Module \# 4

Flow Past of Immersed Bodies

Incompressible Flow

(c)

Flow Around Objects

FLUID FLOW ABOUT IMMERSED BODIES

Drag due to surface stresses composed of normal (pressure) and tangential (viscous) stresses.

Fluid Resistance

The transmission of energy from an object passing through a fluid to the fluid is known as fluid resistance.

The resistance of an object passing through a fluid increases as the speed of the object increases and as the viscosity of the fluid increases.
Drag
${ }^{\circ}$ Is the resistance an airplane experiences in moving forward through the air

$$
\text { At any point on surface: } \begin{array}{ll}
F_{n}=P \delta A & P: \text { pressure } \\
F_{t}=\tau \delta A & \tau: \text { shear stress }
\end{array}
$$

Integrate pressure and shear stress distributions around body surface

Drag F_{D} - component of resultant force in direction of flow Lift F_{L} - component of resultant force perpendicular to direction of flow

Concept of Drag

Drag is the retarding force exerted on a moving body in a fluid medium

It does not attempt to turn the object, simply to slow it down

It is a function of the speed of the body, the size (and shape) of the body, and the fluid through which it is moving

Drag Force Due to Air

The drag force due to wind (air) acting on an object can be found by:

$$
F_{D}=1 / 2 \rho C_{D} V^{2} A
$$

where:
$\mathbf{F}_{\mathbf{D}}=$ drag force (N)
$C_{D}=$ drag coefficient (no units)
$\mathbf{V}=$ velocity of object $(\mathrm{m} / \mathrm{s})$
$A=$ projected area $\left(\mathrm{m}^{2}\right)$
$\rho=$ density of air $\left(\mathrm{kg} / \mathrm{m}^{3}\right)\left\{1.2 \mathrm{~kg} / \mathrm{m}^{3}\right\}$

Surface and Form Drag

Surface drag is a result of the friction between the surface and the fluid.

The fluid closest to the object (boundary layer) rubs against the object creating friction.

Form drag occurs when air is driven past an object and is diverted outward creating a low pressure region behind the object.

Form Drag

Low form drag
The orientation of the object will affect the frontal area and will play an important role in the amount of form drag.

High form drag

Lift and Drag

shear stress and pressure integrated over the surface of a body create force
drag: force component in the direction of upstream velocity
lift: force normal to upstream velocity (might have 2 components in general case)
$D=\int d F_{x}=\int p \cos \theta d A+\int \tau_{w} \sin \theta d A$

$$
C_{D}=\frac{D}{\frac{1}{2} \rho U^{2} A}
$$

$L=\int d F_{y}=\int p \sin \theta d A+\int \tau_{w} \cos \theta d A$

$$
C_{L}=\frac{L}{\frac{1}{2} \rho U^{2} A}
$$

$$
C_{D}=F_{D} /\left({ }^{1 / 2} \rho U^{2} A\right)=C_{D, \text { pressure }}+C_{D, \text { friction }}
$$

Projected Area

The projected area used in the F_{D} is the area "seen" by the fluid.

Spherical Particle

$$
A=\pi R^{2}=\frac{\pi D^{2}}{4}
$$

Projected Area

For objects having shapes other than spherical, it is necessary to specify the size, geometry and orientation relative to the direction of flow.

Cylinder

Axis perpendicular to flow

Axis parallel to flow
Rectangle $\quad A=L D$

Circle

Resultant

low pressure region

motion of air
high pressure region

Drag force due
to pressure difference

Drag Coefficient

For slow flow around a sphere and $\operatorname{Re}<10$

$$
\begin{aligned}
& \qquad C_{d}=\frac{24}{R e}=\frac{24 \mu}{D u_{0} \rho} \\
& \text { Recall: } \quad F_{D}=\frac{C_{d} A \rho u_{0}^{2}}{2}
\end{aligned}
$$

Stokes'Law for Creeping Flow Around Sphere

$$
F_{D}=3 \pi \mu D u_{0}
$$

Flow past an object

Character of the steady, viscous flow past
a circular cylinder: (a) low Reynolds number flow, (b) moderate Reynolds number flow, (c) large Reynolds number flow.

(a)

(b)

(c)

Effect of pressure gradient

(a)

(b)

(c)

For profile $D, \frac{\partial u}{\partial y}=0$ at $y=0$

(c)
inviscid flow

Examples

- $b / h=1$ square, $C_{D}=1.18 ;\left(\right.$ disk; $\left.C_{D}=1.17\right)$
- C_{D} independent of Re for $\mathrm{Re}>1000$ Question: $C_{D}=F_{D} /\left(1 / 2 \rho U^{2} A\right)$
What happens to C_{D} if double area $(b / h \rightarrow 2 b / 2 h)$? What happens to F_{D} if double area $(b / h \rightarrow 2 b / 2 h)$?

Drag dependence

(a)

No separation
(A)

Steady separation bubble
(B)

Oscillating Karman vortex street wake
(C)

Laminar boundary layer, wide turbulent wake
(D)

Turbulent boundary layer, narrow turbulent wake
(b)

Drag Coefficient

$$
R e<10 \quad C_{d}=24 / R e \quad R e>1000 \quad C_{d}=0.44
$$

Reynolds number, $\operatorname{Re}_{p}=\frac{D_{p} \rho u_{0}}{\mu}$
for external flow: $\operatorname{Re}>100$ dominated by inertia, $\operatorname{Re}<1$ - by viscosity

Why Different Regions?

As the flow rate increases wake drag becomes an important factor. The streamline pattern becomes mixed at the rear of the particle thus causing a greater pressure at the front of the particle and thus an extra force term due to pressure difference. At very high Reynolds numbers completely separate in the wake.

Example

A cylindrical bridge pier 1 meter in diameter is submerged to a depth of 10 m in a river at $20^{\circ} \mathrm{C}$. Water is flowing past at a velocity of 1.2 m / s. Calculate the force in Newtons on the pier.

$$
\begin{aligned}
\rho_{\text {water }} & =998.2 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu_{\text {water }} & =1.005 \times x 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}
\end{aligned}
$$

$$
\begin{gathered}
F_{k}=\frac{C_{d} A \rho u_{0}^{2}}{2} \\
R e=\frac{\rho u_{0} D}{\mu}=\frac{998.2 \mathrm{~kg} / \mathrm{m}^{3} \times 1.2 \mathrm{~m} / \mathrm{s} \times 1 \mathrm{~m}}{1.005 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}}=1.192 \times 10^{6} \\
\text { From figure } \mathrm{C}_{\mathrm{d}} \approx 0.35
\end{gathered}
$$

Projected Area $=\mathrm{DL}=10 \mathrm{~m}^{2}$

$$
F_{k}=\frac{0.35}{2} \times 10 \mathrm{~m}^{2} \times 998.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(1.2)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}=2,515 \mathrm{~N}
$$

Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} / \mathrm{hr}$ on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. The coefficient of lift and drag are 0.75 and 0.15 respectively. Determine:
(i) Liff force.
(ii) Drag force.
(iii) Resultant force. And
(iv) Direction of resultant force.
(v) The power exerted by air on the plate.
$F_{D}=C_{D} \mathrm{~A} \times \frac{\rho U^{2}}{2}$

Sol:

Areaof the plate, $\mathrm{A}=2 \times 1=2 \mathrm{~m}^{2}$.
Velocity of air, $U=50 \mathrm{~km} / \mathrm{hr}=\frac{50 \times 1000}{60 \times 60}=13.89 \mathrm{~m} / \mathrm{s}$.
Density of air, $\rho=1.15 \mathrm{~kg} / \mathrm{m}^{3}$.
Coefficient of drag, $C_{D}=0.15$
Coefficient of drag, $C_{L}=0.75$
(i)Lift force (F_{L})
$F_{L}=C_{L} \mathrm{~A} \times \frac{\rho U^{2}}{2}$
$=0.75 \times 2 \times \frac{1.15 \times 13.89^{2}}{2} \mathrm{~N}$
$F_{L}=166.404 \mathrm{~N}$
(ii)Drag force $\left(F_{D}\right)$
$=0.15 \times 2 \times \frac{1.15 \times 13.89^{2}}{2} \mathrm{~N}$
$F_{D}=33.28 \mathrm{~N}$
(iii)Resultant force (F_{R})
$F_{R}=\sqrt{F_{D}{ }^{2}+F_{L}{ }^{2}}$
$=\sqrt{(33.28)^{2}+(166.404)^{2}}$
$F_{R}=169.69 \mathrm{~N}$
(iii) The direction of Resultant force $(\boldsymbol{\theta})$:

The direction of resultant force is given by
$\tan \theta=\frac{F_{L}}{F_{D}}=\frac{166.404}{33.28}=5.0$
$\theta=\tan ^{-1}(5.0)$
$\theta=78.69^{0}$

Power exerted by air on the plate
Power $=$ Force in the direction of motion \times velocity
$=F_{D} \times \mathrm{UNm} / \mathrm{s}$
$=33.28 \times 13.89 \mathrm{~W} \quad($ watt $=\mathrm{Nm} / \mathrm{s})$

STREAMLINING

Streamlining is the attempt to reduce the drag on a body

$C_{D} \sim 2$ for flat plate

$C_{D} \sim 0.06$

Streamlining

The less drag you have...

- Flying a glider: the further you can fly
\circ Flying an airplane: the less fuel you use

Aesistance, 100%

Festistince, 30\%

Pesistance, 15%

Pestatance, $5 *$

In general, the importance of streamlining to reduce drag.

2-D rectangular cylinder

STREAMLINING

STREAMLINING

~ same drag AND wake

Non-circular Channels

Equivalent diameter defined as 4 times the hydraulic radius $\left(r_{H}\right)$.

$$
\begin{aligned}
r_{H} & =\frac{A}{L_{p}} \\
\text { Where, } A & =\text { cross-sectional area of channel } \\
L_{p} & =\text { perimeter of channel in contact with fluid }
\end{aligned}
$$

Hydraulic radius of circular tube,

$$
r_{H}=\frac{\pi D^{2} / 4}{\pi D}=\frac{D}{4}
$$

The equivalent diameter is $4 r_{H}$.

For a rectangular duct with width W and height H , the hydraulic diameter is

$$
D_{h}=\frac{4 A}{P}=\frac{4 W H}{2(W+H)}=\frac{2 W H}{W+H}
$$

Annulus between two circular pipes

Sphericity

Surface area of sphere, $S_{p}=4 \pi r^{2}=\pi D_{p}^{2}$
Volume of sphere, $V_{p}=(4 / 3) \pi r^{3}=(1 / 6) \pi D_{p}{ }^{3}$
Sphericity $\left(\phi_{s}\right)$: The surface-volume ratio for a sphere of diameter D_{p} divided by the surface-volume ratio for the particle whose Nominal size is D_{p}.

Schematic of a Packed Bed Reactor

Input

Segmented geometry

Advantages of Packed Bed Reactor

Higher conversion per unit mass of catalyst than other catalytic reactors.

Continuous operation
No moving parts to wear out.
Low operating cost
Catalyst stays in the reactor
Reaction mixture/catalyst separation is easy.

Effective at high temperatures and pressures

FLOW IN PACKED BEDS

FLUID FRICTION IN

 POROUS NEDA- Packed towers are finding applications in adsorption, absorption, ion-exchange, distillation, humidification, catalytic reactions, regenerative heaters etc.,
- Packing is to provide a good contact between the contacting phases.
- Based on the method of packing. Packings are classified as
(a) Random packings
(b) Stacked packings

2.Pressure drop

At a steady state, and negligible gravity effect, The pressure drop is given by;

$$
\Delta p=\frac{32 \mu v \Delta L}{D^{2}}=\frac{32 \mu\left(v^{\prime} / \varepsilon\right) \Delta L}{\left(4 r_{H}\right)^{2}}=\frac{(72) \mu v^{\prime} \Delta L(1-\varepsilon)^{2}}{\varepsilon^{3} D_{p}^{2}}
$$

However, the experimental show that the constant should be 150, which gives the Kozeny-Carman equation for laminar flow, void fraction less than 0.5 , effective particle diameter D_{p} and $N_{R e}<10$

$$
\Delta p=\frac{150 \mu v^{\prime} \Delta L}{D_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}}
$$

$$
\begin{aligned}
& \mathrm{dP} / \mathrm{dx}=\text { Pressure gradient } \\
& \Phi=\text { Sphericity (1 for perfect sphere) } \\
& \mathrm{D}_{\mathrm{p}}=\text { Particle diameter }(\mathrm{m}) \\
& \varepsilon=\text { Porosity of the media } \\
& \mathrm{V}=\text { Velocity }
\end{aligned}
$$

Response to Superficial Velocities

Turbulent Flow

One cannot use the Hagen-Poiseuille approximation when flow is turbulent. After substituting in D_{h} and velocity correction

$$
\Delta p=\frac{3 f \rho u_{0}^{2} L}{D_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}}
$$

Experimentally:

$$
R e_{p}>1,000 \quad \Delta p=\frac{1.75 \rho u_{0}^{2} L}{D_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}}
$$

> Burke-Plummer Equation

Intermediate Flow

$$
\Delta p=\frac{150 \mu u_{0} L_{b}}{D_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}}+\frac{1.75 \rho u_{0}^{2} L_{b}}{D_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}}
$$

Ergun Equation

Irregular Shapes

So the final Ergun equation is:

$$
\Delta p=\frac{150 \mu u_{0} L_{b}}{\Phi_{s}^{2} D_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}}+\frac{1.75 \rho u_{0}^{2} L_{b}}{\Phi_{s} D_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}}
$$

Problem

$\operatorname{Air}\left(\rho=1.22 \mathrm{Kg} / \mathrm{m}^{3}, \quad \mu=1.9 \times 10^{-5}\right.$ pa.s) is flowing in a fixed bed of a diameter 0.5 m and height 2.5 m . The bed is packed with spherical particles of diameter 10 mm . The void fraction is 0.38 . The air mass flow rate is 0.5 kg / s. Calculate the pressure drop across the bed of particles.

Solution

$\mathrm{Q}=$ volumetric flow rate $=\overline{\mathbf{1 2 2}}=0.41 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{\mathbf{4}} \mathrm{D}^{2}=\left(\frac{\pi}{4}\right)(0.5)^{2}=0.1963 \mathrm{~m}^{2} \\
& \mathrm{u}_{\boldsymbol{\infty}}=\frac{\boldsymbol{Q}}{\boldsymbol{A}}=\frac{\mathbf{0 . 4 1}}{\mathbf{0 . 1 9 6 3}}=2.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\operatorname{Re}_{\mathrm{p}}=\frac{\rho \mu D_{P}}{(1-\varepsilon) \mu}=\frac{(1.22)(2.1)\left(10 \times 10^{-3}\right)}{(1-0.38)\left(1.9 \times 10^{-5}\right)}
$$

$$
\operatorname{Re}_{\mathrm{p}}=2174
$$

$$
f_{\mathrm{p}}=\frac{\mathbf{1 5 0}}{\mathbf{2 1 7 4}}+1.75=1.819=\frac{\boldsymbol{D}_{\boldsymbol{p}} \boldsymbol{\varepsilon}^{3}}{\boldsymbol{\rho N O}^{2}(\mathbf{1}-\boldsymbol{\varepsilon})} \frac{\left|\boldsymbol{\Lambda}^{P}\right|}{\boldsymbol{L}}
$$

$$
A^{P}=\frac{(1.819)(1.22)(2.1)^{2}(1-0.38)(25)}{\left(10 \times 10^{-3}\right)(0.38)^{3}}=0.276 \times 10^{5} \mathrm{pa} .
$$

