram - non vertical tie line $[y \neq x]$ variable under flow

- Equilibrium diagram for case [tie lines are not vertical]:
- Insufficient contact time, so that all the solute is not dissolved
- Adsorption of solute in the solid.

Equilibrium diagram - solids in overflow

- Equilibrium diagram for case Solids in the overflow
- Solute adsorption on solids

SINGLE STAGE LEACHING

- $\mathrm{V}=\mathrm{kg} / \mathrm{h}$ of overflow solution

(a)

($\mathrm{A}+\mathrm{C}$) with composition x
- $\mathrm{L}=\mathrm{kg} / \mathrm{h}$ of liquid (solution) in slurry $(A+C)$ with composition y
- $\mathrm{B}=\mathrm{kg} / \mathrm{hr}$ of solute free inert solid flow
- Total Mass Balance:

$$
L_{o}+V_{2}=L_{1}+V_{1}=M
$$

- Solute Balance

$$
\begin{aligned}
& L_{o} y_{o}+V_{2} x_{2}=L_{1} y_{1}+V_{1} x_{1} \\
& =M x_{M}
\end{aligned}
$$

$\mathrm{M}=$ Total flow rate $\mathrm{kg}(\mathrm{A}+\mathrm{C}) / \mathrm{hr}$

- Inert solid Balance

$$
\begin{aligned}
& B=N_{0} L_{0}+0=N_{1} L_{1}+0 \\
& =M N_{M}
\end{aligned}
$$

EXAMPLE 12.9-1. Single-Stage Leaching of Flaked Soybeans
In a single-stage leaching of soybean oil from flaked soybeans with hexane, 100 kg of soybeans containing $20 \mathrm{wt} \%$ oil is leached with 100 kg of fresh hexane solvent. The value of N for the slurry underflow is essentially constant at 1.5 kg insoluble solid $/ \mathrm{kg}$ solution retained. Calculate the amounts and compositions of the overflow V_{1} and the underflow slurry L_{1} leaving the stage.

- $V_{2}=100 \mathrm{~kg}$ and
- $x_{2}=0$,
- Refer Geankoplis
- $B=100(1-0.2)=80 \mathrm{~kg}$,
- $L_{0}=100(1-0.8)=20 \mathrm{~kg}$
- $N_{0}=80 / 20=4.0 \mathrm{kgsolid}$
- $V_{2}=100 \mathrm{~kg}$ and
- $x_{2}=0$,
- $B=100(1-0.2)=80 \mathrm{~kg}$,
- $L_{0}=100(1-0.8)=20 \mathrm{~kg}$ and $y_{0}=1.0$
- $N_{0}=80 / 20=4.0$ kgsolid $/ \mathrm{kgsolution}$

$$
\begin{aligned}
& L_{o}+V_{2}=L_{1}+V_{1}=M \\
& L_{o}+V_{2}=20+100=120 \mathrm{~kg}=M \\
& L_{o} y_{o}+V_{2} x_{2}=L_{1} y_{1}+V_{1} x_{2}=M x_{M} \\
& L_{o} y_{o}+V_{2} x_{2}=20(1.0)+100(0) \\
& =120 x_{M} \\
& \text { Or } x_{M}=0.167
\end{aligned}
$$

$$
B=N_{0} L_{0}+0=N_{1} L_{1}+0=M N_{M}
$$

$$
\text { - } B=4(20)=80=N_{M}(120)
$$

- $N_{M}=0.667$

Locate M on line noiningV2 and Lo
Draw veritcal line to get L1 and V1.

$$
\begin{gathered}
y_{1}=x_{1}=0.167 \text { and } N_{1}=1.5 \\
L_{1}=53.3 \text { and } V_{1}=66.7 \mathrm{~kg}
\end{gathered}
$$

COUNTERCURRENT MULTISTAGE LEACHING

- Total Mass Balance: $L_{o}+V_{N+1}=L_{N}+V_{1}=M$
- Solute Balance

$$
L_{o} y_{o}+V_{N+1} x_{N+1}=L_{N} y_{N}+V_{1} x_{1}=M x_{M}
$$

Equation of Operating line:

$$
x_{N+1}=\frac{L_{N}}{V_{N+1}} y_{N}+\frac{V_{1} x_{1}-L_{o} y_{o}}{V_{N+1}}
$$

- Inert solid Balance

$$
B=N_{0} L_{0}+0=N_{1} L_{1}+0=M N_{M}
$$

EXAMPLE 12.10-I. Countercurrent Leaching of Oil from Meal

A continuous countercurrent multistage system is to be used to leach oil from meal by benzene solvent (B3). The process is to treat $2000 \mathrm{~kg} / \mathrm{h}$ of inert solid meal (B) containing 800 kg oil (A) and also 50 kg benzene (C). The inlet flow per hour of fresh solvent mixture contains 1310 kg benzene and 20 kg oil. The leached solids are to contain 120 kg oil. Settling experiments similar to those in the actual extractor show that the solution retained depends upon the concentration of oil in the solution. The data (B3) are tabulated below as $N \mathrm{~kg}$ inert solid B / kg solution and $y_{A} \mathrm{~kg}$ oil A / kg solution.

N	y_{A}	N	y_{A}
2.00	0	1.82	0.4
1.98	0.1	1.75	0.5
1.94	0.2	1.68	0.6
1.89	0.3	1.61	0.7

Calculate the amounts and concentrations of the stream leaving the process and the number of stages required.

COUNTERCURRENT
 MULTISTAGE
 LEACHING

- Material balance around stage 1:

$$
L_{o}+V_{2}=L_{1}+V_{1}
$$

- Stage n

$$
L_{n-1}+V_{n+1}=L_{n}+V_{n}
$$

- $\Delta=L_{0}-V_{1}=L_{1}-V_{2}=$

$$
L_{n}-V_{n+1}=\ldots
$$

- $L_{0}=800+50=850$
- $y_{0}=\frac{800}{850}=0.941$
- $\mathrm{B}=2000$

- Overall Balance:
- $L_{0}+V_{N+1}=850+1330$ $=M=2180 \mathrm{~kg} / \mathrm{h}$
- Solute Balance
- 850(0.941)+1330(0.015)= $2180 x_{M}$
- $x_{M}=0.376$
- Locate M
- Join Lo, M and extend to get V1, $x_{1}=0.6$
- Locate Δ
- Locate L1, V2,L2.
- Determine LN and V1:
- $L_{N}+V_{1}=M=2180$
- $L_{N} y_{N}+V_{1} x_{1}=M x_{M}$
- $L_{N}(0.118)+V_{1}(0.6)=$ 2180×0.376
- $\mathrm{LN}=1016 \mathrm{~kg}$
- $\mathrm{V} 1=1164 \mathrm{~kg}$

