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UNSTEADY STATE HEAT CONDUCTION

The temperature of a body, in general, varies with time as well as
position. In rectangular coordinates, this variation is expressed as T(X, Y, z,
t), where (X, y, z) Indicates variation in the x, y, and z directions,
respectively, and t indicates variation with time.

In the preceding chapter, we considered heat conduction under steady
conditions, for which the temperature of a body at any point does not
change with time.

This certainly simplified the analysis, especially when the temperature
varied in one direction only.
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« Unsteady-state heat conduction
ST 16T
X2 a St
5°0 160
X2  a or
« Boundary conditions ¢=60;=T7,—T1 atrt=0,0<x=<2L

0=0 atx=0,7>0

6=0 atx=2L.7>0

0 = X(X)H(7)
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 Final solution for temperature distribution:
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UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

In heat transfer analysis, some bodies are observed to behave like a
“lump” whose Interior temperature remains essentially uniform at all times
during a heat transfer process. The temperature of such bodies can be
taken to be a function of time only, T(t). Heat transfer analysis that utilizes
this idealization 1s known as lumped system analysis, which provides
great simplification in certain classes of heat transfer problems without
much sacrifice from accuracy.

Consider a small hot copper ball coming out of an oven. Measurements
Indicate that the temperature of the copper ball changes with time, but it
does not change much with position at any given time. Thus the
temperature of the ball remains uniform at all times, and we can talk about
the temperature of the ball with no reference to a specific location.




UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

Example: consider a large roast in an oven. If you have done any roasting,
you must have noticed that the temperature distribution within the roast is
not even close to being uniform. You can easily verify this by taking the
roast out before it is completely done and cutting it in half. You will see
that the outer parts of the roast are well done while the center part is barely
warm. Thus, lumped system analysis is not applicable in this case. Before
presenting a criterion about applicability of lumped system analysis, we
develop the formulation associated with it.




UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

SOLID BODY T

m = mass
V = volume
p = density
T; = nitial temperature

I T=T0

Q =hA T, - T(1)]

The geometry and parameters
involved in the lumped system
analysis.

Consider a body of arbitrary shape of mass m,
volume V, surface area A,, density , and specific
heat C, Initially at a uniform temperature T,
(Fig.).

At time t = 0, the body is placed into a medium
at temperature T, , and heat transfer takes place
between the body and its environment, with a
heat transfer coefficient h. For the sake of
discussion, we will assume that T_ > Ti, but the
analysis Is equally valid for the opposite case.
We assume lumped system analysis to be
applicable, so that the temperature remains
uniform within the body at all times and changes
with time only, T = T(t).
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UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)
« During a differential time interval dt, the temperature of the body rises by

a differential amount dT. An energy balance of the solid for the time
Interval dt can be expressed as

energy of the body

(Heat transfer into the body)
during dt

The increase in the
during dr

hA(T., — T) dt = mC, dT (2.1)

Noting that m= pV and dT =d(T - T,) since T_ constant, Eq. (2-1) can be
rearranged as

dT—T,)  hA,

_ (2.2)
T—1.  pvg, @
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UNSTEADY STATE HEAT CONDUCTION
(lumped systems)
 Integrating from t = 0, at which T = T;, to any time t, at which T = T(t),
gives

Tt — T, hA,

_ (2.3)
N =T, VG,
or
m-T._ _, (2.4)
I — T
where
, — hA, ) e
) = oV, (2.9)




UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

b is a positive quantity whose dimension is (time). The reciprocal of b
has time unit (usually s), and is called the time constant.

The temperature of a body approaches the ambient temperature T
exponentially. The temperature of the body changes rapidly at the
beginning, but rather slowly later on.

A large value of b indicates that the body will approach the environment
temperature in a short time.

The larger the value of the exponent b, the higher the rate of decay In
temperature.

b Is proportional to the surface area, but inversely proportional to the
mass and the specific heat of the body. This is not surprising since it takes
longer to heat or cool a larger mass, especially when it has a large specific
heat.
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Module2: UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

« Criteria for Lumped System Analysis

The lumped system analysis certainly provides great convenience in heat
transfer analysis. The first step In establishing a criterion for the
applicability of the lumped system analysis Is to define a characteristic
length as

[ =~ (2.6)

hL.
. . (
And Biot No. as Bi = p (2.7)
~h AT Convection at the surface of the body
~ k/L. AT Conduction within the body

Bi

Bi — L./k Conduction resistance within the body
'~ "I/ T Convection resistance at the surface of the body




UNSTEADY STATE HEAT CONDUCTION
(lumped sysiems)

>

>

>

YV VYV

Significance of Biot No. :

The Biot number is the ratio of the internal resistance of a body to heat
conduction to Its external resistance to heat convection.

a small Biot number represents small resistance to heat conduction, and
thus small temperature gradients within the body.

Lumped system analysis assumes a uniform temperature distribution
throughout the body, which will be the case only when the thermal
resistance of the body to heat conduction (the conduction resistance) is
Zero.

Thus, lumped system analysis Is exact when Bi = 0 and approximate

when Bi >0. Of course, the smaller the Bi number, the more accurate the
lumped system analysis.

It is generally accepted that lumped system analysis is applicable if Bi <
0.1 When this criterion is satisfied, the temperatures within the body
relative to the surroundings (i.e., T - T_) remain within 5 percent of each
other even for well-rounded geometries such as a spherical ball.



TRANSIENT HEAT FLOW IN A SEMI-INFINITE SOLID
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Let us consider a semi-infinite solid as shown in figure which is maintained at
some Initial temperature T;. The surface temperature is suddenly lowered and
maintained at a temp T, and the expression for the temp distribution in the
solid as a function of time and position will be developed.

The differential equation for the temp distribution is

TO
_

Go = -KA(OT/ aX)X:O

a*T 16T
— (2.8)

dx® «dt
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TRANSIENT HEAT FLOW IN A SEMI-INFINITE SOLID

« The boundary conditions to solve the above differential equation are

« T(x,0)=T,and T(0,r) =T,fort>0 (2.9)

« The differential equation will be solved using laplace-technigue and the
solution is as follows

x/2\at
T(x,t)—-T, 2 f 2
= e Td 2.10
T.—T, = n (2.10)

« Where nis the dummy variable.
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TRANSIENT HEAT FLOW IN A SEMI-INFINITE SOLID

Therefore heat flow at any position X may be obtained from

B kAST
U = ox

From differential eq. (2.10)
6T (T, —T,) 2 _:_2 0 ( X )
— = . — —e 4art
dx R x\2vart

(2.11)
_(Ti—To) _x
e 4ar
TAT
At the surface x=0 the heat flow Is
kA(T; —T,) (2.12)

o —
TAT




TRANSIENT HEAT FLOW IN A SEMI-INFINITE SOLID

The surface heat flux is determined by evaluating the temperature gradient at
x=0 from above eg. a plot of the temperature distribution for semi-infinite
solid is given by the figure.
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CONVECTION AND HEAT TRANSFER COEFFICIENT

The rate of heat transfer in forced convection depends on properties of
both the fluid (density, heat capacity, etc.) and of the flow (geometry,
turbulence, etc.). The calculation is generally complex, and may involve
boundary layer theory and tricky mathematics, so we typically use
empirical correlations based on masses of data. These enable us to
determine heat transfer coefficients for use in calculations.

A heat transfer coefficient, h, is the proportionality factor between the
heat flux and an overall temperature difference driving force:

(g/A) = hAT

mean
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Graphical Representation of the One-Term
Approximation: The HeislerCharits
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Graphical Representation of the One-Term
Approximation: The HeislerCharits
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Nurnerical Methods for Unsteady Heat Transfer

« Unsteady heat transfer equation, no generation, constant Kk, two-
dimensional in Cartesian coordinate:
101 o1 o°T
= +
a ot ox° oy
« We have learned how to discretize the Laplacian operator into system of
finite difference equations using nodal network. For the unsteady problem,
the temperature variation with time needs to be discretized too. To be
consistent with the notation from the book, we choose to analyze the time

variation in small time increment At, such that the real time t=pAt. The
time differentiation can be approximated as:

aT TP+1 . TP

m.n m,n

—~ ~ A , while m & n correspond to nodal location
[ [

m.n

such that x=mAx, and y=nAy as introduced earlier.
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Finite Difference Equations

m-1,n m

m.,n-1

From the nodal network to the left, the heat equation can be written In
finite difference form:




Finite Difference Equations

V] A

A4

1 Tnf):z_l Z:n . z::ﬂ n T Tr: 1.n o 2Tnin i Tr:rzﬂ T Tr:n 1 2]:;:;1
a A (Ax)’ (Ay)°
. . . | A
Assume Ax=Ay and the discretized Fourier number Fo= (Z ;2
X
];?f;:l_FO(Tn7+l;7+Tn7 1H+TI’}?H+1 mn l)+(1 4F0) m.,n

This 1s the explicit, finite difference equation for a 2-D,
unsteady heat transfer equation.
The temperature at time p+1 1s explicitly expressed as a

function of neighboring temperatures at an earlier time p

—



HEISLER CHARTS

« PROBLEM: The semi-infinite Aluminium slab of Example 4-4 is
suddenly exposed to a convection-surface environment of 70-C with a
heat-transfer coefficient of 525 W/m2 - -C. Calculate the time required for
the temperature to reach 120-C at the depth of 4.0 cm for this
circumstance.

« Solution: 9T
hA(Too — T)x=0 = —kA BJC:LO
T-T (e Rar\] T hat\
- =l—erf X - _exp(% %) X _l—erf(XJr%)_
where
X =x/(2/at)

1; = mitial temperature of solid
T~ = environment temperature
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Tr—-T; 120 — 200

Too — T; 70 — 200

hiat X T-T;

' from Figure 4-35

T, k 2Jat Too—T;

1000 0.708  0.069 041
3000  1.226  0.040 0.61
4000 1.416  0.035 0.68

the time required is approximately 3000 s.
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Alurninurn Plate Suddenly Exposed to Convection

PT\ROBLEM 2: A large plate of aluminum 5.0 cm thick and initially at
200-C 1Is suddenly exposed to the convection environment. Calculate the
temperature at a depth of 1.25 cm from one of the faces 1 min after the
plate has been exposed to the environment. How much energy has been
removed per unit area from the plate in this time?

Solution:




Temperature distribution in the semi-infinite solid with convection boundary
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Heisler charts




