

Department of Chemical Engineering Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

Institute Vision

To become a Globally Recognized Academic Institution in consonance with the social, economic and ecological environment, striving continuously for excellence in education, research and technological service to the National needs.

Institute Mission

- To educate students at Undergraduate, Post Graduate Doctoral and Post-Doctoral levels to perform challenging engineering and managerial jobs in industry.
- To provide excellent research and development facilities to take up Ph.D. programmes and research projects.
- To develop effective teaching and learning skills and state of art research potential of the faculty.
- To build national capabilities in technology, education and research in emerging areas.
- To provide excellent technological services to satisfy the requirements of the industry and overall academic needs of society.

Department Vision

To be a centre of excellence for the provision of effective teaching/learning, skill development and research in the areas of chemical engineering and allied areas through the application of chemical engineering principles.

Department Mission

1) To educate and prepare graduate engineers with critical thinking skills in the areas of chemical engineering & polymer science and engineering, who will be the leaders in industry, academia and administrative services both at national and international levels.

2) To inculcate a fundamental knowledge base in undergraduate students which enable them to carry out post-graduate study, do innovative interdisciplinary doctoral research and to be engaged in long-life learning.

3) To train students in addressing the challenges in chemical, petrochemical, polymer and allied industries by developing sustainable and eco-friendly technologies.

Program Educational Objectives (PEO) for BE-Chemical Engineering (Plastics & Polymer)

- 1. To understand and apply working knowledge of Polymer Science and Engineeringin independent research and development in the areas of Polymer Processing, Polymer material manufacturing, analysis and polymer product design
- 2. To implement the inter-perceptional skills of individuals in technical profession and entrepreurships
- 3. To update technical know-how by self- learning besides learning a great deal by associating with professional bodies and alumni
- 4. To develop an ability to succeed in the graduate competitive examinations and pursue higher studies in chemical engineering or Polymer Engineering

Program Outcomes (PO)

A graduate shall must

- 1. **Engineering Knowledge**: Be able to apply basic knowledge of science and engineering for solving a multidisciplinary problem.
- 2. **Problem analysis**: Be able to identify, formulate and analyze the complex chemical and polymer engineering problems using the first principles of natural science, mathematics and engineering science
- 3. **Modern tool usage**: Be competent in using the skills and engineering tools necessary for complex chemical engineering problem analysis.
- 4. **Design & Development of solutions**: Be able to design and conduct experiments safely and to develop a process that meets desired specifications with consideration of environmental, safety, economic and ethical criteria.
- 5. **Conduct experiments**: Be able to conduct independent research, analyze and interpret the data to arrive at the valid conclusion on the basis of extensive literature review.
- 6. **Ethics:** Be committed to professional ethics and responsibility and norms of engineering practice.
- 7. **Engineer and the society:** Exhibit understanding of societal and environmental issue relevant to professional engineering practice.
- 8. Environment and sustainability: Understand the professional engineering solutions in the context of society and environment and demonstrate the need for sustainable development
- 9. **Individual and team work**: Demonstrate appropriate interpersonal skills to function effectively as an individual or as a member of a group and have command over a multidisciplinary team.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to develop managerial skills like interpersonal, presentation, communication and documentation of data, comprehend and write effective reports, give and receive clear instructions
- 11. **Project management and finance**: Be aware of most recent financial aspects related to professional activities and show expertise in undertaking projects with effective control over finance and time.
- 12. Life-long learning: Be able to recognize the need for continuous lifelong learning and be aware of latest development in the area of chemical engineering

Programme Specific Objectives

<u>PSO1</u>

Develop students' understanding ability of the core scientific, mathematical and engineering principles conceive and design processes to produce, transform and transport materials (chemical products) — beginning with experimentation in the laboratory and followed by implementation of technologies in full-scale production.

<u>PSO2</u>

To prepare students for professional work in development, design, modelling, simulation, optimization and operation of chemical products and processes

<u>PSO3</u>

With due emphasis on interdisciplinary and industrial collaboration, students are prepared for employment in such industries as chemical, petroleum, electrochemical, biochemical, semiconductor, aerospace, plastics, paints and adhesives, rubber etc.

<u>PSO4</u>

Prepare students with high scholastic attainment to enter graduate programs leading to advanced degrees in chemical engineering or in Polymer Engineering related professional, scientific, and engineering fields.

COURSE INFORMATION SHEET: CL 201 Thermodynamics

Course code	CL20	1			
Course title	Thermodynamics				
Pre-requisite(s)					
Co- requisite(s)					
Credits	L: 3	T: 1	P: 0		
Class schedule per week	4				
Class	B. Tee	ch.			
Semester / Level	III / S	econd			
Branch	Chem	ical Eng	ineering		
Name of Teacher					

Course Objectives

This course enables the students:

1.	To apply knowledge of the laws of thermodynamics to solve physical and chemical
	problems encountered in chemical and biochemical industries.
2.	To analyze and interpret data, to identify, formulate, and solve engineering problems.
3.	To use the techniques, skills, and modern engineering tools necessary for engineering
	practice.

Course Outcomes

After the completion of this course, students will be able to:

CO201.1	<i>Apply</i> the laws of thermodynamics on closed and open systems.
CO201.2	<i>Evaluate</i> the properties of real gases.
CO201.3	Solve problems involving various thermodynamic cycles.
CO201.4	<i>Evaluate</i> the thermodynamic properties (Such as Partial molar properties, Fugacity
	coefficients, activity coefficients etc.) of pure fluid and fluid mixtures.
C0201.5	Predict equilibrium composition of mixtures under phase and chemical-reaction
	equilibria.

Syllabus

Module 1: Introduction and Basic Concepts

First law of thermodynamics, Energy balance for closed systems, Mass and Energy balances for open systems, Volumetric properties of pure fluids, Virial equations of state, Cubic equations of state, Theorem of corresponding states, Acentric factor, generalized correlations for gases and liquids, Statements of the second law, Heat engines, Carnot cycle, Refrigerator and Heat pump, Third law of thermodynamics, Microscopic interpretation of entropy. [8L]

Module 2: Thermodynamic Relations and Thermodynamic Properties of Fluids

Euler relation, Gibbs-Duhem relation, Legendre transformation, Helmholtz free energy, Gibbs free energy, Maxwell relations, Gibbs energy as a generating function, Joule-Kelvin Effect, Bridgman table,

Clausius/Clapeyron equation, Antoine equation, Residual properties, Thermodynamic properties of real gases using tables and diagrams: Edmister chart, Lee-Kesler data. [8L]

Module 3: Vapor-Liquid Equilibrium in Mixtures

Introduction to Vapor-Liquid Equilibrium, Vapor-Liquid Equilibrium in ideal mixtures, Dew point and bubble point temperatures/Pressures, VLE from K-value correlations (Flash calculations), Low-Pressure Vapor-Liquid equilibrium in non-ideal mixtures, EOS, SRK. [8L]

Module 4: Thermodynamics of Multicomponent Mixtures

Fundamental Property Relation, The Chemical Potential and Phase Equilibria, Partial Properties, The Ideal-Gas Mixture Model, Fugacity and Fugacity Coefficient (Pure Species and Species in Solution), The Ideal-Solution Model, Excess Properties, The Excess Gibbs Energy and the Activity Coefficient, Models for the Excess Gibbs Energy (Margules equation, Redlich-Kister equation, van Laar equation, Wilson equation, NRTL model and UNIQUAC equation) SRK, PR. [8L]

Module 5: Chemical Reaction Equilibria

The reaction coordinate, Application of Equilibrium Criteria to Chemical Reactions, The standard Gibbs Energy Change and the Equilibrium Constant, Effect of Temperature on the Equilibrium Constant, Evaluation of Equilibrium Constants, Relation of equilibrium constants to composition, Equilibrium Conversions for single Reactions, Phase Rule and Duhem's Theorem for Reacting Systems, Multireaction equilibria. [8L]

Text books:

1. Introduction to Chemical Engineering Thermodynamics: J.M. Smith, H.C. Van ness, and M.M. Abbot. 7th Edition, McGraw-Hill's Chemical Engineering Series.

2. Chemical, Biochemical and Engineering Thermodynamics: Stanley I. Sandler. Fourth Edition, John Wiley & Sons, Inc.

3. Chemical Engineering Thermodynamics: Y V C Rao, University Press.

Reference books:

1. Molecular Thermodynamics of Fluid-Phase Equilibria: J.M. Prausnitz, R.N. Lichtenthaler, E G de Azevedo. 3rd Edition, Prentice Hall International Series in the Physical and Chemical Engineering Sciences.

2. Engineering and Chemical Thermodynamics: Milo D. Koretsky. 2nd Edition, John Wiley & Sons, Inc.
3. Using Aspen Plus in Thermodynamics Instruction: Stanley I. Sandler, John Wiley & Sons, Inc.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

Introduction to molecular/statistical thermodynamics.

POs met through Topics beyond syllabus/Advanced topics/Design

PO2, PO3 and PO4

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y	Ν	Ν
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)						PSOs								
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	3	2	2	2	2	0	1	2	0	3	3	3	3	3
2	3	2	1	2	3	0	1	0	1	2	0	3	3	3	3	3
3	3	1	1	1	1	0	0	0	1	1	0	1	3	3	3	3
4	3	3	2	2	3	1	2	0	1	2	0	3	3	3	3	3
5	3	3	1	2	3	2	2	0	1	2	0	3	3	3	3	3

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1, CO2, CO3, CO4, CO5			
CD2	Tutorials/Assignments	CO1, CO2, CO3, CO4, CO5			
CD3	Seminars				
CD4	Mini projects/Projects	CO2, CO3, CO5			
CD5	Laboratory experiments/teaching aids				
CD6	Industrial/guest lectures				
CD7	Industrial visits/in-plant training				
CD8	Self- learning such as use of NPTEL materials and internets	CO1, CO2, CO3, CO4, CO5			
CD9	Simulation				

Lecture wise Lesson Planning Details.

Week	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks by
No.	No.	ative	No.	-	Book /	mapped	Content	used	faculty if
		Date			Refere		covered		any
					nces				
1	1			First Law of thermodynamics, Mass/Energy	TX1, TX2, TX3	CO1			
				balance for open/closed systems					
	2			Volumertric properties of fluids, Virial EOS	TX1, TX2, TX3	CO2			
	3			Cubic EOS, Theorem corresponding states,	TX1, TX2, TX3	CO2			
				Acentric factor, correlation for gases-liquids					
	4			Solve numerical problems based on L1 to L3	TX1, TX2, TX3				
2	5			Second law of TD, heat engines	TX1, TX2, TX3	CO1,			
						CO3			
	6			carnot cycle, refrigeration, heat pump	TX1, TX2, TX3	CO3			
	7			Third law of TD, Microscopic interpretation of	TX1, TX2, TX3	CO1			
				entropy					
	8			Solve numerical problems based on L4 to L6	TX1, TX2, TX3				
3	9			Euler relation, Gibbs-Duhem relation, Legendre transformation	TX1, TX2, TX3	CO4			
	10			Helmholtz free energy, Gibbs free energy, Maxwell relations, Gibbs energy as a generating function	TX1, TX2, TX3	CO4			
	11			Joule-Kelvin Effect, Bridgman table	TX1, TX2, TX3	CO4			
	12			Solve numerical problems based on L7 to L9					
4	13			Clausius/Clapeyron equation, Antoine equation.	TX1, TX2, TX3	CO4			
	14			Residual properties	TX1, TX2, TX3	CO4			
	15			Thermodynamic properties of real gases using	TX1, TX2, TX3	CO4			
				tables and diagrams: Edmister chart, Lee-Kesler					
				data					
	16			Solve numerical problems based on L10 to L12					
5	17			Introduction to VLE	TX1, TX2, TX3	CO4,			

				CO5		
	18	VLE in ideal mixtures	TX1, TX2, TX3	CO4,		
				CO5		
	19	Dew point and bubble point	TX1, TX2, TX3	CO4,		
		temperatures/Pressures, VLE from K-value		CO5		
		correlations				
	20	Solve numerical problems based on L13 to L15				
6	21	Flash calculations	TX1, TX2, TX3	CO4,		
				CO5		
	22	Flash Calculations	TX1, TX2, TX3	CO4,		
				CO5		
	23	Low-Pressure VLE in non-ideal mixtures.	TX1, TX2, TX3	CO4,		
				CO5		
	24	Solve numerical problems based on L16 to L18				
7	25	Fundamental Property Relation, The Chemica	d TX1, TX2, TX3	CO4		
		Potential and Phase Equilibria				
	26	Partial Properties, The Ideal-Gas Mixture Model	TX1, TX2, TX3	CO4		
	27	Fugacity and Fugacity Coefficient (Pure Specie	s TX1, TX2, TX3	CO4		
		and Species in Solution)				
	28	Solve numerical problems based on L19 to L21				
8	29	The Ideal-Solution Model, Excess Properties	s, TX1, TX2, TX3	CO4		
		The Excess Gibbs Energy, Activity Coefficient				
	30	Models for the Excess Gibbs Energy (Margules	TX1, TX2, TX3	CO4		
		equation, Redlich-Kister equation,				
	31	van Laar equation, Wilson equation, NRTL	TX1, TX2, TX3	CO4		
		model and UNIQUAC equation).				
	32	Solve numerical problems based on L22 to L24				
9	33	The reaction coordinate, Application of	TX1, TX2, TX3	CO5		
		Equilibrium Criteria to Chemical Reactions				
	34	The standard Gibbs Energy Change and the	TX1, TX2, TX3	CO5		
		Equilibrium Constant				
	35	Effect of Temperature on the Equilibrium	n TX1, TX2, TX3	CO5		

		Constant, Evaluation of Equilibrium Constants	
	36	Solve numerical problems based on L25 to L27	
10	37	Relation of equilibrium constants to composition, Equilibrium Conversions for single ReactionsTX1, TX2, TX3CO5	
	38	Phase Rule and Duhem's Theorem for ReactingTX1, TX2, TX3CO5Systems	
	39	Multi-reaction equilibria. TX1, TX2, TX3 CO5	
	40	Solve numerical problems based on L28 to L30	

COURSE INFORMATION SHEET: CL 203 Fluid Mechanics

Course code:	CL203				
Course title:	Fluid Mechanics				
Pre-requisite(s):					
Co- requisite(s):					
Credits:	L: 3 T:0	P: 0			
Class schedule per week:	03				
Class:	B. Tech				
Semester / Level:	III / Secon	d			
Branch:	Chemical				
Course Objectives					
Branch: Course Objectives	Chemical				

This course enables the students:

1.	To develop an appreciation for the properties of Newtonian fluids.
2.	To apply concepts of mass and momentum conservation to fluid flows and
	analytically solve a variety of simplified problems.
3.	To understand the dynamics of fluid flows and the governing non-dimensional
	parameters.

Course Outcomes

After the completion of this course, students will be able to:

CO203.1	Describe fluid pressure, its measurement and calculate forces on submerged
	bodies.
CO203.2	Understand the flow visualization, boundary layer and momentum correction
	factor, state the Newton's law of viscosity and Reynolds number. Analyze fluid
	flow problems with the application of the continuity and momentum equation.
CO203.3	Examine energy losses in pipe transitions and evaluate pressure drop in pipe
	flow using Hagen-Poiseuille's equation and Bernoulli's principle for laminar
	flow.
CO2034	Understand the concept of drag, lift, streamlining, equivalent diameter,
	sphericity, determine minimum fluidization velocity in fluidized bed and
	Compute pressure drop in fixed bed, packed bed and fluidized system.
CO203.5	Analyze the general equation for internal flow meters and Determine and
	analyze the performance aspects of fluid machinery.

Syllabus:

Module 1:

Fluid Statics: Basic equation of fluid statics; pressure variation in a static field; pressure measuring devices-manometer, U-tube, inclined tube, well, diaphragm, hydraulic systems – force on submerged bodies (straight, inclined), pressure centre. **[8L]**

Module 2:

Fluid flow phenomena: Fluid as a continuum, Terminologies of fluid flow, velocity – local, average, maximum, flow rate – mass, volumetric, velocity field; dimensionality of flow; flow visualization – streamline, path line, streak line, stress field; viscosity; Newtonian fluid; Non-Newtonian fluid; Reynolds number-its significance, laminar, transition and turbulent flows: Prandtl boundary layer, compressible and incompressible. Momentum equation for integral control volume, momentum correction factor. **[8L]**

Module 3:

Internal incompressible viscous flow: Introduction; flow of incompressible fluid in circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseullie equation; flow of Non-Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow, relation between average and maximum velocity, Bernoulli's equation–kinetic energy correction factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. **[8L]**

Module 4:

Flow past of immersed bodies: Introduction; concept of drag and lift; variation of drag coefficient with Reynolds number; streamlining; packed bed; concept of equivalent diameter and sphericity; Ergun equation, Fluidization: Introduction; different types of fluidization; fluidized bed assembly; governing equation; industrial use. Agitation and mixing of liquids: agitated vessel, blending & mixing, suspension of solid particles. Dispersion operation. Turbine Design/scale up, Flow number, Power Requirement. **[8L]**

Module 5:

Flow measurement: Introduction; general equation for internal flow meters; Orifice meter; Venturimeter; concept of area meters: rotameter; Local velocity measurement: Pitot tube. Fluid moving machines: Introduction; Basic classification of pumps, Mechanical pump: Centrifugal and Positive displacement pumps (rotary, piston, plunger, diaphragm pumps); pump specification; basic characteristics curves for centrifugal pumps; fan, blower and compressor. **[8L]**

Text books:

1. McCabe, W.L., Smith J.C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill, Inc.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering, Volume I", Pergamon Press.

3. Geankoplis, C.J., "Transport Processes and Unit Operations", Prentice-Hall Inc.

Reference books:

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u>

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Mid Sem Examination Marks	Y	Y	Y	Y				
End Sem Examination Marks	Y	Y	Y	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y	Y	Y	Y

Indirect Assessment –

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)									PSOs					
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
2	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
3	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
4	3	3	3	2	2	2	2	2	3	3	1	2	3	3	2	2
5	3	3	3	2	2	2	2	2	3	3	1	2	3	3	2	2

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome					
		CO1, CO2, CO3, CO4,					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO5, CO6, CO7, CO8					
		CO1, CO2, CO3, CO4,					
CD2	Tutorials/Assignments	CO5, CO6, CO7, CO8					
CD3	Seminars						
CD4	Mini projects/Projects						
CD5	Laboratory experiments/teaching aids						
CD6	Industrial/guest lectures						
CD7	Industrial visits/in-plant training						
		CO1, CO2, CO3, CO4,					
CD8	Self- learning such as use of NPTEL materials and internets	CO5, CO6, CO7, CO8					
CD9	Simulation						

Lecture wise Lesson planning Details.

Wee	Lec	Tenta	Ch	Topics to be covered	Text	COs	Actual	Methodolog	Remark
k	t.	tive			Book /	mapped	Content	у	s by
No.	No.	Date	No		Referenc		covered	used	faculty
					es				if any
	L1			Fluid Statics: Basic equation of fluid statics;	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L2			pressure variation in a static field;	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L3			pressure measuring devices-manometer, U-tube, inclined	T1	1,2		PPT Digi	
				tube, well, diaphragm,				Class/Chalk	
								-Board	
	L4			, hydraulic systems - force on submerged bodies (straight,	T1	1,2		PPT Digi	
				inclined), pressure centre.				Class/Chalk	
								-Board	
	L6			Fluid flow phenomena: Fluid as a continuum	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L7			Terminologies of fluid flow, velocity - local, average,	T1	1,2		PPT Digi	
				maximum, flow rate - mass, volumetric, velocity field;				Class/Chalk	
				dimensionality of flow				-Board	
	L8			flow visualization – streamline, path line, streak line,	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L9-			Newtonian fluid; Non-Newtonian fluid; Reynolds number-	T1	1,2,3		PPT Digi	
	11			its significance, laminar, transition and turbulent flows:				Class/Chalk	
				Prandtl boundary layer,				-Board	

L	12	compressible and incompressible. Momentum equation for	T1	1,2,3	PPT Digi
-1	4	integral control volume, momentum correction factor.			Class/Chalk
					-Board
L	15	Internal incompressible viscous flow: Introduction; flow of	T1	1,2,3	PPT Digi
-1	7	incompressible fluid in circular pipe; laminar flow for			Class/Chalk
		Newtonian fluid; Hagen-Poiseullie equation; flow of Non-			-Board
		Newtonian fluid,			
L	18	introduction to turbulent flow in a pipe; energy	T1	1,2,3	PPT Digi
-1	9	consideration in pipe flow, relation between average and			Class/Chalk
		maximum velocity,			-Board
L	20	Bernoulli's equation-kinetic energy correction factor; head	T1	1,2,3	PPT Digi
-2	21	loss; friction factor; major and minor losses,			Class/Chalk
					-Board
L	22	Pipe fittings and valves	T1	1,2,3	PPT Digi
					Class/Chalk
					-Board
L	23	Flow past of immersed bodies: Introduction; concept of	T1	1,2,3	PPT Digi
-2	24	drag and lift; variation of drag coefficient with Reynolds			Class/Chalk
		number; streamlining;			-Board
L	24	packed bed; concept of equivalent diameter and sphericity;	T1	1,2,3	PPT Digi
-2	26	Ergun equation, Fluidization: Introduction; different types			Class/Chalk
		of fluidization; fluidized bed assembly; governing			-Board
		equation; industrial use.			
L	27	Agitation and mixing of liquids: agitated vessel, blending	T1	1,2,3	PPT Digi
-2	28	& mixing,			Class/Chalk
					-Board
L	29	suspension of solid particles. Dispersion operation.	T1	1,2,3	PPT Digi
-3	30	Turbine Design/scale up, Flow number, Power			Class/Chalk
		Requirement.			-Board

L31		Flow measurement: Introduction; general equation for	T1	1,2,3	PPT Digi	
L32		internal flow meters; Orifice meter; Venturimeter; concept			Class/Chalk	
-33		of area meters: rotameter;			-Board	
L34		Local velocity measurement: Pitot tube.	T1	1,2,3	PPT Digi	
					Class/Chalk	
					-Board	
L35		Fluid moving machines: Introduction; Basic classification	T1	1,2,3	PPT Digi	
-40		of pumps, Mechanical pump: Centrifugal and Positive			Class/Chalk	
		displacement pumps (rotary, piston, plunger, diaphragm			-Board	
		pumps); pump specification; basic characteristics curves				
		for centrifugal pumps; fan, blower and compressor.				

COURSE INFORMATION SHEET: CL204 Chemical Process Calculations

Course code:	CL204					
Course title:	Chemical Process Calculation					
Pre-requisite(s):						
Co- requisite(s):						
Credits:	L: 2 T: 1 P: 0					
Class schedule per week:	3 hrs					
Class:	B. Tech					
Semester / Level:	III / Second					
Branch:	Chemical Engineering					
Name of Teacher:						

Course Objectives

This course enables the students:

1.	To use basic, applied chemistry/ thermodynamics for material balance calculations
	for different unit operations and unit processes.
2.	To use basic, applied chemistry/ thermodynamics for energy balance calculations
	for different unit operations and unit processes.
3.	To develop the systematic problem solving skills.

Course Outcomes

After the completion of this course, students will be able to:

CO204.1	Apply the concept of dimension and unit conversion to check dimensional
	consistency of balanced equation and understand the specific terms used in
	process calculation.
CO204.2	Solve problems related to ideal and real gas and solution.
CO204.3	Solve material balance problems without chemical reactions.
CO204.4	Solve material balance problems with chemical reactions.
CO204.5	Solve energy balance problems of various unit processes.

Syllabus

Module I: Introduction to Stoichiometry:

Units and Dimensions: Conversion of Equations, Systems of Units, Dimensional Homogeneity and Dimensionless Quantities, Buckingham Pi-theorem for Dimensional Analysis, Introduction to Chemical Engineering Calculations: Basis, Mole Fraction and Mole Percent, Mass Fraction and Mass Percent, Concentration of different forms, Conversion from one form to another, Stoichiometric and composition relations, Excess & Limiting reactants, Degree of completion, Conversion, Selectivity and Yield. [8L]

Module II: Gas Calculations, Humidity & Saturation:

Gas laws-Ideal gas law, Dalton's Law, Amagat's Law, and Average molecular weight of gaseous mixtures. Vapour pressure, partial pressure, Vapour pressures of miscible, immiscible liquids and solutions. Real-gas relationships, Roult's Law, Henry's law, Antoine's Equation, Clausius Clapeyron Equation. PVT calculations using ideal and real gas relationships, Relative Humidity and percent saturation; Dew point, Dry and Wet bulb temperatures; Use of humidity charts for engineering calculations. [8L]

Module III: Material Balance without Chemical Reaction:

Unit Operations & Process Variables, Degree of Freedom Analysis, Application of material balances to single and multiple unit operations without chemical reactions involving distillation column, absorption column, evaporators, driers, crystallizer, liquid-liquid and liquid-solid extraction units, Unsteady state material balances. [8L]

Module IV: Material Balance with Chemical Reaction:

Material balances with Single Reaction & Multiple Reactions applicable to single and multiple unit operations, Recycle, purge, bypass in batch, stage wise and continuous operations in systems with or without chemical reaction. Material balances in combustion, gas-synthesis, acid-alkali production reactions. [8L]

Module V: Energy Balance:

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible and latent heats, Evaluation of enthalpy, Standard heat of reaction, heat of formation, combustion, solution mixing etc., Calculation of standard heat of reaction, Hess Law, Energy balance for systems with and without chemical reaction, Unsteady state energy balances. [8L]

Text books:

- 1. Haugen, P.A. Watson, K.M., Ragatz R.A Chemical Process Principles Part I
- 2. Himmelblau, D.M Basic Principles and Calculation in chemical engineering, Prentice Hall
- 3. Bhatt B.L.Vora, S.M Stoichiometry, Tata McGraw Hill Publishing Co. Ltd., New Delhi

Reference books:

- 1. Felder, R. M.; Rousseau, R. W., "Elementary Principles of Chemical Processes", Third Edition, John Wiley & Sons, 2000
- 2. Venkataramani, V., Anantharaman, N., Begum, K. M. Meera Sheriffa, "Process Calculations", Second Edition, Prentice Hall of India.
- 3. Sikdar, D. C., "Chemical Process Calculations", Prentice Hall of India

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u>

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4
Mid Sem Examination Marks	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y
Quiz	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)										PSOs				
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	0	0	2	0	0	0	1	0	0	3	3	0	1	2
2	3	3	2	1	1	1	0	0	1	1	0	3	3	0	1	2
3	3	3	0	1	1	2	2	2	2	2	2	3	3	3	2	2
4	3	3	2	0	1	2	2	2	2	2	2	3	3	3	2	2
5	3	3	2	0	1	2	2	2	2	2	2	3	3	3	2	2

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods									
		Course								
CD	Course Delivery methods	Outcome								
		CO1, CO2,								
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4								
		CO1, CO2,								
CD2	Tutorials/Assignments	CO3, CO4								

CD3	Seminars	
CD4	Mini projects/Projects	
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
CD7	Industrial visits/in-plant training	
		CO1, CO2,
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4
CD9	Simulation	

Lecture wise Lesson planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remark	s
k		e	No		Book /	mapped	Content	used	by	
No.	No.	Date	•		Refere		covered		faculty	if
					nces				any	
1	L1		1	Units and Dimensions: Conversion of Equations, Systems	T1, T2,	1		PPT		
				of Units, Dimensional Homogeneity and Dimensionless	T3, R1,					
				Quantities,	R2, R3					
	L2		1	Buckingham Pi-theorem for Dimensional Analysis	T1, R2	1		PPT, Chalk		
								-Board		
	L3		1	Introduction to Chemical Engineering Calculations: Basis,	T1, T2,	2, 3, 4, 5		PPT, Chalk		
				Mole Fraction and Mole Percent, Mass Fraction and Mass	T3, R1,			-Board		
				Percent	R2, R3					
2	L4		1	Concentration of different forms, Conversion from one	T1, T2,	2, 3, 4, 5		PPT, Chalk		
				form to another,	T3			-Board		
	L5		1	Stoichiometric and composition relations	T1, R2	2, 3, 4, 5		PPT, Chalk		
				1				-Board		
	L6		1	Excess & Limiting reactants	T1, R2	2, 4, 5		Chalk		
								-Board		
3	L7		1	Degree of completion, Conversion, Selectivity and Yield	T1, R2	2, 4, 5		Chalk		
								-Board		
	L8		1	Tutorial				Assignment		
	L9		2	Gas laws-Ideal gas law, Dalton's Law, Amagat's Law, and	T1, R2	2		PPT		
				Average molecular weight of gaseous mixtures.						
4	L10		2	Vapour pressures of miscible, immiscible liquids and	T1, R2	2		PPT, Chalk		
				solutions.				-Board		
	L11		2	Real-gas relationships, Roult's Law, Henry's law,	T1, R2	2		PPT, Chalk		
								-Board		
	L12		2	Antoine's Equation, Clausius Clapeyron Equation.	T1, R1	2		PPT, Chalk		
								-Board		
5	L13		2	PVT calculations using ideal and real gas relationships,	T1, R2	2		Chalk		
								-Board		
	L14		2	Relative Humidity and percent saturation; Dew point, Dry	T1, R2	3		PPT, Chalk	1	

			and Wet bulb temperatures;			-Board
	L15	2	Use of humidity charts for engineering calculations	T1, R2	3	PPT, Chalk -Board
6	L16	2	Tutorial			Assignment
	L17	3	Unit Operations & Process Variables, Degree of Freedom Analysis,	T1, R2	4, 5	PPT, Chalk -Board
	L18	3	Application of material balances to single unit operations – Distillation and Absorbtion columns	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
7	L19	3	Application of material balances to single unit operations – Evaporators & Driers	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L20	3	Application of material balances to single unit operations -crystallizer, liquid-liquid and liquid-solid extraction units,	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L21	3	Application of material balances to Multiple Unit operations	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
8	L22	3	Application of material balances to Multiple Unit operations	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L23	3	Unsteady state material balances	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L24	3	Tutorial			Assignment
9	L25	4	Material balances with Single Reaction & Multiple Reactions applicable to single unit operations,	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L26	4	Material balances with Single Reaction & Multiple Reactions applicable to multiple unit operations,	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L27	4	Material balances applied to unit operations with Recycle, purge, bypass in batch, stage wise and continuous operations in systems with or without chemical reaction.	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board

101	L28	4	Material balances applied to unit operations with Recycle, purge, bypass in batch, stage wise and continuous operations in systems with or without chemical reaction.	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L29	4	Material balances in combustion, Excess air calculations,	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
	L30	4	Material balances in combustion, Excess air calculations,	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
11	L31	4	Material balances in gas-synthesis, acid-alkali production reactions.	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
	L32	4	Tutorial			Assignment
	L33	5	Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations,	T2, R1	5	PPT
12	L34	5	problems involving sensible and latent heats,	T2, R1	5	Chalk -Board
	L35	5	Evaluation of enthalpy, Standard heat of reaction,	T2, R1	5	PPT, Chalk -Board
	L36	5	heat of formation, combustion, solution mixing etc.,	T2, R1	5	PPT, Chalk -Board
13	L37	5	Calculation of standard heat of reaction, Hess Law,	T1, T2, R1	5	Chalk -Board
	L38	5	Energy balance for systems with and without chemical reaction,	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L39	5	Unsteady state energy balances	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
14	L40	5	Tutorial			Assignment

COURSE INFORMATION SHEET: CL 205 Mechanical Operations

Course code:	CL 205					
Course title:	Mechanical Operations					
Pre-requisite(s):-			-			
Co- requisite(s):-						
Credits:	L:3	T:0	P:0			
Class schedule per week:	3					
Class: B. Tech						
Semester / Level:	III / S	Second				
Branch:	Chen	nical En	gineering	ŗ		
Name of Teacher:						

Course Objectives

This course enables the students:

1.	To understand particulate solid characterization and storage and transportation of solids
2.	To understand principles of size reduction and equipment for size reduction
3.	To understand solid-liquid, liquid-liquid, gas-solid and solid-solid Mechanical separation

Course Outcomes

After the completion of this course, students will have:

CO205.1	Knowledge of particle size analysis, solid storage and transportation properties like
	frictional properties.
CO205.2	Knowledge of size reduction machineries for various industries and calculate power
	requirement.
CO205.3	Knowledge to design Gravity and Centrifugal settling processes for various applications,
	including pollution control in industry.
CO205.4	Knowledge of filtration equipment for different chemical industries, and designing of
	filtration process
CO205.5	Knowledge of solid-solid and gas-solid separation techniques for various applications
	including coal, mineral beneficiation environmental pollution control

Syllabus:

Module 1:

Characterization of solid particles: Particle Shape. Particle size analysis Differential and cumulative analysis. **Properties of particulate masses:** Bulk density, coefficient of Internal Friction, Storage of solids, Pressure distribution in hopper. Janssen Equation. **Transportation of Solids**: Studies on performance and operation of different conveyors eg. Belt, Screw, Apron, Flight etc. and elevators. [8L]

Module 2:

Size Reduction: Rittinger_s law, Kick_s law, Bond_s law, Work index, Types of comminuting equipment – Jaw Crushers, Gyratory Crusher, Roll crushers; Grinders-hammer Mill, Ball Mill, Rod Mill etc. Dry and wet griding, open and closed circuit. Simulation of Milling operation grinding rate function, breakage function. [8L]

Module 3:

Solid Liquid separation : Gravity Settling process – Clarifiers and Thickeners, Flocculation Design of Gravity Thickner,. **Centrifugal Settling:** principle, Centrifuges for solid liquid and liquid separation. [8L]

Module 4:

Filtration: Theory of solid-liquid filtration, principle of filtration, constant pressure and constant rate filtration, compressible and incompressible cakes, Filter aids, Equipment of liquid solid filtration, Batch and continuous pressure filters. Theory of centrifugal filtration, Equipment for centrifugal filtration. [8L]

Module 5:

Solid Solid Separation : Industrial Screening equipment :Screen effectiveness and Capacity.**Wet Classification:** Differential settling, Liquid cyclones,Drag, Rake and Spiral, Bowl, Hydroseparator, Hydaulic classifiers, Tabling, Jigging, Froth floatation, Dense media separation etc.Magnetic separation, Electrostating Separation. **Gas-solid separation:** Settling chambers, centrifugal settling, Cyclones, ESP, Scrubbers, Filters. [8L]

Suggested Books:

1. McCabe, W.L., Smith J.C., and Harriot, P., "Unit Operations Chemical Engineering", McGraw-Hill, Inc.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering, Volumel", Pergamon Press.

3. Geankoplis, C.J., "Transport Processes and Unit Operations", Prentice-Hall Inc.

Gaps in the syllabus (to meet Industry/Profession requirements) : Visit to industries like Coal Washeries, Mineral processing like HINDALCO

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design :

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6	CO7
Mid Sem Examination Marks	Y	Y	Y	Y			
End Sem Examination Marks	Y	Y	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)									PSOs					
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
2	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
3	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
4	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
5	3	3	3	2	3	1	1	1	1	1	1	1	3	3	3	3

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods					
		Course				
CD	Course Delivery methods	Outcome				
		CO1, CO2,				
		CO3, CO4,				
		CO5, CO6,				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO7				

		CO1, CO2,
		CO3, CO4,
		CO5, CO6,
CD2	Tutorials/Assignments	CO7
CD3	Seminars	
CD4	Mini projects/Projects	
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
CD7	Industrial visits/in-plant training	
		CO1, CO2,
		CO3, CO4,
		CO5, CO6,
CD8	Self- learning such as use of NPTEL materials and internets	CO7
CD9	Simulation	

Lecture wise Lesson planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
N.	N.	Dete	N.		D1- /		Content		by
NO.	NO.	Date	NO.		BOOK /	mapped	covered	used	fooulty if
					Refere				faculty if
									ally
					nces				
1	T 1		1	Introduction of Machanical operation in Chamical	Т1 Т3	1.2		PPT Digi	
1	LI		1	Enclosure Induction of Mechanical Operation in Chemical	11, 15	1, 2		FFT Digi	
				Engineering industry.Particle Shape. Particle size				Class/Chock	
				analysis.					
								-Board	
1	L2		1	Differential and cumulative analysis	T1 T3			Do	
-			-	Differential and cumulative analysis	11, 15			20	
1	L3		1	Bulk density, coefficient of Internal Friction.	T1, T3			Do	
2	L4		1	Storage of solids, Pressure distribution in hopper.	T1, T3			Do	
2	15		1	Langer Providen	T1 T2			Da	
2	LJ		1	Janssen Equation	11, 15			Do	
2	L6		1	Introduction to studies on performance and operation of	T1, T3			Do	
				different conveyors	,				
3	L7		1	Belt, Screw, Apron- conveyors.	T1, T3			Do	
3	L8		1	Flight etc. and elevators- conveyors.	T1, T3			Do	
2	T 1		2	Introduction close for Size Deduction	T1 T2			Do	
5			2	nuroduction class for Size Reduction	11, 15				
				Rittinger s law.					

4	L2	2	Kick_s law, Bond_s law.	T1, T3	Do	
4	L3	2	Work index, Types of comminuting equipment.	T1, T3	Do	
4	L4	2	Jaw Crushers, Gyratory Crusher, Roll crushers.	T1, T3	Do	
5	L5	2	Grinders-hammer Mill, Ball Mill, Rod Mill.	T1, T3	Do	
	L6	2	Dry and wet griding,	T1, T3	Do	
5						
5	L7	2	Open and closed circuit.	T1, T3	Do	
6	L8	2	Simulation of Milling operation grinding rate function, breakage function.	T1, T3	Do	
6	L1	3	Introduction class for Solid Liquid separation	T1, T3	Do	
6	L2	3	Introduction class for Gravity Settling Process	T1, T3	Do	
7	L3	3	Gravity Settling – Clarifiers	T1, T3	Do	
7	L4	3	Gravity Settling –Thickeners.	T1, T3	Do	
7	L5	3	Flocculation	T1, T3	Do	
8	L6	3	Design of Gravity Thickner,.	T1, T3	Do	
8	L7	3	Principle of Centrifuges for solid-liquid separation.	T1, T3	Do	
8	L8	3	Principle of liquid-liquid separation.	T1, T3	Do	

9	L1	4	Introduction class for Filtration.	T1, T3	Do
9	L2	4	Theory of solid-liquid filtration, principle of filtration. Constant pressure filtration	T1, T3	Do
9	L3	4	Constant rate filtration, compressible and incompressible cakes, Filter aids.	T1, T3	Do
10	L4	4	Equipment of liquid solid filtration.	T1, T3	Do
10	L5	4	Batch and continuous pressure filters.	T1, T3	Do
10	L6	4	Theory of centrifugal filtration.	T1, T3	Do
11	L7	4	Introduction to Equipment for centrifugal filtration.	T1, T3	Do
11	L8	4	Different equipment of filtration.	T1, T3	Do
11	L1	5	Industrial Screening equipment :Screen effectiveness and Capacity.	T1, T2	Do
12	L2	5	Wet Classification: Differential settling, Liquid cyclones, Drag, Rake and Spiral,	T1, T2	Do
12	L3	5	Wet Classification :Bowl, Hydroseparator	T1, T2	Do
12	L4	5	Hydaulic classifiers, Tabling, Jigging, Froth floatation,	Hydaulic classifiers, Tabling, Jigging, Froth floatation, T1, T2 De	
13	L5	5	Dense media separation etc.Magnetic separation, T1, T2 Do		Do

Department of Chemical Engineering

			Electrostating Separation.				
13	L6	5	Gas-solid separation: Settling chambers, centrifugal settling.	T1, T2		Do	
13	L7	5	Cyclones, ESP,	T1, T2		Do	
14	L8	5	Scrubbers, Filters.	T1, T2		Do	

COURSE INFORMATION SHEET

Course code:	CL213
Course title:	Macromolecular Science
Pre-requisite (s):	PH113,CH101,CH102
Co- requisite(s):	
Credits:	L:03 T:00 P:00
Class schedule per week:	03
Class:	B. Tech.
Semester / Level:	04/2
Branch:	Chemical Engineering (Plastics & Polymer)
Name of Teacher:	Dr Akhil Kumar Sen, Prof. S. Goswami,
	Prof. G. Sarkhel, Dr. P.Datta, Dr. A.Choudhury

Course Educational Objectives (CEO)

This course enables the students:

А.	Knowledge: to define chemical structure of polymer, classification and isomerism
B.	Explain: to describe the different molecular weight measurement techniques
C.	Illustrate: Given a type of polymer illustrate the method and kinetics of polymerization

Course Outcomes

After the completion of this course, students will be:

2 Synthesize: Given a set o specification synthesize polymer on available resources	
2. Syndresize. Given a set o specification syndresize polymer on available resources	
3. Evaluate: Given a set of specification assess the polymer properties	
4. Understanding the reaction kinetics of polymerisation process	
5. Student can understand the polymer solution and it behaviour	

<mark>Syllabus</mark> MODULE– I

Classification of polymer. Polymer structure property relationship, Molecular forces and chemical bonding in polymer. Glassy to rubber transition in polymer. Molecular weight and Molecular weight distribution. Molecular weight determination by colligative properties, Ultracentrifuge, Light scattering, Solution viscometry, Gel permeation chromatography. [10]

MODULE- II

Principles of Step-reaction (condensation) polymerization. Mechanism of stepwise polymerization. Kinetics and statistics of linear stepwise polymerization. Polyfunctional step-reaction polymerization, Real Industrial processes. [5]

MODULE- III

Principles of radical chain (addition) polymerization. Initiators and initiator systems. Kinetics of vinyl radical polymerization. Kinetics of copolymerization. Composition of copolymers. Mechanism of Copolymerization Mechanism and kinetics of ionic chain growth polymerization. Mechanism and kinetics

of co-ordination polymerization. Mechanism and kinetics of ring opening polymerization. ATRP, Electrochemical Polymerization. [10]

MODULE-IV

Polymer Solutions: Criteria for polymer solubility. Conformations of dissolved polymer chains. Thermodynamics of Polymer solutions. Phase equilibrium in polymer solutions. Fractionation of polymers by solubility. Polymerization techniques: Bulk, Suspension, Emulsion, Solution polymerization.

[7]

MODULE-V

Crystal structure of polymer. Morphology of crystalline polymer. Crystallization and melting. Strain induced morphology. Mechanical properties of crystalline polymer. Viscous flow. Kinetic theory of rubber elasticity. Viscoelasticity. [8]

Text Books: 1. Text book of polymer Science: Billimeyer F.W., 3rd Edn., Wiley Interscience, 1984

- 2. Principles of polymerization: G. Odian, 2nd Edn. Wiley Interscience New York, 1981
- 3. Polymer Chemistry, Sixth edition, Charles E. Carraher Jr. Marcel Dekker Inc, 2003.

4. Principles of Polymer Systems, Rodriguez, F, Taylor& Francis, 4th Edn., 1996.

Reference books:

- 1. Fundamentals of Polymer Science: Kumar Anil & Gupta R.K. Mc Graw Hill, 1998.
- 2. The Element of Polymer Science & Engineering: Rudin.
- 3. Structural Investigation of Polymer: Bodor G., 1st Ed., Ellis Harwood Ltd., 1991.
- 4. Introduction to Polymer Science 3rd edition, L.H.Sperling, John Wiley and Sons 2001.

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

PO11, PO9, PO2

Topics beyond syllabus/Advanced topics/Design:

1.

POs met through Topics beyond syllabus/Advanced topics/Design:

Course Delivery methods						
Lecture by use of boards/LCD projectors/OHP projectors						
Tutorials/Assignments						
Seminars						
Mini projects/Projects						
Laboratory experiments/teaching aids						
Industrial/guest lectures						
Industrial visits/in-plant training						

Self- learning such as use of NPTEL materials and internets Simulation

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	60
Assignment / Quiz (s)	15

AssessmentCompoents	CO1	CO2	CO3	CO4	<u>CO5</u>
Mid Sem Examination Marks					
End Sem Examination Marks					
Assignment					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)												PSOs			
Outcome	а	b	с	D	e	f	g	h	i	j	k	1	1	2	3	4	
1																	
2																	
3																	
4																	
5																	

	Mapping Between COs and Course Delivery (CD) methods													
CD	Course Delivery methods	Course Outcome	Course Delivery Method											
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1											
CD2	Tutorials/Assignments	CO2	CD1											

CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects		
CD5	Laboratory experiments/teaching aids		
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

Lecture wise Lesson planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book /	mapped	Content	used	by
					Refere		covered		faculty if
					nces				any
1	L1		1	Classification of polymer	T1, R1	1, 2		PPT Digi	
								Class/Chalk	
1	1.2		1	Delumer structure preparty relationship				-Board	
1			1	Molocular forces and chemical bonding in polymer	T1				
1			1	Classy to mykhor transition in polymer	11				
2	L/4		1	Melocular weight and Melocular weight distribution	T1				-
2	LJ		1	Melecular weight determinetion by colligative properties	11				-
2				Violecular weight determination by conigative properties					
3				Ultracentrifuge					
3				Solution viscometry					-
3	L9 L 10			Col permeation chromatography					
4	L10			Drinciples of Ston reaction (condensation) polymerization	Т1				-
4				Mashanism of stonwise networkization	T1				
4	L12			Kinetics and statistics of linear stanuice polymerization	T1				-
5	L13			Relief Stephise polymerization	T1				-
5	L14			Polyrunctional step-reaction polymerization	11				
5	LIS			Real industrial process	T 1				
6	L16			Principles of radical chain (addition) polymerization					
6	LI/			Initiators and initiator systems					
6	LI8			Kinetics of vinyl radical polymerization	TI				
7	L19			Kinetics of copolymerization	TI				
7	L20			Composition of copolymers	T1				
7	L21			Mechanism of Copolymerization	T1				
8	L22			Mechanism and kinetics of ionic chain growth polymerization	T1				
9	L23			Mechanism and kinetics of co-ordination polymerization	T1				
9	L24			Mechanism and kinetics of ring opening polymerization	T1				
9	L25			ATRP, Electrochemical Polymerization					
10	L26			Criteria for polymer solubility	T1				

10	L27	Conformations of dissolved polymer chains	T1		
10	L28	Thermodynamics of Polymer solutions	T1		
11	L29	Phase equilibrium in polymer solutions	T1		
11	L30	Fractionation of polymers by solubility	T1		
11	L31	Bulk and Solution Polymerization			
12	L32	Suspension and Emulsion Polymerization			
12	L33	Crystal structure of polymer	T1		
12	L34	Morphology of crystalline polymer	T1		
13	L35	Crystallization and melting	T1		
13	L36	Strain induced morphology	T1		
13	L37	Mechanical properties of crystalline polymer	T1		
14	L38	Viscous flow	T1		
14	L39	Kinetic theory of rubber elasticity	T1		
14	L40	Viscoelasticity	T1		

COURSE INFORMATION SHEET : CL 207 Process Technology and Economics - I

Course code	CL207
Course title	Process Technology and Economics - I
Pre-requisite(s)	Thermodynamics CL201, Chemical Process Calculations CL204
Co- requisite(s)	Mass Transfer Operation CL 209, Heat Transfer Operation CL208
Credits	L: 3 T: 0 P: 0
Class schedule per week	3
Class	B. E.
Semester / Level	IV / Second
Branch	Chemical Engineering
Name of Teacher	

Course Objectives

This course enables the students:

1.	To understand the various processes involved in chemical industries for the production of
	inorganic and organic chemicals.
2.	To understand economic principles as applied in Chemical Engineering.
3.	To identify and solve engineering problems during production.

Course Outcomes

After the completion of this course, students will be able to:

CO207.1	Explain important process industries with manufacturing processes.
CO207.2	Illustrate the different unit operations and unit processes in a given process flow
	diagram.
CO207.3	Explain the effect of various process parameters on manufacturing processes.
CO207.4	Estimate and understand various financial terms.
CO207.5	Evaluate and analyze the concept of depreciation and profitability measure.

Syllabus

Module 1:

Sulfuric acid: Properties of sulfuric acid, Hydrates of sulfuric acid, Usage, Contact process, Catalysts, Contact process equipment's, Materials of construction, DCDA process.

Phosphorous Industries: Phosphate rock, Superphosphates, Manufacturing of Phosphoric acid (Wet-Process and Electric-Furnace), Phosphates (Sodium phosphates, Pyrophosphates, Calcium Phosphates), manufacturing of diammonium phosphate. **8L**

Module 2:

Chlor-alkali industries: Manufacture of Soda Ash, Caustic Soda and Chlorine. Bleaching Powder, Calcium Hypochlorite, Sodium Hypochlorite. Manufacture of chlorine caustic soda, Mercury cathode and membrane process, hydrochloric acid.

Pulp and Paper Industries: Manufacture of pulp (Kraft pulping and Sulfite pulping), Manufacture of paper. 8L

Module 3:

Nitrogen industries: Manufacturing of Ammonia; ammonium nitrate, ammonium sulphate; Manufacturing of Urea and Nitric acid.

Fertilizer Industries: Manufacturing of Single Superphosphate (SSP), Triple Superphosphate (TSP) and ammonium phosphate.

Mixed fertilizers: NPK – Manufacturing process and details of major equipments. 8L

Module 4:

Process design development, preliminary design concepts, flowsheet development. Cost estimation of investment and production. Break-even analysis. Interest and Investment costs: Simple interest, Compound interest, Nominal and Effective interest rates, Continuous interest, Annuities. **8L**

Module 5:

Profitability measures: Rate of return on investment, Present worth and discounted cash flow, Payback period, Capitalized Costs. Depreciation: Types of depreciation, Salvage Value, Present Value, Book Value, Market Value, Replacement Value. Methods for determining depreciation: Straight line method, Declining-balance or Fixed percentage method, Sum-of-the-years-digits method, Sinking-fund Method, Accelerated cost recovery system, Modified accelerated cost recovery system. **8L**

Text books:

- 1. Dryden's Outlines of Chemical Technology, M. Gopala Rao, M. Sittig, 3rd Edition, East West Press.
- 2. Shreve's Chemical Process Industries, George T. Austin, 5th Edition, Tata McGraw Hill Edition.
- **3.** Plant Design and Economics for Chemical Engineers, Max S. Peters, K. D. Timmerhaus, 4th Edition, McGraw-Hill Inc.
- 4. Process Engineering Economics, James Riley Couper, Marcel Dekker Inc.

Reference books:

1. Coulson & Richardson's Chemical Engineering Design, R K Sinnott, Vol. 6., Fourth Edition, Elsevier.

2. Encyclopedia of Chemical Technology, Kirk-Othmer, 5th Edition.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4
Mid Sem Examination Marks	Y	Y	Y	
End Sem Examination Marks	Y	Y	Y	Y
Quiz	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)												PSOs				
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO207.1	3	2	2	1	1	2	3	2	1	2	2	2	3	1	3	3		
CO207.2	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3		
CO207.3	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3		
CO207.4	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3		
CO207.5	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3		

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods								
		Course							
CD	Course Delivery methods	Outcome							
		CO1, CO2,							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4							
		CO1, CO2,							
CD2	Tutorials/Assignments	CO3, CO4							
CD3	Seminars								

CD4	Mini projects/Projects	CO3, CO4
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
		CO1, CO2,
CD7	Industrial visits/in-plant training	CO3, CO4
		CO1, CO2,
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4
CD9	Simulation	

Lecture wise Lesson Planning Details.

Week	Lect.	Tenta	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remark
No	No.	tive	No.		Book /	mappe	Content	used	s by
		Date			Refere	d	covered		faculty
					nces				if any
1	L 1			Properties of sulfuric acid, Hydrates of sulfuric acid, Usage	T 1	CO 1		CD 1	
					T 2				
1	L 2			Contact process, Catalysts	T 1	CO 1		CD 1	
					T 2	CO 2			
1	L 3			Contact Process Equipment's, Materials of construction,.	T 1	CO 1		CD 1	
					T 2	CO 2			
2	L 4			DCDA process	T 1	CO 1		CD 1	
					T 2	CO 2			
2	L 5			Phosphate rock, Superphosphates, Manufacturing of Phosphoric acid	T 1	CO 1		CD 1	
	L 6			(Wet-Process and Electric-Furnace),	T 2	CO 2			
3	L 7			Phosphates (Sodium phosphates, Pyrophosphates, Calcium Phosphates),	T 1	CO 1		CD 1	
	L 8			manufacturing of diammonium phosphate.	Т2	CO 2			
4	L 9			Manufacture of Soda Ash, Caustic Soda and Chlorine	T 1	CO 1		CD 1	
5	L10				Т2	CO 2			
	L11								
5	L 12			Bleaching Powder, Calcium Hypochlorite, Sodium Hypochlorite.	T 1	CO 1		CD 1	
6	L 13				T 2	CO 2			
6	L 14			Manufacture of chlorine caustic soda, Mercury cathode and membrane	T 1	CO 1		CD 1	
	L 15			process.	T 2	CO 2			
7	L 16			Pulp and Paper Industries: Manufacture of pulp (Kraft pulping and	T 1	CO 1		CD 1	
	L 17			Sulfite pulping), Manufacture of paper.	T 2	CO 2			
7	L 18			Manufacturing of Ammonia; ammonium nitrate, ammonium sulphate;	T 1	CO 1		CD 1	
8	L 19				Т2	CO 2			
8	L 20			Manufacturing of Urea and Nitric acid.	T 1	CO 1		CD 1	
	L 21			ž	T 2	CO 2			
9	L 22			Manufacturing of Single Superphosphate (SSP), Triple Superphosphate	T 1	CO 1		CD 1	
	L 23			(TSP) and ammonium phosphate.	T 2	CO 2			

9	L 24		Mixed fertilizers: NPK – Manufacturing process and details of major	T 1	CO 1	CD 1	
			equipments.	T 2	CO 2		
10	L 25		Simple Interest, Ordinary and Exact Simple Interest	Т3	CO 3	CD 1	
	L 26			T 4		CD 2	
10	L 27		Compound Interest	Т3	CO 3	CD 1	
				T 4		CD 2	
11	L 28		Nominal and Effective Interest Rates, Continuous Interest	Т3	CO 3	CD 1	
	L 29			T 4		CD 2	
11	L 30		Present Worth and Discount	Т3	CO 3	CD 1	
				T 4		CD 2	
12	L 31		Annuities, Perpetuities and Capitalized Costs.	Т3	CO 3	CD 1	
	L 32			Τ4		CD 2	
13	L 33		Types of depreciation, Salvage Value, Present Value, Book Value,	Т3	CO 3	CD 1	
14	L 34		Market Value, Replacement Value.	Τ4	CO 4	CD 2	
	L 35				CO 5		
14	L 36		Methods for determining depreciation: Straight line method, Declining-	T 3	CO 3	CD 1	
15	L 37		Balance or Fixed Percentage Method, Sum-of-the-Years-Digits Method,	Τ4	CO 4	CD 2	
	L 38		Sinking-Fund Method		CO 5		
15	L 39		Accelerated cost recovery system, Modified accelerated cost recovery	T 3	CO 3	CD 1	
16	L 40		system.	Τ4	CO 4	CD 2	
					CO 5		

COURSE INFORMATION SHEET: CL 208 Heat Transfer Operations

Course code:	CL208
Course title:	Heat Transfer Operations
Pre-requisite(s):	-
Co- requisite(s):	
Credits:	L: 3 T: 1 P: 0
Class schedule per week:	4 hrs
Class:	B. Tech
Semester / Level:	IV / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	To understand the fundamentals of heat transfer mechanisms in fluids and solids
	and their applications in various heat transfer equipment's in process industries.
2.	Understanding the heat exchangers: working principles and basic geometries.
3.	To design heat exchangers and evaporators and analyze their performance.

Course Outcomes

After the completion of this course, students will be able to:

CO208.1	Understand and Solve heat transfer by conduction in solids for steady state and transient
	conditions.
CO208.2	Explain and solve heat transfer by forced and natural convection.
CO208.3	Discuss and solve heat transfer by radiation.
CO208.4	Determine heat transfer in boiling, condensation and evaporators.
CO208.5	Analyze the performance of heat exchange equipments.

Syllabus

Module I

Basic Concepts: Modes of heat transfer, conduction, convection and radiation, analogy between heat flow and electrical flow. **Conduction:** One dimensional steady state heat conduction, the Fourier heat conduction equation, conduction through plane wall, conduction through cylindrical wall, spherical wall, conduction through composite slab, cylinder and sphere, critical radius of insulation, **Extended surfaces:** heat transfer from a fin, fin effectiveness and efficiency, Introduction to unsteady state heat conduction. [8L]

Module II

Convection: Natural and forced convection, the convective heat transfer coefficient. **Forced Convection:** Correlation equations for heat transfer in laminar and turbulent flows in a Circular tube and duct, Reynolds and Colburn analogies between momentum and heat transfer, heat transfer to liquid metals and heat transfer to tubes in cross flow. **Natural Convection:** Natural convection from vertical and horizontal surfaces, Grashof and Rayleigh numbers. [8L]

Module III

Heat transfer by radiation: Basic Concepts of radiation from surface: black body radiation, Planks law, Wien's displacement law , Stefan Boltzmann's law, Kirchhoff's law, grey body, Radiation intensity of black body, View factor , emissivity, radiation between black surfaces and grey surfaces. Solar radiations, combined heat transfer coefficients by convection and radiation. [8L]

Module IV

Boiling and Condensation: Pool boiling, pool boiling curve for water, maximum and minimum heat fluxes, correlations for nucleate and film pool boiling, drop wise and film wise condensation, Nusselt analysis for laminar film wise condensation on a vertical plate, film wise condensation on a horizontal tube, effect of non-condensable gases on rate of condensation. **Evaporation:** Types of evaporators, boiling point elevation and Duhring's rule, material and energy balances for single effect evaporator, multiple effect evaporators: forward, mixed and backward feeds, capacity and economy of evaporators. [8L]

Module V

Heat Exchangers: Introduction, Industrial use, Types of heat exchangers, Co-current, Countercurrent & Cross-current, Principal Components of a Concentric tube & Shell-and Tube Heat Exchanger, Baffles, Tubes and Tube Distribution, Tubes to Tube sheets Joint, Heat Exchangers with Multiple Shell & tube Passes, Fixed-Tube sheet and Removable-Bundle Heat Exchangers, log-mean temperature difference, overall heat transfer coefficient, fouling factors, Design of double pipe and shell and tube heat exchangers. [8L]

Text books:

1. Holman, J. P., 'Heat Transfer', 9th Edn., McGraw Hill, 2004.

2. Kern, D.Q., "Process Heat Transfer", McGraw-Hill, 1999.

3. Cengel, Y.A., Heat Transfer - A Practical Approach, McGraw-Hill, 1998.

Reference books:

1. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, 5th ed., John

Wiley, 2002.

- 2. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 6th Edn., McGraw-Hill, 2001.
- 3. Coulson, J.M. and Richardson, J.F., "Chemical Engineering " Vol. I, 4th Edn., Asian Books Pvt. Ltd., India, 1998.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course	Course Program Outcomes (POs)									PSOs						
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO208.1	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2
CO208.2	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2
CO208.3	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2
CO208.4	3	3	3	3	2	2	2	1	2	3	1	2	3	2	2	2
CO208.5	3	3	3	3	2	2	2	1	2	3	1	2	3	2	2	2

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome							
		CO1, CO2, CO3,							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO4, CO5							
		CO1, CO2, CO3,							
CD2	Tutorials/Assignments	CO4, CO5							
CD3	Seminars								
CD4	Mini projects/Projects	CO4							
CD5	Laboratory experiments/teaching aids								
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
		CO1, CO2, CO3,							
CD8	Self- learning such as use of NPTEL materials and internets	CO4, CO5							
CD9	Simulation								

Lecture wise Lesson planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Method	Remar
k		e	No		Book /	mapped	Content	ology	ks by
No.	No.	Date			Refere		covered	used	faculty
					nces				if any
1	L1		1	Introduction to heat transfer, Modes of heat transfer	T1, T2, R1, R2	1, 5		PPT	
	L2		1	1-D steady state heat conduction	T1, R2	1, 5		PPT,	
								Chalk	
								-Board	
	L3		1	1-D steady state heat conduction (continued), conduction	T1, R1, R2	1, 5		PPT,	
				through composite slab				Chalk	
								-Board	
2	L4		1	Critical radius of insulation	T1, R2	1, 5		Chalk	
								-Board	
	L5		1	Heat transfer from a fin	T1, R2	1, 5		Projecto	
								r, Chalk	
								-Board	
	L6		1	Fin effectiveness and efficiency	T1, R2	1, 5		Chalk	
								-Board	
3	L7		1	Introduction to unsteady state heat conduction	T1, R2	1, 5		PPT,	
								Chalk	
								-Board	
	L8		1	Tutorial				Assign	
			_					ment	
	L9		2	Convection: Natural and forced convection	T1, R2	1, 5		PPT	
4	L10		2	convective heat transfer coefficient	T1, R2	1, 5		Chalk	
								-Board	
	L11		2	Correlation equations for heat transfer in laminar and	T1, R2	1, 5		Projecto	
				turbulent flows				r, Chalk	
			_					-Board	
	L12		2	Reynolds and Colburn analogies between momentum and heat	T1, R1	1, 5		Chalk	
				transfer				-Board	
5	L13		2	heat transfer to liquid metals and heat transfer to tubes in cross	T1, R2	1, 5		PPT,	
								Chalk	

			flow			-Board
	L14	2	Natural convection from vertical surfaces	T1, R2	1,5	PPT,
						-Board
	L15	2	Natural convection from horizontal surfaces. Grashof and	T1. R2	1.5	PPT
			Rayleigh numbers	,	-,-	
6	L16	2	Tutorial			Assign
						ment
	L17	3	Basic Concepts of radiation from surface	T1, R2	1, 5	PPT
	L18	3	Black body radiation, Planks law, Wien's displacement law	T1, R2	1, 5	Projecto
						r
7	L19	3	Stefan Boltzmann's law, Kirchhoff's law, grev body	T1, R2	1, 2, 5	Chalk
						-Board
	L20	3	Radiation intensity of black body	T1, R2	2, 5	Chalk
						-Board
	L21	3	View factor	T1, R2	1, 2, 5	PPT
8	L22	3	emissivity, radiation between black surfaces and grey surfaces	T1, R2	2, 5	Chalk
						-Board
	L23	3	Solar radiations, combined heat transfer coefficients by	T1, R2	1, 5	Chalk
			convection			-Board
			and radiation			
	L24	3	Tutorial			Assign
						ment
9	L25	4	Boiling and Condensation: Pool boiling, pool boiling curve	T3, R2	3, 5	PPT
			for water			
	L26	4	maximum and minimum heat fluxes, correlations for nucleate	T3, R2	3, 5	PPT
			and film pool boiling			
	L27	4	drop wise and film wise condensation, Nusselt analysis for	T3, R2	3, 5	PPT
			laminar film wise condensation on a vertical plate			
101	L28	4	film wise condensation on a horizontal tube, effect of non-	T3, R2	3, 5	PPT
			condensable gases on rate of condensation			
	L29	4	Evaporation: Types of evaporators	T3, R2	3, 5	PPT
	L30	4	Boiling point elevation and Duhring's rule, material and	T3, R2	3, 5	Chalk

			energy balances for single effect evaporator			-Board
11	L31	4	Multiple effect evaporators: forward, mixed and backward	T3, R2	3, 5	Projecto
			feeds, capacity and economy of evaporators			r
	L32	4	Tutorial			Assign
						ment
	L33	5	Heat Exchangers: Introduction, Industrial use, Types of heat	T2, R3	4, 5	PPT
			exchangers, Co-current, Counter-current & Cross-current			
12	L34	5	Principal Components of a Concentric tube & Shell-and Tube	T2, R3	4, 5	PPT,
			Heat Exchanger, Baffles, Tubes and Tube Distribution			Chalk
						-Board
	L35	5	Tubes to Tube sheets Joint, Heat Exchangers with Multiple	T2, R3	4, 5	PPT,
			Shell & tube Passes			Chalk
						-Board
	L36	5	Fixed-Tube sheet and Removable-Bundle Heat Exchangers	T2, R3	4, 5	PPT,
						Chalk
						-Board
13	L37	5	log-mean temperature difference, overall heat transfer	T1, R2	4, 5	PPT,
			coefficient			Chalk
						-Board
	L38	5	fouling factors, Design of double pipe and shell and tube heat	T2, R3	4, 5	PPT,
			exchangers			Chalk
						-Board
	L39	5	Design of double pipe and shell and tube heat exchangers	T2, R3	4, 5	Projecto
			(Continued)			r, Chalk
		_				-Board
14	L40	5	Tutorial			Assign
		1				ment

COURSE INFORMATION SHEET: CL 209 Mass Transfer Operations -I

Course code:	CL209
Course title:	Mass transfer operations-I
Pre-requisite(s):	Thermodynamics (CL 201), Chemical Process Calculations (CL 204)
Co- requisite(s):	Transport Phenomena
Credits:	L: 3 T: 0 P: 0
Class schedule per week:	03
Class: B. E.	
Semester / Level:	IV / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	To learn basic knowledge of mass transfer operation and its application.
2.	To learn basic knowledge of mass transfer equipments.
3.	To design mass transfer equipments.

Course Outcomes

After the completion of this course, students will be to:

CO209.1	Explain the basic mechanism of mass transfer including diffusion and convective
	mass transfer.
CO209.2	Find the mass transfer coefficient and solve problems related to interphase mass
	transfer.
CO209.3	Explain the gas-liquid contacting process and solve related problems.
CO209.4	Solve problems on VLE and problems related to design calculation of distillation
	column.
CO209.5	Explain enhanced distillation.

Syllabus

Module 1

Introduction to mass transfer and applications, Principles of molecular diffusion, Fick's Law, Diffusivity, Equation of continuity and unsteady state diffusion, Diffusion in solids. Convective mass transfer and Mass transfer coefficient, Correlation of mass transfer coefficients. (8L)

Module 2

Interphase mass transfer, Theories of Mass Transfer, individual gas and liquid phase mass transfer coefficient, overall mass transfer coefficient, Analogy between momentum, heat and mass transfer, Concept of stage wise contact processes. (8L)

Module-3

The mechanism of absorption, Equipment for Gas Liquid contact, Kremser equation, plate and packed tower internals, Packed tower design, H. E. T. P., H. T. U., and N. T. U. concepts, height of column based on conditions in the gas film, height of column based on conditions in the liquid film, height of column based on overall coefficients, plate type towers, number of plates, plate efficiency, absorption factor. **(8L)**

Module-4

Relative Volatility, calculation of number of plates by McCabe-Thiele method, Total and minimum reflux ratio, distillation with side streams, Enthalpy concentration diagram, calculation of number of plates by and Ponchon and Savarit method, Steam distillation, Azeotropic & Extractive Distillations, batch distillation with reflux, Introduction to multicomponent distillation. (8L)

Module-5

Shortcut method on multi component distillation, MESH equations (HK, LK component), Fenske-Underwood-Gilliland method. (8L)

Text books:

- 1. Mass Transfer Operations: R.E. Treybal Mc Graw Hill, 1981
- 2. Unit Operations of Chemical Engineering: W.L. McCabe, and J.C. Smith McGraw Hill.5th Ed. 1993.
- **3.** Principles of Mass Transfer and Separation Processes, Binay K. Dutta, 2nd edition, Prentice Hall of India,2007.
- **4.** Transport processes and Separation Process Principles, C.J. Geankoplis, Prentice Hall of India, 4th Ed. 2004

Reference books:

Separation Process Principles-Chemical and Biochemical Operations, J. D. Seader, Ernest J. Henley, D. Keith Roper, 3rd Ed., John Wiley & Sons, Inc.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y			
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)										PSOs				
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO209.1	3	3	0	2	2	0	0	0	1	0	0	3	3	0	1	2
CO209.2	3	3	0	0	2	0	0	0	1	0	0	3	3	0	1	2
CO209.3	3	3	3	3	2	2	2	2	2	3	1	3	3	2	0	2
CO209.4	3	3	3	3	2	2	2	2	2	2	2	3	3	3	2	2
CO209.5	3	3	3	3	2	2	2	2	2	2	2	3	3	3	2	2

3 = High, 2 = Medium, 1 = Low

	Mapping Between COs and Course Delivery (CD) methods									
		Course								
CD	Course Delivery methods	Outcome								
		CO1, CO2,								
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4								
		CO1, CO2,								
CD2	Tutorials/Assignments	CO3, CO4								
CD3	Seminars									
CD4	Mini projects/Projects									
CD5	Laboratory experiments/teaching aids									
CD6	Industrial/guest lectures									
CD7	Industrial visits/in-plant training									

		CO1, CO2,
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4
CD9	Simulation	

Lecture wise Lesson Planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book /	mapped	Content	used	by
					Refere		covered		faculty
					nces				if any
1	L1		1	Introduction to mass transfer and applications	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L2		1	Principles of molecular diffusion	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L3		1	Fick's Law, Diffusivity	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L4		1	Equation of continuity and unsteady state	T1, R1	1		PPT Digi	
				diffusion				Class/Chalk-Board	
2	L5		1	Diffusion in solids	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
2	L6		1	Diffusion in solids	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
2	L7		1	Convective mass transfer and Mass transfer	T1, T3, R1	1, 2		PPT Digi	
				coefficient				Class/Chalk-Board	
2	L8		1	Correlation of mass transfer coefficients.	T1, T2, T4,	1, 2		PPT Digi	
					R1			Class/Chalk-Board	
3	L9		2	Interphase mass transfer	T1, R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L10		2	Theories of Mass Transfer	T1, , T2,R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L11		2	Theories of Mass Transfer	T1, T2, R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L12		2	individual gas and liquid phase mass transfer	T1, T2,	1, 2		PPT Digi	
				coefficient	T3,R1			Class/Chalk-Board	
4	L13		2	individual gas and liquid phase mass transfer	T1, T2,	1, 2		PPT Digi	
				coefficient	T3,R1			Class/Chalk-Board	
4	L14		2	overall mass transfer coefficient	T1, T2,	1, 2		PPT Digi	
					T3,R1			Class/Chalk-Board	
4	L15		2	Analogy between momentum, heat and mass	T1, T2, T3,	1, 2		PPT Digi	
				transfer,	T4, R1			Class/Chalk-Board	

4	L16	2	Concept of stage wise contact processes	T1, R1	1, 2	PPT Digi Class/Chalk Board
5	L17	3	Introduction to absorption, mechanism of absorption	T1, R1	1, 2, 3	PPT Digi Class/Chalk-Board
5	L18	3	Equipment for Gas Liquid contact	T1, R1	3	PPT Digi Class/Chalk-Board
5	L19	3	plate and packed tower internals	T1, T2, T3, R1	3	PPT Digi Class/Chalk-Board
5	L20	3	Packed tower design, H. E. T. P., H. T. U., and N. T. U. concepts,	T1, T2, T3, T4, R1	3	PPT Digi Class/Chalk-Board
6	L21	3	height of column based on conditions in the gas film,	T1, T2, T3, T4, R1	3	PPT Digi Class/Chalk-Board
6	L22	3	height of column based on conditions in the liquid film, height of column based on overall coefficients	T1, T2, T3, T4, R1	3	PPT Digi Class/Chalk-Board
6	L23	3	plate type towers, number of plates	T1, R1	3, 5	PPT Digi Class/Chalk-Board
6	L24	3	plate efficiency, absorption factor	T1, R1	3, 5	PPT Digi Class/Chalk-Board
7	L25	4	Introduction, Vapor -liquid equilibria, Relative volatility	T1, R1	4	PPT Digi Class/Chalk-Board
7	L26	4	Ideal and non -ideal solutions, azeotrope	T1, R1	4	PPT Digi Class/Chalk-Board
7	L27	4	Batch distillation and equilibrium flash vaporization,	T1, R1	4, 5	PPT Digi Class/Chalk-Board
7	L28	4	Feed conditions	T1, R1	4, 5	PPT Digi Class/Chalk-Board
8	L29	4	calculation of number of plates by McCabe- Thiele method	T1, T2, R1	5	PPT Digi Class/Chalk-Board
8	L30	4	calculation of number of plates by McCabe- Thiele method	T1, T2, R1	5	PPT Digi Class/Chalk-Board
8	L31	4	Total reflux ratio	T1, T2, R1	5	PPT Digi Class/Chalk-Board
8	L32	4	Minimum reflux ratio	T1, T2, R1	5	PPT Digi Class/Chalk-Board
9	L33	5	Enthalpy concentration diagram	T1, R1	4, 5	PPT Digi

						Class/Ch	alk-Board
9	L34	5	calculation of number of plates by and Ponchon	T1, R1	5	PPT Dig	i
			and Savarit method,			Class/Ch	alk-Board
9	L35	5	calculation of number of plates by and Ponchon	T1, R1	5	PPT Dig	i
			and Savarit method,			Class/Ch	alk-Board
9	L36	5	Steam distillation	T1, R1	5	PPT Dig	i
						Class/Ch	alk-Board
10	L37	5	Azeotropic & Extractive Distillations	T1, T2, T4,	5	PPT Dig	i
				R1		Class/Ch	alk-Board
10	L38	5	batch distillation with reflux	T1, R1	5	PPT Dig	i
						Class/Ch	alk-Board
10	L39	5	Introduction to multicomponent distillation.	T1, T2, T3,	5	PPT Dig	i
				T4, R1		Class/Ch	alk-Board
10	L40	5	Introduction to multicomponent distillation.	T1, T2, T3,	5	PPT Dig	i
				T4, R1		Class/Ch	alk-Board

CL214 **Course code: Course title:** Polymer Technology-I **CL213 Pre-requisite(s): Co- requisite(s):** Nil **Credits:** L: 03 T: 00 P: 00 Class schedule per week: 03 B. Tech **Class:** Semester / Level: 04/2**Branch: Chemical Engineering- Plastics and Polymer** Dr. P. Datta, Dr. G. Sarkhel, Dr.(Mrs.) S. Goswami Name of Teacher:

COURSE INFORMATION SHEET

Course Objectives: This course enables the students:

- A. *Understand* the structure property relationship of various plastics.
- B. *Explain* the importance of compounding ingredients in plastics and get detailed knowledge about the ingredients.
- C. *Describe* the preparation, properties and application of thermosets and engineering plastics and various copolymers

Course Outcomes: After completion of the course, learner will be able to

CO214.1 *select* additives for different plastics and *formulate* recipe for specific product manufacturing.

CO 214.2 *design* the preparation, properties and application of various commodity plastics

CO 214.3 *demonstrate* preparation, properties and application of engineering plastics

CO 214.4 *analyse* the methods of the preparation, properties and application of specific copolymers.

CO 214.5 *Apply* the importance of structure property relationship to choose the materials for various applications.

Syllabus

MODULE-I

Additives for Plastics: Definition, classification, mechanism of action, method of incorporation of: fillers, coupling agents, plasticizer, cross linking agents, stabilizer, blowing agents. [8]

MODULE- II

Definition, classification, mechanism of action of flame retardants, colorants: pigments and dyes, antistatic agents, antiblock agents, nucleating agents, toughening agent, lubricants

[8]

MODULE- III

Manufacturing process with emphasis on flow sheet, processing application, major engineering problems of PE (LDPE, HDPE, LLDPE, XLPE, UHMHDEP), PTFE, PP. [8]

MODULE- IV

Manufacturing, Properties, processing, applications, major engineering problems, economics and Indian scenario of Polyamides: nylon 6, nylon 66, polyimides, Cellulosics [8]

MODULE- V

Manufacturing, properties, processing, applications of PS, PVC, PVOH, Acrylics, ABS, SAN, ionomers. [8]

Text Books:

1. Plastics materials: Brydson J.A., 3rd Edn., Butter worth, Woburn 1975

2. Plastics Engineering Hand Book: Frados J. Society of plastic & Industruy. Inc. 4th Edn., Van Nostrand, N.Y. 1976

3. The Roll of Additives in Plastics, Mascia, L., Edward Arnold, 1974

5. Hand Book of Plastic Testing Technology, Vishu Shah, Wiley Inter Science.

Reference Books:

- 1. Functional Monomers and Polymers Kiichi Jakenioto, Raphael M, Ottenbrites, Mikhiaru kamachi Marcel Dekker.
- 2. Shreve's chemical process Industries, George T. Sustin, Mc Grow Hill.
- 3. Unit process in Organic synthesis, Groggins, P.H. Mc Grow Hill.

Gaps in the syllabus (to meet Industry/Profession requirements)

Practical problems faced in industries during manufacturing of additive materials needs to addressed by industry personal

POs met through Gaps in the Syllabus

PO11, PO9, PO4

Topics beyond syllabus/Advanced topics/Design

- Processing of plastics with emphasis on their flow properties in specific processing equipment under specific condition
- Analysis of flow characteristics of polymers during processing with respect to their chemical structure and properties

POs met through Topics beyond syllabus/Advanced topics/Design PO12, PO11, PO10

Course Delivery methods							
Lecture by use of boards/LCD projectors/OHP projectors							
Tutorials/Assignments							
Seminars							
Mini projects/Projects							
Laboratory experiments/teaching aids							
Industrial/guest lectures							
Industrial visits/in-plant training							
Self- learning such as use of NPTEL materials and internets							
Simulation							

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)										PSOs				
Outcome	а	a b C d e f g h i j k l							1	2	3	4				
1	3	2	2	1	1	2	3	2	1	2	2	2	3	1	3	3
2	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3
3	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3
4	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3
5	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1					
CD2	Tutorials/Assignments	CO2	CD1					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects							
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Decture wise Desson plaining Details	I	Lecture	wise	Lesson	planning	Details.
--------------------------------------	---	---------	------	--------	----------	-----------------

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	<mark>COs</mark>	Methodology
No.	No.	Date	No.		Book /	mapped	used
					Refere		
					nces		
1	L1	January		Additives for Plastics: Definition, classification	T1,	1, 2	PPT Digi
					R1,T3		Class/Chalk
							-Board
	L2			mechanism of action, method of incorporation of:	T1,		-do-
				fillers	R1,T3		
	L3			mechanism of action, method of incorporation of:	T1,		-do-
				fillers	R1,T3		
2	L4			mechanism of action, method of incorporation of:	T1,		-do-
				coupling agents	R1,T3		
	L5			mechanism of action, method of incorporation of:	T1,		-do-
				stabilizer (antioxidants)	R1,T3		
	L5			mechanism of action, method of incorporation of:	T1,		-do-
				stabilizer (antioxidants, antiozonants)	R1,T3		
3	L6			mechanism of action, method of incorporation of:	T1,		-do-
				blowing agents	R1,T3		
	L7			mechanism of action, method of incorporation of:	T1,		-do-
				plasticizer	R1,T3		
	L8			mechanism of action, method of incorporation of:	T1,		-do-
				cross linking agents	R1,T3		
4	L9			mechanism of action, method of incorporation of:	T1,		-do-
				Flame retardants	R1,T3		
	L10	February		mechanism of action, method of incorporation of:	T1,		-do-
		-		Colorants: pigments and dyes	R1,T3		
	L11			mechanism of action, method of incorporation of:	T1,		-do-
				Colorants: pigments and dyes	R1,T3		
5	L12			mechanism of action, method of incorporation of:	T1,		-do-
				blowing agents	R1,T3		

	L13		mechanism of action, method of incorporation of:	T1,	-do-
			antistatic agents	R1,13	
	L14		mechanism of action, method of incorporation of:	T1,	-do-
			antiblock agents	R1,T3	
6	L15		mechanism of action, method of incorporation of:	T1,	-do-
			nucleating agents	R1,T3	
	L16		mechanism of action, method of incorporation of:	T1,	-do-
			mould releasing, flow promoters, slip additives,	R1,T3	
			extenders		
	L17		Manufacturing process, processing application	T1	-do-
			maior		
			engineering problems & economics LDPE		
7	L18	March	Manufacturing process, processing application	T1,T2,R3	-do-
			major		
			engineering problems & economics LDPE		
	L19		Manufacturing process, processing application	T1,	-do-
			major	R3,R2	
			engineering problems & economics HDPE		
	L20		Manufacturing process, processing application	T1,	-do-
			major	T2,R3	
			engineering problems & economics HDPE		
8	L21		Manufacturing process, processing application	T1	-do-
			major		
			engineering problems & economics LLDPE		
	L22		Manufacturing process, processing application	T1,	-do-
			major	T2,R3,R2	
			engineering problems & economics PP		
	L23		Manufacturing process, processing application	T1	-do-
			major		
			engineering problems & economics PP		
9	L24		Manufacturing process, processing application	T1,	-do-
			major	R3,R2,T2	
			engineering problems & economics UHMHDPE		

			and XLPE		
	L25		Manufacturing process of PTFE	T1	-do-
	L26		Manufacturing, Properties, processing, applications,	T1	-do-
			major engineering problems of nylon 6		
10	L27		Manufacturing, Properties, processing, applications,	T1	-do-
			major engineering problems of nylon 6		
	L28	April	Manufacturing, Properties, processing, applications,	T1	-do-
			major engineering problems of nylon 66		
	L29		Manufacturing, Properties, processing, applications,	T1	-do-
			major engineering problems of nylon 66		
11	L30		Manufacturing, Properties, processing, applications,	T1	-do-
			major engineering problems of polyimides		
	L31		Cellulosics polymer	T1	-do-
	L32		Manufacturing, Properties, processing, applications	T1	-do-
			of PS		
12	L33		Manufacturing, Properties, processing, applications	T1	-do-
			of PVC		
	L34		Manufacturing, Properties, processing, applications	T1	-do-
			of PVC		
	L35		Manufacturing, Properties, processing, applications	T1	-do-
			of ABS and SAN		
13	L36		Manufacturing, Properties, processing, applications	T1	-do-
			of ABS and SAN		
	L37		Manufacturing, Properties, processing, applications	T1	-do-
			of Acrylics		
	L38		Manufacturing, Properties, processing, applications	T1	-do-
			of PVOH / PVAc		
14	L39		Manufacturing, Properties, processing, applications	T1	-do-
			of polyvinyl ester		
	L40		Manufacturing, Properties, processing, applications	T1	-do-
			of ionomers		