

Department of Chemical Engineering Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

Institute Vision

To become a Globally Recognized Academic Institution in consonance with the social, economic and ecological environment, striving continuously for excellence in education, research and technological service to the National needs.

Institute Mission

- To educate students at Undergraduate, Post Graduate Doctoral and Post-Doctoral levels to perform challenging engineering and managerial jobs in industry.
- To provide excellent research and development facilities to take up Ph.D. programmes and research projects.
- To develop effective teaching and learning skills and state of art research potential of the faculty.
- To build national capabilities in technology, education and research in emerging areas.
- To provide excellent technological services to satisfy the requirements of the industry and overall academic needs of society.

Department Vision

To be a centre of excellence for the provision of effective teaching/learning, skill development and research in the areas of chemical engineering and allied areas through the application of chemical engineering principles.

Department Mission

1) To educate and prepare graduate engineers with critical thinking skills in the areas of chemical engineering & polymer science and engineering, who will be the leaders in industry, academia and administrative services both at national and international levels.

2) To inculcate a fundamental knowledge base in undergraduate students which enable them to carry out post-graduate study, do innovative interdisciplinary doctoral research and to be engaged in long-life learning.

3) To train students in addressing the challenges in chemical, petrochemical, polymer and allied industries by developing sustainable and eco-friendly technologies.

Program Educational Objectives (PEO) for BE- Chemical Engineering

- 1. To understand and apply working knowledge of chemical engineering principles in independent research and development
- 2. To implement the inter-perceptional skills of individuals in technical profession
- 3. To update technical know-how by self- learning besides learning a great deal by associating with professional bodies and alumni
- 4. To develop an ability to succeed in the graduate competitive examinations and pursue higher studies in chemical engineering or lateral disciplines

Program Outcomes (PO)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Programme Specific Objectives

<u>PSO 1</u>

To develop students' understanding of the core scientific, mathematical and engineering principles conceive and design processes to produce, transform and transport materials (chemical products) — beginning with experimentation in the laboratory and followed by implementation of technologies in full-scale production.

<u>PSO 2</u>

To prepare students for professional work in development, design, modelling, simulation, optimization and operation of chemical products and processes.

<u>PSO 3</u>

With due emphasis on interdisciplinary and industrial collaboration, students are prepared for employment in such industries as chemical, petroleum, electrochemical, biochemical, semiconductor, nuclear, aerospace, plastics, food processing, environmental control etc.

<u>PSO 4</u>

Prepare students with high scholastic attainment to enter graduate programs leading to advanced degrees in chemical engineering or in related professional, scientific, and engineering fields.

COURSE INFORMATION SHEET: CL 201 Thermodynamics

Course code	CL201				
Course title	Thermodynamics				
Pre-requisite(s)	-				
Co- requisite(s)					
Credits	L: 3	T: 1	P : 0		
Class schedule per week	4				
Class	B. Tec	ch.			
Semester / Level	III / Second				
Branch	Chemical Engineering				
Name of Teacher					

Course Objectives

This course enables the students:

1.	To apply knowledge of the laws of thermodynamics to solve physical and chemical
	problems encountered in chemical and biochemical industries.
2.	To analyze and interpret data, to identify, formulate, and solve engineering problems.
3.	To use the techniques, skills, and modern engineering tools necessary for engineering
	practice.

Course Outcomes

After the completion of this course, students will be able to:

CO201.1	Apply the laws of thermodynamics on closed and open systems.		
CO201.2	<i>Evaluate</i> the properties of real gases.		
CO201.3	Solve problems involving various thermodynamic cycles.		
CO201.4	<i>Evaluate</i> the thermodynamic properties (Such as Partial molar properties, Fugacity		
	coefficients, activity coefficients etc.) of pure fluid and fluid mixtures.		
C0201.5	Predict equilibrium composition of mixtures under phase and chemical-reaction		
	equilibria.		

Syllabus

Module 1: Introduction and Basic Concepts

First law of thermodynamics, Energy balance for closed systems, Mass and Energy balances for open systems, Volumetric properties of pure fluids, Virial equations of state, Cubic equations of state, Theorem of corresponding states, Acentric factor, generalized correlations for gases and liquids, Statements of the second law, Heat engines, Carnot cycle, Refrigerator and Heat pump, Third law of thermodynamics, Microscopic interpretation of entropy. [8L]

Module 2: Thermodynamic Relations and Thermodynamic Properties of Fluids

Euler relation, Gibbs-Duhem relation, Legendre transformation, Helmholtz free energy, Gibbs free energy, Maxwell relations, Gibbs energy as a generating function, Joule-Kelvin Effect, Bridgman table,

Clausius/Clapeyron equation, Antoine equation, Residual properties, Thermodynamic properties of real gases using tables and diagrams: Edmister chart, Lee-Kesler data. [8L]

Module 3: Vapor-Liquid Equilibrium in Mixtures

Introduction to Vapor-Liquid Equilibrium, Vapor-Liquid Equilibrium in ideal mixtures, Dew point and bubble point temperatures/Pressures, VLE from K-value correlations (Flash calculations), Low-Pressure Vapor-Liquid equilibrium in non-ideal mixtures, EOS, SRK. [8L]

Module 4: Thermodynamics of Multicomponent Mixtures

Fundamental Property Relation, The Chemical Potential and Phase Equilibria, Partial Properties, The Ideal-Gas Mixture Model, Fugacity and Fugacity Coefficient (Pure Species and Species in Solution), The Ideal-Solution Model, Excess Properties, The Excess Gibbs Energy and the Activity Coefficient, Models for the Excess Gibbs Energy (Margules equation, Redlich-Kister equation, van Laar equation, Wilson equation, NRTL model and UNIQUAC equation) SRK, PR. [8L]

Module 5: Chemical Reaction Equilibria

The reaction coordinate, Application of Equilibrium Criteria to Chemical Reactions, The standard Gibbs Energy Change and the Equilibrium Constant, Effect of Temperature on the Equilibrium Constant, Evaluation of Equilibrium Constants, Relation of equilibrium constants to composition, Equilibrium Conversions for single Reactions, Phase Rule and Duhem's Theorem for Reacting Systems, Multi-reaction equilibria. [8L]

Text books:

1. Introduction to Chemical Engineering Thermodynamics: J.M. Smith, H.C. Van ness, and M.M. Abbot. 7th Edition, McGraw-Hill's Chemical Engineering Series.

2. Chemical, Biochemical and Engineering Thermodynamics: Stanley I. Sandler. Fourth Edition, John Wiley & Sons, Inc.

3. Chemical Engineering Thermodynamics: Y V C Rao, University Press.

Reference books:

1. Molecular Thermodynamics of Fluid-Phase Equilibria: J.M. Prausnitz, R.N. Lichtenthaler, E G de Azevedo. 3^{rd} Edition, Prentice Hall International Series in the Physical and Chemical Engineering Sciences.

2. Engineering and Chemical Thermodynamics: Milo D. Koretsky. 2nd Edition, John Wiley & Sons, Inc.
3. Using Aspen Plus in Thermodynamics Instruction: Stanley I. Sandler, John Wiley & Sons, Inc.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

Introduction to molecular/statistical thermodynamics.

POs met through Topics beyond syllabus/Advanced topics/Design

PO2, PO3 and PO4

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y	Ν	Ν
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)							PSOs							
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	3	2	2	2	2	0	1	2	0	3	3	3	3	3
2	3	2	1	2	3	0	1	0	1	2	0	3	3	3	3	3
3	3	1	1	1	1	0	0	0	1	1	0	1	3	3	3	3
4	3	3	2	2	3	1	2	0	1	2	0	3	3	3	3	3
5	3	3	1	2	3	2	2	0	1	2	0	3	3	3	3	3

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1, CO2, CO3, CO4, CO5				
CD2	Tutorials/Assignments	CO1, CO2, CO3, CO4, CO5				
CD3	Seminars					
CD4	Mini projects/Projects	CO2, CO3, CO5				
CD5	Laboratory experiments/teaching aids					
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets	CO1, CO2, CO3, CO4, CO5				
CD9	Simulation					

Lecture wise Lesson Planning Details.

Week	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks by
No.	No.	ative	No.	*	Book /	mapped	Content	used	faculty if
		Date			Refere	•••	covered		any
					nces				2
1	1			First Law of thermodynamics, Mass/Energy	TX1, TX2, TX3	CO1			
				balance for open/closed systems					
	2			Volumertric properties of fluids, Virial EOS	TX1, TX2, TX3	CO2			
	3			Cubic EOS, Theorem corresponding states,	TX1, TX2, TX3	CO2			
				Acentric factor, correlation for gases-liquids					
	4			Solve numerical problems based on L1 to L3	TX1, TX2, TX3				
2	5			Second law of TD, heat engines	TX1, TX2, TX3	CO1,			
						CO3			
	6			carnot cycle, refrigeration, heat pump	TX1, TX2, TX3	CO3			
	7			Third law of TD, Microscopic interpretation of	TX1, TX2, TX3	CO1			
				entropy					
	8			Solve numerical problems based on L4 to L6	TX1, TX2, TX3				
				<u>^</u>					
3	9			Euler relation, Gibbs-Duhem relation, Legendre	TX1, TX2, TX3	CO4			
				transformation					
	10			Helmholtz free energy, Gibbs free energy,	TX1, TX2, TX3	CO4			
				Maxwell relations, Gibbs energy as a generating					
				function					
	11			Joule-Kelvin Effect, Bridgman table	TX1, TX2, TX3	CO4			
	12			Solve numerical problems based on L7 to L9					
4	13			Clausius/Clapeyron equation, Antoine equation.	TX1, TX2, TX3	CO4			
	14			Residual properties	TX1, TX2, TX3	CO4			
	15			Thermodynamic properties of real gases using	TX1, TX2, TX3	CO4			
				tables and diagrams: Edmister chart, Lee-Kesler					
				data					
	16			Solve numerical problems based on L10 to L12					
5	17			Introduction to VLE	TX1, TX2, TX3	CO4,			

				CO5		
	18	VLE in ideal mixtures	TX1, TX2, TX3	CO4.		
			, , , -	CO5		
	19	Dew point and bubble point	TX1, TX2, TX3	CO4,		
		temperatures/Pressures, VLE from K-value		CO5		
		correlations				
	20	Solve numerical problems based on L13 to L15				
6	21	Flash calculations	TX1, TX2, TX3	CO4,		
				CO5		
	22	Flash Calculations	TX1, TX2, TX3	CO4,		
				CO5		
	23	Low-Pressure VLE in non-ideal mixtures.	TX1, TX2, TX3	CO4,		
				CO5		
	24	Solve numerical problems based on L16 to L18				
7	25	Fundamental Property Relation, The Chemical	TX1, TX2, TX3	CO4		
		Potential and Phase Equilibria				
	26	Partial Properties, The Ideal-Gas Mixture Model	TX1, TX2, TX3	CO4		
	27	Fugacity and Fugacity Coefficient (Pure Species	TX1, TX2, TX3	CO4		
		and Species in Solution)				
	28	Solve numerical problems based on L19 to L21				
	•			<u> </u>		
8	29	The Ideal-Solution Model, Excess Properties,	TX1, TX2, TX3	CO4		
	20	The Excess Gibbs Energy , Activity Coefficient		004		
	30	Models for the Excess Gibbs Energy (Margules	TX1, TX2, TX3	CO4		
	31	equation, Redlich-Kister equation,	TV1 TV2 TV2	CO4		
	31	van Laar equation, Wilson equation, NRTL	TX1, TX2, TX3	CO4		
	32	model and UNIQUAC equation).Solve numerical problems based on L22 to L24				
	32	Solve numerical problems based on L22 to L24				
9	33	The reaction coordinate, Application of	TX1, TX2, TX3	CO5		
7	55	Equilibrium Criteria to Chemical Reactions	171, 172, 173			
	34	The standard Gibbs Energy Change and the	TX1, TX2, TX3	CO5		
	J 4	Equilibrium Constant	171, 172, 173			
	35	Effect of Temperature on the Equilibrium	TX1, TX2, TX3	CO5		
	55	Effect of reinperature on the Equilibrium	$1\Lambda 1, 1\Lambda 2, 1\Lambda 3$	0.05		

		Constant, Evaluation of Equilibrium Constants				
	36	Solve numerical problems based on L25 to L27				
10	37	Relation of equilibrium constants to composition, Equilibrium Conversions for single Reactions	TX1, TX2, TX3	CO5		
	38	Phase Rule and Duhem's Theorem for Reacting Systems	TX1, TX2, TX3	CO5		
	39	Multi-reaction equilibria.	TX1, TX2, TX3	CO5		
	40	Solve numerical problems based on L28 to L30				

COURSE INFORMATION SHEET: CL 203 Fluid Mechanics

CL203				
Fluid Mechanics				
L: 3 T:0 P: 0				
03				
B. Tech				
III / Second				
Chemical				

This course enables the students:

1.	To develop an appreciation for the properties of Newtonian fluids.			
2.	To apply concepts of mass and momentum conservation to fluid flows and			
	analytically solve a variety of simplified problems.			
3.	To understand the dynamics of fluid flows and the governing non-dimensional			
	parameters.			

Course Outcomes

After the completion of this course, students will be able to:

CO203.1	Describe fluid pressure, its measurement and calculate forces on submerged
	bodies.
CO203.2	Understand the flow visualization, boundary layer and momentum correction
	factor, state the Newton's law of viscosity and Reynolds number. Analyze fluid
	flow problems with the application of the continuity and momentum equation.
CO203.3	Examine energy losses in pipe transitions and evaluate pressure drop in pipe
	flow using Hagen-Poiseuille's equation and Bernoulli's principle for laminar
	flow.
CO2034	Understand the concept of drag, lift, streamlining, equivalent diameter,
	sphericity, determine minimum fluidization velocity in fluidized bed and
	Compute pressure drop in fixed bed, packed bed and fluidized system.
CO203.5	Analyze the general equation for internal flow meters and Determine and
	analyze the performance aspects of fluid machinery.

Syllabus:

Module 1:

Fluid Statics: Basic equation of fluid statics; pressure variation in a static field; pressure measuring devices-manometer, U-tube, inclined tube, well, diaphragm, hydraulic systems – force on submerged bodies (straight, inclined), pressure centre. **[8L]**

Module 2:

Fluid flow phenomena: Fluid as a continuum, Terminologies of fluid flow, velocity – local, average, maximum, flow rate – mass, volumetric, velocity field; dimensionality of flow; flow visualization – streamline, path line, streak line, stress field; viscosity; Newtonian fluid; Non-Newtonian fluid; Reynolds number-its significance, laminar, transition and turbulent flows: Prandtl boundary layer, compressible and incompressible. Momentum equation for integral control volume, momentum correction factor. **[8L]**

Module 3:

Internal incompressible viscous flow: Introduction; flow of incompressible fluid in circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseullie equation; flow of Non-Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow, relation between average and maximum velocity, Bernoulli's equation–kinetic energy correction factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. **[8L]**

Module 4:

Flow past of immersed bodies: Introduction; concept of drag and lift; variation of drag coefficient with Reynolds number; streamlining; packed bed; concept of equivalent diameter and sphericity; Ergun equation, Fluidization: Introduction; different types of fluidization; fluidized bed assembly; governing equation; industrial use. Agitation and mixing of liquids: agitated vessel, blending & mixing, suspension of solid particles. Dispersion operation. Turbine Design/scale up, Flow number, Power Requirement. **[8L]**

Module 5:

Flow measurement: Introduction; general equation for internal flow meters; Orifice meter; Venturimeter; concept of area meters: rotameter; Local velocity measurement: Pitot tube. Fluid moving machines: Introduction; Basic classification of pumps, Mechanical pump: Centrifugal and Positive displacement pumps (rotary, piston, plunger, diaphragm pumps); pump specification; basic characteristics curves for centrifugal pumps; fan, blower and compressor. **[8L]**

Text books:

1. McCabe, W.L., Smith J.C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill, Inc.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering, Volume I", Pergamon Press.

3. Geankoplis, C.J., "Transport Processes and Unit Operations", Prentice-Hall Inc.

Reference books:

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u>

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Mid Sem Examination Marks	Y	Y	Y	Y				
End Sem Examination Marks	Y	Y	Y	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y	Y	Y	Y

Indirect Assessment –

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)						PSOs								
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
2	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
3	3	3	2	2	2	2	2	2	3	3	1	2	3	3	2	2
4	3	3	3	2	2	2	2	2	3	3	1	2	3	3	2	2
5	3	3	3	2	2	2	2	2	3	3	1	2	3	3	2	2

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome				
		CO1, CO2, CO3, CO4,				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO5, CO6, CO7, CO8				
		CO1, CO2, CO3, CO4,				
CD2	Tutorials/Assignments	CO5, CO6, CO7, CO8				
CD3	Seminars					
CD4	Mini projects/Projects					
CD5	Laboratory experiments/teaching aids					
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
		CO1, CO2, CO3, CO4,				
CD8	Self- learning such as use of NPTEL materials and internets	CO5, CO6, CO7, CO8				
CD9	Simulation					

Lecture wise Lesson planning Details.

Wee	Lec	Tenta	Ch	Topics to be covered	Text	COs	Actual	Methodolog	Remark
K	t.	tive			Book /	mapped	Content	у	s by
Jo.	No.	Date	No		Referenc		covered	used	faculty
					es				if any
	L1			Fluid Statics: Basic equation of fluid statics;	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L2			pressure variation in a static field;	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L3			pressure measuring devices-manometer, U-tube, inclined	T1	1,2		PPT Digi	
				tube, well, diaphragm,				Class/Chalk	
								-Board	
	L4			, hydraulic systems - force on submerged bodies (straight,	T1	1,2		PPT Digi	
				inclined), pressure centre.				Class/Chalk	
								-Board	
	L6			Fluid flow phenomena: Fluid as a continuum	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L7			Terminologies of fluid flow, velocity - local, average,	T1	1,2		PPT Digi	
				maximum, flow rate - mass, volumetric, velocity field;				Class/Chalk	
				dimensionality of flow				-Board	
	L8			flow visualization – streamline, path line, streak line,	T1	1,2		PPT Digi	
								Class/Chalk	
								-Board	
	L9-			Newtonian fluid; Non-Newtonian fluid; Reynolds number-	T1	1,2,3		PPT Digi	
	11			its significance, laminar, transition and turbulent flows:				Class/Chalk	
				Prandtl boundary layer,				-Board	

L12	compressible and incompressible. Momentum equation for	T1	1,2,3	PPT Digi
-14	integral control volume, momentum correction factor.			Class/Chalk
				-Board
L15	Internal incompressible viscous flow: Introduction; flow of	T1	1,2,3	PPT Digi
-17	incompressible fluid in circular pipe; laminar flow for			Class/Chalk
	Newtonian fluid; Hagen-Poiseullie equation; flow of Non-			-Board
	Newtonian fluid,			
L18	introduction to turbulent flow in a pipe; energy	T1	1,2,3	PPT Digi
-19	consideration in pipe flow, relation between average and			Class/Chalk
	maximum velocity,			-Board
L20	Bernoulli's equation–kinetic energy correction factor; head	T1	1,2,3	PPT Digi
-21	loss; friction factor; major and minor losses,			Class/Chalk
				-Board
L22	Pipe fittings and valves	T1	1,2,3	PPT Digi
				Class/Chalk
				-Board
L23	Flow past of immersed bodies: Introduction; concept of	T1	1,2,3	PPT Digi
-24	drag and lift; variation of drag coefficient with Reynolds			Class/Chalk
	number; streamlining;			-Board
L24	packed bed; concept of equivalent diameter and sphericity;	T1	1,2,3	PPT Digi
-26	Ergun equation, Fluidization: Introduction; different types			Class/Chalk
	of fluidization; fluidized bed assembly; governing			-Board
	equation; industrial use.			
L27	Agitation and mixing of liquids: agitated vessel, blending	T1	1,2,3	PPT Digi
-28	& mixing,			Class/Chalk
				-Board
L29	suspension of solid particles. Dispersion operation.	T1	1,2,3	PPT Digi
-30	Turbine Design/scale up, Flow number, Power			Class/Chalk
	Requirement.			-Board

L31	Flow measurement: Introduction; general equation for	T1	1,2,3	PPT Digi
L32	internal flow meters; Orifice meter; Venturimeter; concept			Class/Chalk
-33	of area meters: rotameter;			-Board
L34	Local velocity measurement: Pitot tube.	T1	1,2,3	PPT Digi
				Class/Chalk
				-Board
L35	Fluid moving machines: Introduction; Basic classification	T1	1,2,3	PPT Digi
-40	of pumps, Mechanical pump: Centrifugal and Positive	:		Class/Chalk
	displacement pumps (rotary, piston, plunger, diaphragm			-Board
	pumps); pump specification; basic characteristics curves			
	for centrifugal pumps; fan, blower and compressor.			

COURSE INFORMATION SHEET: CL204 Chemical Process Calculations

Course code:	CL204
Course title:	Chemical Process Calculations
Pre-requisite(s):	
Co- requisite(s):	
Credits:	L: 2 T: 1 P: 0
Class schedule per week:	3 hrs
Class:	B. Tech
Semester / Level:	III / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	To use basic, applied chemistry/ thermodynamics for material balance calculations
	for different unit operations and unit processes.
2.	To use basic, applied chemistry/ thermodynamics for energy balance calculations
	for different unit operations and unit processes.
3.	To develop the systematic problem solving skills.

Course Outcomes

After the completion of this course, students will be able to:

CO204.1	Apply the concept of dimension and unit conversion to check dimensional			
	consistency of balanced equation and understand the specific terms used in			
	process calculation.			
CO204.2	Solve problems related to ideal and real gas and solution.			
CO204.3	Solve material balance problems without chemical reactions.			
CO204.4	Solve material balance problems with chemical reactions.			
CO204.5	Solve energy balance problems of various unit processes.			

Syllabus

Module I: Introduction to Stoichiometry:

Units and Dimensions: Conversion of Equations, Systems of Units, Dimensional Homogeneity and Dimensionless Quantities, Buckingham Pi-theorem for Dimensional Analysis, Introduction to Chemical Engineering Calculations: Basis, Mole Fraction and Mole Percent, Mass Fraction and Mass Percent, Concentration of different forms, Conversion from one form to another, Stoichiometric and composition relations, Excess & Limiting reactants, Degree of completion, Conversion, Selectivity and Yield. [8L]

Module II: Gas Calculations, Humidity & Saturation:

Gas laws-Ideal gas law, Dalton's Law, Amagat's Law, and Average molecular weight of gaseous mixtures. Vapour pressure, partial pressure, Vapour pressures of miscible, immiscible liquids and solutions. Real-gas relationships, Roult's Law, Henry's law, Antoine's Equation, Clausius Clapeyron Equation. PVT calculations using ideal and real gas relationships, Relative Humidity and percent saturation; Dew point, Dry and Wet bulb temperatures; Use of humidity charts for engineering calculations. [8L]

Module III: Material Balance without Chemical Reaction:

Unit Operations & Process Variables, Degree of Freedom Analysis, Application of material balances to single and multiple unit operations without chemical reactions involving distillation column, absorption column, evaporators, driers, crystallizer, liquid-liquid and liquid-solid extraction units, Unsteady state material balances. [8L]

Module IV: Material Balance with Chemical Reaction:

Material balances with Single Reaction & Multiple Reactions applicable to single and multiple unit operations, Recycle, purge, bypass in batch, stage wise and continuous operations in systems with or without chemical reaction. Material balances in combustion, gas-synthesis, acid-alkali production reactions. [8L]

Module V: Energy Balance:

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible and latent heats, Evaluation of enthalpy, Standard heat of reaction, heat of formation, combustion, solution mixing etc., Calculation of standard heat of reaction, Hess Law, Energy balance for systems with and without chemical reaction, Unsteady state energy balances. [8L]

Text books:

- 1. Haugen, P.A. Watson, K.M., Ragatz R.A Chemical Process Principles Part I
- 2. Himmelblau, D.M Basic Principles and Calculation in chemical engineering, Prentice Hall
- 3. Bhatt B.L.Vora, S.M Stoichiometry, Tata McGraw Hill Publishing Co. Ltd., New Delhi

Reference books:

- 1. Felder, R. M.; Rousseau, R. W., "Elementary Principles of Chemical Processes", Third Edition, John Wiley & Sons, 2000
- 2. Venkataramani, V., Anantharaman, N., Begum, K. M. Meera Sheriffa, "Process Calculations", Second Edition, Prentice Hall of India.
- 3. Sikdar, D. C., "Chemical Process Calculations", Prentice Hall of India

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4
Mid Sem Examination Marks	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y
Quiz	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)									PSOs					
Outcome	1	1 2 3 4 5 6 7 8 9 10 11 12						1	2	3	4					
1	3	3	0	0	2	0	0	0	1	0	0	3	3	0	1	2
2	3	3	2	1	1	1	0	0	1	1	0	3	3	0	1	2
3	3	3	0	1	1	2	2	2	2	2	2	3	3	3	2	2
4	3	3	2	0	1	2	2	2	2	2	2	3	3	3	2	2
5	3	3	2	0	1	2	2	2	2	2	2	3	3	3	2	2

	Mapping Between COs and Course Delivery (CD) methods								
Course									
CD	Course Delivery methods	Outcome							
		CO1, CO2,							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4							

		CO1, CO2,
CD2	Tutorials/Assignments	CO3, CO4
CD3	Seminars	
CD4	Mini projects/Projects	
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
CD7	Industrial visits/in-plant training	
		CO1, CO2,
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4
CD9	Simulation	

Lecture wise Lesson planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks	,
k		e	No		Book /	mapped	Content	used	by	
No.	No.	Date			Refere		covered		faculty	if
					nces				any	
1	L1		1	Units and Dimensions: Conversion of Equations, Systems	T1, T2,	1		PPT		
				of Units, Dimensional Homogeneity and Dimensionless	T3, R1,					
				Quantities,	R2, R3					
	L2		1	Buckingham Pi-theorem for Dimensional Analysis	T1, R2	1		PPT, Chalk		
								-Board		
	L3		1	Introduction to Chemical Engineering Calculations: Basis,	T1, T2,	2, 3, 4, 5		PPT, Chalk		
				Mole Fraction and Mole Percent, Mass Fraction and Mass	T3, R1,			-Board		
				Percent	R2, R3					
2	L4		1	Concentration of different forms, Conversion from one	T1, T2,	2, 3, 4, 5		PPT, Chalk		
				form to another,	T3			-Board		
	L5		1	Stoichiometric and composition relations	T1, R2	2, 3, 4, 5		PPT, Chalk		
								-Board		
	L6		1	Excess & Limiting reactants	T1, R2	2, 4, 5		Chalk		
								-Board		
3	L7		1	Degree of completion, Conversion, Selectivity and Yield	T1, R2	2, 4, 5		Chalk		
								-Board		
	L8		1	Tutorial				Assignment		
	L9		2	Gas laws-Ideal gas law, Dalton's Law, Amagat's Law, and	T1, R2	2		PPT		
				Average molecular weight of gaseous mixtures.						
4	L10		2	Vapour pressures of miscible, immiscible liquids and	T1, R2	2		PPT, Chalk		
				solutions.				-Board		
	L11		2	Real-gas relationships, Roult's Law, Henry's law,	T1, R2	2		PPT, Chalk		
								-Board		
	L12		2	Antoine's Equation, Clausius Clapeyron Equation.	T1, R1	2		PPT, Chalk		7
								-Board		
5	L13		2	PVT calculations using ideal and real gas relationships,	T1, R2	2		Chalk		ľ
								-Board		
	L14		2	Relative Humidity and percent saturation; Dew point, Dry	T1, R2	3		PPT, Chalk		7

			and Wet bulb temperatures;			-Board
	L15	2	Use of humidity charts for engineering calculations	T1, R2	3	PPT, Chalk
						-Board
6	L16	2	Tutorial			Assignment
	L17	3	Unit Operations & Process Variables, Degree of Freedom	T1, R2	4, 5	PPT, Chalk
			Analysis,			-Board
	L18	3	Application of material balances to single unit operations	T1, T2,	4, 5	PPT, Chalk
			– Distillation and Absorbtion columns	T3, R1,		-Board
				R2, R3		
7	L19	3	Application of material balances to single unit operations	T1, T2,	4, 5	PPT, Chalk
			– Evaporators & Driers	T3, R1,		-Board
	1.20	2		R2, R3	1.5	
	L20	3	Application of material balances to single unit operations	T1, T2,	4, 5	PPT, Chalk
			-crystallizer, liquid-liquid and liquid-solid extraction	T3, R1, R2, R3		-Board
			units,	-		
	L21	3	Application of material balances to Multiple Unit	T1, T2,	4, 5	PPT, Chalk
			operations	T3, R1,		-Board
8	1.22	2		R2, R3	4.5	PPT, Chalk
8	L22	3	Application of material balances to Multiple Unit	T1, T2, T3, R1,	4, 5	-Board
			operations	R2, R3		-Board
	L23	3	Unsteady state material balances	T1, T2,	4, 5	PPT, Chalk
	125	5	Unsteady state material balances	T1, T2, T3, R1,	т, 5	-Board
				R2, R3		Dourd
	L24	3	Tutorial	112,110		Assignment
9	L25	4	Material balances with Single Reaction & Multiple	T1, T2,	4, 5	PPT, Chalk
-	_		Reactions applicable to single unit operations,	T3, R1,	y -	-Board
			reactions appreaded to single and operations,	R2, R3		
	L26	4	Material balances with Single Reaction & Multiple	T1, T2,	4, 5	PPT, Chalk
			Reactions applicable to multiple unit operations,	T3, R1,		-Board
				R2, R3		
	L27	4	Material balances applied to unit operations with Recycle,	T1, T2,	4, 5	PPT, Chalk
			purge, bypass in batch, stage wise and continuous	T3, R1,		-Board
			operations in systems with or without chemical reaction.	R2, R3		

				1		
101	L28	4	Material balances applied to unit operations with Recycle, purge, bypass in batch, stage wise and continuous operations in systems with or without chemical reaction.	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L29	4	Material balances in combustion, Excess air calculations,	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
	L30	4	Material balances in combustion, Excess air calculations,	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
11	L31	4	Material balances in gas-synthesis, acid-alkali production reactions.	T1, T2, T3, R1, R2, R3	4, 5	Chalk -Board
	L32	4	Tutorial			Assignment
	L33	5	Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations,	T2, R1	5	PPT
12	L34	5	problems involving sensible and latent heats,	T2, R1	5	Chalk -Board
	L35	5	Evaluation of enthalpy, Standard heat of reaction,	T2, R1	5	PPT, Chalk -Board
	L36	5	heat of formation, combustion, solution mixing etc.,	T2, R1	5	PPT, Chalk -Board
13	L37	5	Calculation of standard heat of reaction, Hess Law,	T1, T2, R1	5	Chalk -Board
	L38	5	Energy balance for systems with and without chemical reaction,	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
	L39	5	Unsteady state energy balances	T1, T2, T3, R1, R2, R3	4, 5	PPT, Chalk -Board
14	L40	5	Tutorial			Assignment

COURSE INFORMATION SHEET: CL 205 Mechanical Operations

Course code:CL 205Course title:Mechanical Operation				ıs
Pre-requisite(s):-				
Co- requisite(s):-				
Credits:	L:3	T:0	P:0	
Class schedule per week:	3			
Class: B. Tech				
Semester / Level:	III / S	Second		
Branch:	Chen	nical En	gineering	5
Name of Teacher:				

Course Objectives

This course enables the students:

1.	To understand particulate solid characterization and storage and transportation of solids
2.	To understand principles of size reduction and equipment for size reduction
3.	To understand solid-liquid, liquid-liquid, gas-solid and solid-solid Mechanical separation

Course Outcomes

After the completion of this course, students will have:

CO205.1	Knowledge of particle size analysis, solid storage and transportation properties like
	frictional properties.
CO205.2	Knowledge of size reduction machineries for various industries and calculate power
	requirement.
CO205.3	Knowledge to design Gravity and Centrifugal settling processes for various applications,
	including pollution control in industry.
CO205.4	Knowledge of filtration equipment for different chemical industries, and designing of
	filtration process
CO205.5	Knowledge of solid-solid and gas-solid separation techniques for various applications
	including coal, mineral beneficiation environmental pollution control

Syllabus:

Module 1:

Characterization of solid particles: Particle Shape. Particle size analysis Differential and cumulative analysis. **Properties of particulate masses:** Bulk density, coefficient of Internal Friction, Storage of solids, Pressure distribution in hopper. Janssen Equation. **Transportation of Solids**: Studies on performance and operation of different conveyors eg. Belt, Screw, Apron, Flight etc. and elevators. [8L]

Module 2:

Size Reduction: Rittinger_s law, Kick_s law, Bond_s law, Work index, Types of comminuting equipment – Jaw Crushers, Gyratory Crusher, Roll crushers; Grinders-hammer Mill, Ball Mill, Rod Mill etc. Dry and wet griding, open and closed circuit. Simulation of Milling operation grinding rate function, breakage function. [8L]

Module 3:

Solid Liquid separation : Gravity Settling process – Clarifiers and Thickeners, Flocculation Design of Gravity Thickner,. **Centrifugal Settling:** principle, Centrifuges for solid liquid and liquid separation. [8L]

Module 4:

Filtration: Theory of solid-liquid filtration, principle of filtration, constant pressure and constant rate filtration, compressible and incompressible cakes, Filter aids, Equipment of liquid solid filtration, Batch and continuous pressure filters. Theory of centrifugal filtration, Equipment for centrifugal filtration. [8L]

Module 5:

Solid Solid Separation : Industrial Screening equipment :Screen effectiveness and Capacity.**Wet Classification:** Differential settling, Liquid cyclones,Drag, Rake and Spiral, Bowl, Hydroseparator, Hydaulic classifiers, Tabling, Jigging, Froth floatation, Dense media separation etc.Magnetic separation, Electrostating Separation. **Gas-solid separation:** Settling chambers, centrifugal settling, Cyclones, ESP, Scrubbers, Filters. [8L]

Suggested Books:

1. McCabe, W.L., Smith J.C., and Harriot, P., "Unit Operations Chemical Engineering", McGraw-Hill, Inc.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering, Volumel", Pergamon Press.

3. Geankoplis, C.J., "Transport Processes and Unit Operations", Prentice-Hall Inc.

Gaps in the syllabus (to meet Industry/Profession requirements) : Visit to industries like Coal Washeries, Mineral processing like HINDALCO

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design :

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6	CO7
Mid Sem Examination Marks	Y	Y	Y	Y			
End Sem Examination Marks	Y	Y	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course	Course Program Outcomes (POs)								PSOs							
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
2	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
3	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
4	3	3	3	2	3	2	2	1	1	1	1	1	3	3	3	3
5	3	3	3	2	3	1	1	1	1	1	1	1	3	3	3	3

	Mapping Between COs and Course Delivery (CD) methods						
		Course					
CD	Course Delivery methods	Outcome					
		CO1, CO2,					
		CO3, CO4,					
		CO5, CO6,					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO7					

		CO1, CO2,
		CO3, CO4,
		CO5, CO6,
CD2	Tutorials/Assignments	CO7
CD3	Seminars	
CD4	Mini projects/Projects	
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
CD7	Industrial visits/in-plant training	
		CO1, CO2,
		CO3, CO4,
		CO5, CO6,
CD8	Self- learning such as use of NPTEL materials and internets	CO7
CD9	Simulation	

Lecture wise Lesson planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book /	mapped	Content covered	used	by
					Defens		covereu		faculty if
					Refere				any
					nces				
1	L1		1	Introduction of Mechanical operation in Chemical	T1, T3	1, 2		PPT Digi	
				Engineering Industry.Particle Shape. Particle size analysis.				Class/Chock	
								-Board	
1	L2		1	Differential and cumulative analysis	T1, T3			Do	
1	L3		1	Bulk density, coefficient of Internal Friction.	T1, T3			Do	
2	L4		1	Storage of solids, Pressure distribution in hopper.	T1, T3			Do	
2	L5		1	Janssen Equation	T1, T3			Do	
2	L6		1	Introduction to studies on performance and operation of different conveyors.	T1, T3			Do	
3	L7		1	Belt, Screw, Apron- conveyors.	T1, T3			Do	
3	L8		1	Flight etc. and elevators- conveyors.	T1, T3			Do	
3	L1		2	Introduction class for Size Reduction	T1, T3			Do	
				Rittinger_s law.					

4	L2	2	Kick_s law, Bond_s law.	T1, T3	Do
4	L3	2	Work index, Types of comminuting equipment.	T1, T3	Do
4	L4	2	Jaw Crushers, Gyratory Crusher, Roll crushers.	T1, T3	Do
5	L5	2	Grinders-hammer Mill, Ball Mill, Rod Mill.	T1, T3	Do
	L6	2	Dry and wet griding,	T1, T3	Do
5					
5	L7	2	Open and closed circuit.	T1, T3	Do
6	L8	2	Simulation of Milling operation grinding rate function, breakage function.	T1, T3	Do
6	L1	3	Introduction class for Solid Liquid separation	T1, T3	Do
6	L2	3	Introduction class for Gravity Settling Process	T1, T3	Do
7	L3	3	Gravity Settling – Clarifiers	T1, T3	Do
7	L4	3	Gravity Settling –Thickeners.	T1, T3	Do
7	L5	3	Flocculation	T1, T3	Do
8	L6	3	Design of Gravity Thickner,.	T1, T3	Do
8	L7	3	Principle of Centrifuges for solid-liquid separation.	T1, T3	Do
8	L8	3	Principle of liquid-liquid separation.	T1, T3	Do

9	L1	4	Introduction class for Filtration.	T1, T3	Do
9	L2	4	Theory of solid-liquid filtration, principle of filtration. Constant pressure filtration	T1, T3	Do
9	L3	4	Constant rate filtration, compressible and incompressible cakes, Filter aids.	T1, T3	Do
10	L4	4	Equipment of liquid solid filtration.	T1, T3	Do
10	L5	4	Batch and continuous pressure filters.	T1, T3	Do
10	L6	4	Theory of centrifugal filtration.	T1, T3	Do
11	L7	4	Introduction to Equipment for centrifugal filtration.	T1, T3	Do
11	L8	4	Different equipment of filtration.	T1, T3	Do
11	L1	5	Industrial Screening equipment :Screen effectiveness and Capacity.	T1, T2	Do
12	L2	5	Wet Classification: Differential settling, Liquid cyclones,Drag, Rake and Spiral,	T1, T2	Do
12	L3	5	Wet Classification :Bowl, Hydroseparator	T1, T2	Do
12	L4	5	Hydaulic classifiers, Tabling, Jigging, Froth floatation,	T1, T2	Do
13	L5	5	Dense media separation etc.Magnetic separation,	T1, T2	Do

Department of Chemical Engineering

			Electrostating Separation.				
13	L6	5	Gas-solid separation: Settling chambers, centrifugal settling.	T1, T2		Do	
13	L7	5	Cyclones, ESP,	T1, T2		Do	
14	L8	5	Scrubbers, Filters.	T1, T2		Do	

COURSE INFORMATION SHEET: CL 206

Course code:	CL206
Course title:	Chemical Principles for Chemical Engineers
Pre-requisite(s):	
Co- requisite(s):	
Credits:	L:02 T:00 P:00
Class schedule per week:	02
Class:	B. Tech.
Semester / Level:	III / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	Explain: Describe the reaction mechanism of common organic transformations
2.	Illustrate: Illustrate Schrodinger wave equation and partition functions
3.	Analysis: Find the relation between entropy and probability

Course Outcomes

After the completion of this course, students will be:

CO206.1	Define: Describe the reaction mechanism of common organic transformations
CO206.2	Illustrate: Demonstrate collision state theory and transition state theory
CO206.3	Application: Apply transition state theory for common organic reactions
CO206.4	Synthesize: Develop suitable model for microbial growth kinetics
CO206.5	Evaluate: Compare the properties of polymer synthesized by different techniques

Syllabus MODULE– I

Introduction to organic reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of commonly used industrial chemicals. [9L]

MODULE- II

Fundamentals of Statistical Thermodynamics, Wave Mechanics, Schrodinger wave equation, Models in Statistical Thermodynamics, F-D Statistics, Partition function and application to monoatomic gas, Principles of equipartition of energy and statistics of a photon gas, Application of partition function and relation between entropy and probability. [8L]

MODULE- III

Integrated rate laws. Experimental methods in chemical kinetics. Elementary reactions and reaction mechanism. Temperature dependence of reaction rates. Complex reactions. Theories of reaction rates-Collision theory. Transition state theory. Potential energy surfaces (PES). Free energy and EMF. [9L]

MODULE- IV

Introduction to biotechnology. Prokaryotic and Eukaryotic cells. Metabolism I Kinetics. Mechanism II Kerb cycle. Anaerobic oxidation and fermentation. Growth kinetics for different biological systems. Microbial growth kinetics. Product recovery from over expressed cells. [7L]

MODULE-V

Principles of condensation polymerization, kinetics, chain length regulation and control of molecular weight, Principles of addition polymerization. Principles of ionic polymerization. Principles co-ordination polymerization. Polymer supported catalyst. [7L]

Text Books:

1. M. B. Smith, Organic Synthesis. F. A. Carey and R. J Sundberg, Advanced Organic Chemistry,

2. Introduction to Polymer Science and Chemistry. M. Chandra. Copyright © 2006 by Taylor & Francis Group, LLC. CRC Press, New York

3. A Bejan, Advanced Engineering Thermodynamics, 3rd edition, John Wiley and Sons, 2006.

4. Basic Biotechnology edited by Colin Ratledge, Bjorn Kristiansen, 3rd edition, Cambridge University Press,2006

Reference books:

1. Fundamentals of Polymer Science: Kumar Anil & Gupta R.K. Mc Graw Hill, 1998.

- 2. The Element of Polymer Science & Engineering: Rudin.
- 3. I.K. Puri and K. Annamalai, Advanced Engineering Thermodynamics, CRC Press, 2001.

4. Biological science fundamentals and systematics - Volume II edited by Alessandro Minelli , Eloss

Publishers, UK, 2009.

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design:

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Ν	Y	Ν	Y
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course	Program Outcomes (POs)									PSOs						
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO206.1	3	3	3	1	2	2	2	3	2	2	0	1	3	2	1	1
CO206.2	3	3	3	1	2	2	2	3	2	2	0	1	3	2	1	1
CO206.3	3	3	3	1	1	2	2	3	2	2	0	1	3	2	1	1
CO206.4	3	3	3	2	1	2	2	3	2	2	0	1	3	2	1	1
CO206.5	3	3	3	2	1	2	2	3	2	2	0	1	3	2	1	1

Mapping Between COs and Course Delivery (CD) methods								
		Course						
CD	Course Delivery methods	Outcome						
		CO1, CO2,						
		CO3, CO4,						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO5						
CD2	Tutorials/Assignments	CO3, CO5						
CD3	Seminars	CO2						
CD4	Mini projects/Projects							
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							

Lecture wise Lesson planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book /	mapped	Content	used	by
					Refere		covered		faculty if
					nces				any
1	L1		1	Introduction to organic reactions		1, 2		PPT Digi Class	
								/Chalk-Board	
1	L2		1	Substitution reactions					
1	L3		1	Addition reactions					
2	L4		1	Elimination reactions					
2	L5		1	Oxidation reactions					
2	L6			Reduction reactions					
3	L7			Cyclization reactions					
3	L8			Ring openings reactions					
3	L9			Synthesis of commonly used industrial					
				chemicals					
4	L10			Fundamentals of Statistical Thermodynamics					
4	L11			Wave Mechanics					
4	L12			Schrondinger wave equation					
5	L13			Models in Statistical Thermodynamics					
5	L14			F-D Statistics					
5	L15			Partition function and application to monoatomic gas					
6	L16			Principles of equipartition of energy and statistics of a photon gas					
6	L17			Application of partition function and relation between entropy and probability					
6	L18			Integrated rate laws					
7	L19			Experimental methods in chemical kinetics					

7	L20	Elementary reactions and reaction mechanism		
7	L21	Temperature dependence of reaction rates		
8	L22	Complex reactions		
Mid				
Mid				
Mid				
9	L23	Theories of reaction rates- Collision theory		
9	L24	Transition state theory		
9	L25	Potential energy surfaces (PES)		
10	L26	Free energy and EMF		
10	L27	Introduction to biotechnology		
10	L28	Prokaryotic and Eukaryotic cells		
11	L29	Metabolism I Kinetics		
11	L30	Mechanism II Kerb cycle		
11	L31	Anaerobic oxidation and fermentation		
12	L32	Growth kinetics for different biological systems		
12	L33	Product recovery from over expressed cells		
12	L34	Principles of condensation polymerization		
13	L35	Kinetics, chain length regulation and control, molecular weight		
13	L36	Principles of addition polymerization		
13	L37	Principles of ionic polymerization		
14	L38	Principles of co-ordination polymerization		
14	L39	Different polymerization methods		
14	L40	Polymer supported catalyst		

COURSE INFORMATION SHEET : CL 207 Process Technology and Economics - I

Course code	CL207
Course title	Process Technology and Economics - I
Pre-requisite(s)	Thermodynamics CL201, Chemical Process Calculations CL204
Co- requisite(s)	Mass Transfer Operation CL 209, Heat Transfer Operation CL208.
Credits	L: 3 T: 0 P: 0
Class schedule per week	3
Class	B. E.
Semester / Level	IV / Second
Branch	Chemical Engineering
Name of Teacher	

Course Objectives

This course enables the students:

1.	To understand the various processes involved in chemical industries for the production of
	inorganic and organic chemicals.
2.	To understand economic principles as applied in Chemical Engineering.
3.	To identify and solve engineering problems during production.

Course Outcomes

After the completion of this course, students will be able to:

CO207.1	Explain important process industries with manufacturing processes.
CO207.2	Illustrate the different unit operations and unit processes in a given process flow
	diagram.
CO207.3	Explain the effect of various process parameters on manufacturing processes.
CO207.4	Estimate and understand various financial terms.
CO207.5	Evaluate and analyze the concept of depreciation and profitability measure.

Syllabus

Module 1:

Sulfuric acid: Properties of sulfuric acid, Hydrates of sulfuric acid, Usage, Contact process, Catalysts, Contact process equipment's, Materials of construction, DCDA process. Phosphorous Industries: Phosphate rock, Superphosphates, Manufacturing of Phosphoric acid (Wet-Process and Electric-Furnace), Phosphates (Sodium phosphates, Pyrophosphates, Calcium Phosphates), manufacturing of diammonium phosphate. **8**L

Module 2:

Chlor-alkali industries: Manufacture of Soda Ash, Caustic Soda and Chlorine. Bleaching Powder, Calcium Hypochlorite, Sodium Hypochlorite. Manufacture of chlorine caustic soda, Mercury cathode and membrane process, hydrochloric acid.

Pulp and Paper Industries: Manufacture of pulp (Kraft pulping and Sulfite pulping), Manufacture of paper. 8L

Module 3:

Nitrogen industries: Manufacturing of Ammonia; ammonium nitrate, ammonium sulphate; Manufacturing of Urea and Nitric acid.

Fertilizer Industries: Manufacturing of Single Superphosphate (SSP), Triple Superphosphate (TSP) and ammonium phosphate.

Mixed fertilizers: NPK - Manufacturing process and details of major equipments. 8L

Module 4:

Process design development, preliminary design concepts, flowsheet development. Cost estimation of investment and production. Break-even analysis. Interest and Investment costs: Simple interest, Compound interest, Nominal and Effective interest rates, Continuous interest, Annuities. **8L**

Module 5:

Profitability measures: Rate of return on investment, Present worth and discounted cash flow, Payback period, Capitalized Costs. Depreciation: Types of depreciation, Salvage Value, Present Value, Book Value, Market Value, Replacement Value. Methods for determining depreciation: Straight line method, Declining-balance or Fixed percentage method, Sum-of-the-years-digits method, Sinking-fund Method, Accelerated cost recovery system, Modified accelerated cost recovery system. **8L**

Text books:

- 1. Dryden's Outlines of Chemical Technology, M. Gopala Rao, M. Sittig, 3rd Edition, East West Press.
- 2. Shreve's Chemical Process Industries, George T. Austin, 5th Edition, Tata McGraw Hill Edition.
- **3.** Plant Design and Economics for Chemical Engineers, Max S. Peters, K. D. Timmerhaus, 4th Edition, McGraw-Hill Inc.
- 4. Process Engineering Economics, James Riley Couper, Marcel Dekker Inc.

Reference books:

- 1. Coulson & Richardson's Chemical Engineering Design, R K Sinnott, Vol. 6., Fourth Edition, Elsevier.
- **2.** Encyclopedia of Chemical Technology, Kirk-Othmer, 5th Edition.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4
Mid Sem Examination Marks	Y	Y	Y	
End Sem Examination Marks	Y	Y	Y	Y
Quiz	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)							PSOs							
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO207.1	3	2	2	1	1	2	3	2	1	2	2	2	3	1	3	3
CO207.2	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3
CO207.3	3	2	2	1	1	2	3	1	1	2	2	2	3	1	3	3
CO207.4	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3
CO207.5	2	2	1	1	1	1	1	1	1	2	3	2	1	1	1	3

	Mapping Between COs and Course Delivery (CD) methods						
		Course					
CD	Course Delivery methods	Outcome					
		CO1, CO2,					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4					
		CO1, CO2,					
CD2	Tutorials/Assignments	CO3, CO4					
CD3	Seminars						
CD4	Mini projects/Projects	CO3, CO4					
CD5	Laboratory experiments/teaching aids						

CD6	Industrial/guest lectures	
		CO1, CO2,
CD7	Industrial visits/in-plant training	CO3, CO4
		CO1, CO2, CO3, CO4
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4
CD9	Simulation	

Lecture wise Lesson Planning Details.

Week	Lect.	Tenta	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remark
No	No.	tive	No.		Book /	mappe	Content	used	s by
		Date			Refere	d	covered		faculty
					nces				if any
1	L 1			Properties of sulfuric acid, Hydrates of sulfuric acid, Usage	T 1	CO 1		CD 1	
					Т2				
1	L 2			Contact process, Catalysts	T 1	CO 1		CD 1	
					T 2	CO 2			
1	L 3			Contact Process Equipment's, Materials of construction,.	T 1	CO 1		CD 1	
					T 2	CO 2			
2	L 4			DCDA process	T 1	CO 1		CD 1	
					T 2	CO 2			
2	L 5			Phosphate rock, Superphosphates, Manufacturing of Phosphoric acid	T 1	CO 1		CD 1	
	L 6			(Wet-Process and Electric-Furnace),	T 2	CO 2			
3	L 7			Phosphates (Sodium phosphates, Pyrophosphates, Calcium Phosphates),	T 1	CO 1		CD 1	
	L 8			manufacturing of diammonium phosphate.	T 2	CO 2			
4	L 9			Manufacture of Soda Ash, Caustic Soda and Chlorine	T 1	CO 1		CD 1	
5	L10				T 2	CO 2			
	L11								
5	L 12			Bleaching Powder, Calcium Hypochlorite, Sodium Hypochlorite.	T 1	CO 1		CD 1	
6	L 13				T 2	CO 2			
6	L 14			Manufacture of chlorine caustic soda, Mercury cathode and membrane	T 1	CO 1		CD 1	
	L 15			process.	T 2	CO 2			
7	L 16			Pulp and Paper Industries: Manufacture of pulp (Kraft pulping and	T 1	CO 1		CD 1	
	L 17			Sulfite pulping), Manufacture of paper.	T 2	CO 2			
7	L 18			Manufacturing of Ammonia; ammonium nitrate, ammonium sulphate;	T 1	CO 1		CD 1	
8	L 19			-	T 2	CO 2			
8	L 20			Manufacturing of Urea and Nitric acid.	T 1	CO 1		CD 1	
	L 21				T 2	CO 2			
9	L 22			Manufacturing of Single Superphosphate (SSP), Triple Superphosphate	T 1	CO 1		CD 1	
	L 23			(TSP) and ammonium phosphate.	T 2	CO 2			

9	L 24	Mixed fertilizers: NPK – Manufacturing process and details of major	T 1	CO 1	CD 1
		equipments.	T 2	CO 2	
10	L 25	Simple Interest, Ordinary and Exact Simple Interest	T 3	CO 3	CD 1
	L 26		T 4		CD 2
10	L 27	Compound Interest	T 3	CO 3	CD 1
			T 4		CD 2
11	L 28	Nominal and Effective Interest Rates, Continuous Interest	T 3	CO 3	CD 1
	L 29		T 4		CD 2
11	L 30	Present Worth and Discount	T 3	CO 3	CD 1
			T 4		CD 2
12	L 31	Annuities, Perpetuities and Capitalized Costs.	T 3	CO 3	CD 1
	L 32		T 4		CD 2
13	L 33	Types of depreciation, Salvage Value, Present Value, Book Value,	T 3	CO 3	CD 1
14	L 34	Market Value, Replacement Value.	T 4	CO 4	CD 2
	L 35			CO 5	
14	L 36	Methods for determining depreciation: Straight line method, Declining-	T 3	CO 3	CD 1
15	L 37	Balance or Fixed Percentage Method, Sum-of-the-Years-Digits Method,	T 4	CO 4	CD 2
	L 38	Sinking-Fund Method		CO 5	
15	L 39	Accelerated cost recovery system, Modified accelerated cost recovery	T 3	CO 3	CD 1
16	L 40	system.	T 4	CO 4	CD 2
				CO 5	

COURSE INFORMATION SHEET: CL 208 Heat Transfer Operations

Course code:	CL208
Course title:	Heat Transfer Operations
Pre-requisite(s):	
Co- requisite(s):	
Credits:	L: 3 T: 1 P: 0
Class schedule per week:	4 hrs
Class:	B. Tech
Semester / Level:	IV / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	To understand the fundamentals of heat transfer mechanisms in fluids and solids
	and their applications in various heat transfer equipment's in process industries.
2.	Understanding the heat exchangers: working principles and basic geometries.
3.	To design heat exchangers and evaporators and analyze their performance.

Course Outcomes

After the completion of this course, students will be able to:

CO208.1	Understand and Solve heat transfer by conduction in solids for steady state and transient		
	conditions.		
CO208.2	Explain and solve heat transfer by forced and natural convection.		
CO208.3	Discuss and solve heat transfer by radiation.		
CO208.4	Determine heat transfer in boiling, condensation and evaporators.		
CO208.5	CO208.5 Analyze the performance of heat exchange equipments.		

Syllabus

Module I

Basic Concepts: Modes of heat transfer, conduction, convection and radiation, analogy between heat flow and electrical flow. **Conduction:** One dimensional steady state heat conduction, the Fourier heat conduction equation, conduction through plane wall, conduction through cylindrical wall, spherical wall, conduction through composite slab, cylinder and sphere, critical radius of insulation, **Extended surfaces:** heat transfer from a fin, fin effectiveness and efficiency, Introduction to unsteady state heat conduction. **[8L]**

Module II

Convection: Natural and forced convection, the convective heat transfer coefficient. **Forced Convection:** Correlation equations for heat transfer in laminar and turbulent flows in a Circular tube and duct, Reynolds and Colburn analogies between momentum and heat transfer, heat transfer to liquid metals and heat transfer to tubes in cross flow. **Natural Convection:** Natural convection from vertical and horizontal surfaces, Grashof and Rayleigh numbers. **[8L]**

Module III

Heat transfer by radiation: Basic Concepts of radiation from surface: black body radiation, Planks law, Wien's displacement law , Stefan Boltzmann's law, Kirchhoff's law, grey body, Radiation intensity of black body, View factor , emissivity, radiation between black surfaces and grey surfaces. Solar radiations, combined heat transfer coefficients by convection and radiation. **[8L]**

Module IV

Boiling and Condensation: Pool boiling, pool boiling curve for water, maximum and minimum heat fluxes, correlations for nucleate and film pool boiling, drop wise and film wise condensation, Nusselt analysis for laminar film wise condensation on a vertical plate, film wise condensation on a horizontal tube, effect of non-condensable gases on rate of condensation. **Evaporation:** Types of evaporators, boiling point elevation and Duhring's rule, material and energy balances for single effect evaporator, multiple effect evaporators: forward, mixed and backward feeds, capacity and economy of evaporators. **[8L]**

Module V

Heat Exchangers: Introduction, Industrial use, Types of heat exchangers, Co-current, Countercurrent & Cross-current, Principal Components of a Concentric tube & Shell-and Tube Heat Exchanger, Baffles, Tubes and Tube Distribution, Tubes to Tube sheets Joint, Heat Exchangers with Multiple Shell & tube Passes, Fixed-Tube sheet and Removable-Bundle Heat Exchangers, log-mean temperature difference, overall heat transfer coefficient, fouling factors, Design of double pipe and shell and tube heat exchangers. **[8L]**

Text books:

1. Holman, J. P., 'Heat Transfer', 9th Edn., McGraw Hill, 2004.

- 2. Kern, D.Q., "Process Heat Transfer", McGraw-Hill, 1999.
- 3. Cengel, Y.A., Heat Transfer A Practical Approach, McGraw-Hill, 1998.

Reference books:

1. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, 5th ed., John Wiley, 2002.

- 2. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 6th Edn., McGraw-Hill, 2001.
- 3. Coulson, J.M. and Richardson, J.F., "Chemical Engineering "Vol. I, 4th Edn., Asian Books Pvt. Ltd., India, 1998.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)											PSOs				
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO208.1	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2	
CO208.2	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2	
CO208.3	3	3	3	2	2	2	2	1	2	2	1	2	3	2	2	2	
CO208.4	3	3	3	3	2	2	2	1	2	3	1	2	3	2	2	2	
CO208.5	3	3	3	3	2	2	2	1	2	3	1	2	3	2	2	2	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome						
		CO1, CO2, CO3,						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO4, CO5						
		CO1, CO2, CO3,						
CD2	Tutorials/Assignments	CO4, CO5						
CD3	Seminars							
CD4	Mini projects/Projects	CO4						
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
		CO1, CO2, CO3,						
CD8	Self- learning such as use of NPTEL materials and internets	CO4, CO5						
CD9	Simulation							

Lecture wise Lesson planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Method	Remar
k		e	No		Book /	mapped	Content	ology	ks by
No.	No.	Date			Refere		covered	used	faculty
					nces				if any
1	L1		1	Introduction to heat transfer, Modes of heat transfer	T1, T2, R1,	1, 5		PPT	
					R2				
	L2		1	1-D steady state heat conduction	T1, R2	1, 5		PPT,	
								Chalk	
								-Board	
	L3		1	1-D steady state heat conduction (continued), conduction	T1, R1, R2	1, 5		PPT,	
				through composite slab				Chalk	
								-Board	
2	L4		1	Critical radius of insulation	T1, R2	1, 5		Chalk	
								-Board	
	L5		1	Heat transfer from a fin	T1, R2	1, 5		Projecto	
								r, Chalk	
								-Board	
	L6		1	Fin effectiveness and efficiency	T1, R2	1, 5		Chalk	
				·				-Board	
3	L7		1	Introduction to unsteady state heat conduction	T1, R2	1, 5		PPT,	
								Chalk	
								-Board	
	L8		1	Tutorial				Assign	
								ment	
	L9		2	Convection: Natural and forced convection	T1, R2	1, 5		PPT	
4	L10		2	convective heat transfer coefficient	T1, R2	1, 5		Chalk	
								-Board	
	L11		2	Correlation equations for heat transfer in laminar and	T1, R2	1, 5		Projecto	
				turbulent flows				r, Chalk	
								-Board	
	L12		2	Reynolds and Colburn analogies between momentum and heat	T1, R1	1, 5	1	Chalk	1
				transfer				-Board	
5	L13		2	heat transfer to liquid metals and heat transfer to tubes in cross	T1, R2	1, 5	1	PPT,	1
	_				7	y -		Chalk	

			flow			-Board
	L14	2	Natural convection from vertical surfaces	T1, R2	1,5	PPT, Chalk -Board
	L15	2	Natural convection from horizontal surfaces, Grashof and Rayleigh numbers	T1, R2	1, 5	PPT
6	L16	2	Tutorial			Assign ment
	L17	3	Basic Concepts of radiation from surface	T1, R2	1, 5	PPT
	L18	3	Black body radiation, Planks law, Wien's displacement law	T1, R2	1, 5	Projecto r
7	L19	3	Stefan Boltzmann's law, Kirchhoff's law, grey body	T1, R2	1, 2, 5	Chalk -Board
	L20	3	Radiation intensity of black body	T1, R2	2, 5	Chalk -Board
	L21	3	View factor	T1, R2	1, 2, 5	PPT
8	L22	3	emissivity, radiation between black surfaces and grey surfaces	T1, R2	2, 5	Chalk -Board
	L23	3	Solar radiations, combined heat transfer coefficients by convection and radiation	T1, R2	1,5	Chalk -Board
	L24	3	Tutorial			Assign ment
9	L25	4	Boiling and Condensation: Pool boiling, pool boiling curve for water	T3, R2	3, 5	PPT
	L26	4	maximum and minimum heat fluxes, correlations for nucleate and film pool boiling	T3, R2	3, 5	PPT
	L27	4	drop wise and film wise condensation, Nusselt analysis for laminar film wise condensation on a vertical plate	T3, R2	3, 5	PPT
101	L28	4	film wise condensation on a horizontal tube, effect of non- condensable gases on rate of condensation	T3, R2	3, 5	PPT
	L29	4	Evaporation: Types of evaporators	T3, R2	3, 5	PPT
	L30	4	Boiling point elevation and Duhring's rule, material and	T3, R2	3, 5	Chalk

			energy balances for single effect evaporator			-Board
11	L31	4	Multiple effect evaporators: forward, mixed and backward feeds, capacity and economy of evaporators	T3, R2	3, 5	Projecto r
	L32	4	Tutorial			Assign
	L33	5	Heat Exchangers: Introduction, Industrial use, Types of heat exchangers, Co-current, Counter-current & Cross-current	T2, R3	4, 5	PPT
12	L34	5	Principal Components of a Concentric tube & Shell-and Tube Heat Exchanger, Baffles, Tubes and Tube Distribution	T2, R3	4, 5	PPT, Chalk -Board
	L35	5	Tubes to Tube sheets Joint, Heat Exchangers with Multiple Shell & tube Passes	T2, R3	4, 5	PPT, Chalk -Board
	L36	5	Fixed-Tube sheet and Removable-Bundle Heat Exchangers	T2, R3	4, 5	PPT, Chalk -Board
13	L37	5	log-mean temperature difference, overall heat transfer coefficient	T1, R2	4, 5	PPT, Chalk -Board
	L38	5	fouling factors, Design of double pipe and shell and tube heat exchangers	T2, R3	4, 5	PPT, Chalk -Board
	L39	5	Design of double pipe and shell and tube heat exchangers (Continued)	T2, R3	4, 5	Projecto r, Chalk -Board
14	L40	5	Tutorial			Assign ment

COURSE INFORMATION SHEET: CL 209 Mass Transfer Operations -I

Course code:	CL209
Course title:	Mass transfer operations-I
Pre-requisite(s):	Thermodynamics (CL 201), Chemical Process Calculations (CL 204)
Co- requisite(s):	Transport Phenomena
Credits:	L: 3 T: 0 P: 0
Class schedule per week:	03
Class: B. E.	
Semester / Level:	IV / Second
Branch:	Chemical Engineering
Name of Teacher:	

Course Objectives

This course enables the students:

1.	To learn basic knowledge of mass transfer operation and its application.
2.	To learn basic knowledge of mass transfer equipments.
3.	To design mass transfer equipments.

Course Outcomes

After the completion of this course, students will be to:

CO209.1	Explain the basic mechanism of mass transfer including diffusion and convective
	mass transfer.
CO209.2	Find the mass transfer coefficient and solve problems related to interphase mass
	transfer.
CO209.3	Explain the gas-liquid contacting process and solve related problems.
CO209.4	Solve problems on VLE and problems related to design calculation of distillation
	column.
CO209.5	Explain enhanced distillation.

Syllabus

Module 1

Introduction to mass transfer and applications, Principles of molecular diffusion, Fick's Law, Diffusivity, Equation of continuity and unsteady state diffusion, Diffusion in solids. Convective mass transfer and Mass transfer coefficient, Correlation of mass transfer coefficients. (8L)

Module 2

Interphase mass transfer, Theories of Mass Transfer, individual gas and liquid phase mass transfer coefficient, overall mass transfer coefficient, Analogy between momentum, heat and mass transfer, Concept of stage wise contact processes. (8L)

Module-3

The mechanism of absorption, Equipment for Gas Liquid contact, Kremser equation, plate and packed tower

internals, Packed tower design, H. E. T. P., H. T. U., and N. T. U. concepts, height of column based on conditions in the gas film, height of column based on conditions in the liquid film, height of column based on overall coefficients, plate type towers, number of plates, plate efficiency, absorption factor. **(8L)**

Module-4

Relative Volatility, calculation of number of plates by McCabe-Thiele method, Total and minimum reflux ratio, distillation with side streams, Enthalpy concentration diagram, calculation of number of plates by and Ponchon and Savarit method, Steam distillation, Azeotropic & Extractive Distillations, batch distillation with reflux, Introduction to multicomponent distillation. (8L)

Module-5

Shortcut method on multi component distillation, MESH equations (HK, LK component), Fenske-Underwood- Gilliland method. (8L)

Text books:

- 1. Mass Transfer Operations: R.E. Treybal Mc Graw Hill, 1981
- 2. Unit Operations of Chemical Engineering: W.L. McCabe, and J.C. Smith McGraw Hill.5th Ed. 1993.
- **3.** Principles of Mass Transfer and Separation Processes, Binay K. Dutta, 2nd edition, Prentice Hall of India,2007.
- **4.** Transport processes and Separation Process Principles, C.J. Geankoplis, Prentice Hall of India, 4th Ed. 2004

Reference books:

Separation Process Principles-Chemical and Biochemical Operations, J. D. Seader, Ernest J. Henley, D. Keith Roper, 3rd Ed., John Wiley & Sons, Inc.

Gaps in the syllabus (to meet Industry/Profession requirements)

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50

Department of Chemical Engineering

Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4
Mid Sem Examination Marks	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y
Quiz	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes (POs)								PSOs						
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO209.1	3	3	0	2	2	0	0	0	1	0	0	3	3	0	1	2
CO209.2	3	3	0	0	2	0	0	0	1	0	0	3	3	0	1	2
CO209.3	3	3	3	3	2	2	2	2	2	3	1	3	3	2	0	2
CO209.4	3	3	3	3	2	2	2	2	2	2	2	3	3	3	2	2
CO209.5	3	3	3	3	2	2	2	2	2	2	2	3	3	3	2	2

	Mapping Between COs and Course Delivery (CD) methods							
		Course						
CD	Course Delivery methods	Outcome						
		CO1, CO2,						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO3, CO4						
		CO1, CO2,						
CD2	Tutorials/Assignments	CO3, CO4						
CD3	Seminars							
CD4	Mini projects/Projects							
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
		CO1, CO2,						
CD8	Self- learning such as use of NPTEL materials and internets	CO3, CO4						
CD9	Simulation							

Lecture wise Lesson Planning Details.

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book /	mapped	Content	used	by
					Refere	~ ~	covered		faculty
					nces				if any
1	L1		1	Introduction to mass transfer and applications	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L2		1	Principles of molecular diffusion	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L3		1	Fick's Law, Diffusivity	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
1	L4		1	Equation of continuity and unsteady state	T1, R1	1		PPT Digi	
				diffusion				Class/Chalk-Board	
2	L5		1	Diffusion in solids	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
2	L6		1	Diffusion in solids	T1, R1	1		PPT Digi	
								Class/Chalk-Board	
2	L7		1	Convective mass transfer and Mass transfer	T1, T3, R1	1, 2		PPT Digi	
				coefficient				Class/Chalk-Board	
2	L8		1	Correlation of mass transfer coefficients.	T1, T2, T4,	1, 2		PPT Digi	
					R1			Class/Chalk-Board	
3	L9		2	Interphase mass transfer	T1, R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L10		2	Theories of Mass Transfer	T1, , T2,R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L11		2	Theories of Mass Transfer	T1, T2, R1	1, 2		PPT Digi	
								Class/Chalk-Board	
3	L12		2	individual gas and liquid phase mass transfer	T1, T2,	1, 2		PPT Digi	
				coefficient	T3,R1			Class/Chalk-Board	
4	L13		2	individual gas and liquid phase mass transfer	T1, T2,	1, 2		PPT Digi	
				coefficient	T3,R1			Class/Chalk-Board	
4	L14		2	overall mass transfer coefficient	T1, T2,	1, 2		PPT Digi	
					T3,R1			Class/Chalk-Board	
4	L15		2	Analogy between momentum, heat and mass	T1, T2, T3,	1, 2		PPT Digi	
				transfer,	T4, R1			Class/Chalk-Board	

4	L16	2	Concept of stage wise contact processes	T1, R1	1,2	PPT Digi
						Class/Chalk-Board
5	L17	3	Introduction to absorption, mechanism of	T1, R1	1, 2, 3	PPT Digi
			absorption			Class/Chalk-Board
5	L18	3	Equipment for Gas Liquid contact	T1, R1	3	PPT Digi
						Class/Chalk-Board
5	L19	3	plate and packed tower internals	T1, T2, T3,	3	PPT Digi
				R1		Class/Chalk-Board
5	L20	3	Packed tower design, H. E. T. P., H. T. U., and	T1, T2, T3,	3	PPT Digi
			N. T. U. concepts,	T4, R1		Class/Chalk-Board
6	L21	3	height of column based on conditions in the gas	T1, T2, T3,	3	PPT Digi
			film,	T4, R1		Class/Chalk-Board
6	L22	3	height of column based on conditions in the	T1, T2, T3,	3	PPT Digi
			liquid film, height of column based on overall	T4, R1		Class/Chalk-Board
			coefficients			
6	L23	3	plate type towers, number of plates	T1, R1	3, 5	PPT Digi
						Class/Chalk-Board
6	L24	3	plate efficiency, absorption factor	T1, R1	3, 5	PPT Digi
						Class/Chalk-Board
7	L25	4	Introduction, Vapor -liquid equilibria, Relative	T1, R1	4	PPT Digi
			volatility			Class/Chalk-Board
7	L26	4	Ideal and non -ideal solutions, azeotrope	T1, R1	4	PPT Digi
						Class/Chalk-Board
7	L27	4	Batch distillation and equilibrium flash	T1, R1	4, 5	PPT Digi
			vaporization,			Class/Chalk-Board
7	L28	4	Feed conditions	T1, R1	4, 5	PPT Digi
						Class/Chalk-Board
8	L29	4	calculation of number of plates by McCabe-	T1, T2, R1	5	PPT Digi
			Thiele method			Class/Chalk-Board
8	L30	4	calculation of number of plates by McCabe-	T1, T2, R1	5	PPT Digi
			Thiele method			Class/Chalk-Board
8	L31	4	Total reflux ratio	T1, T2, R1	5	PPT Digi
						Class/Chalk-Board
8	L32	4	Minimum reflux ratio	T1, T2, R1	5	PPT Digi
L						Class/Chalk-Board
9	L33	5	Enthalpy concentration diagram	T1, R1	4, 5	PPT Digi

						Class/Chalk-Board
9	L34	5	calculation of number of plates by and Ponchon	T1, R1	5	PPT Digi
			and Savarit method,			Class/Chalk-Board
9	L35	5	calculation of number of plates by and Ponchon	T1, R1	5	PPT Digi
			and Savarit method,			Class/Chalk-Board
9	L36	5	Steam distillation	T1, R1	5	PPT Digi
						Class/Chalk-Board
10	L37	5	Azeotropic & Extractive Distillations	T1, T2, T4,	5	PPT Digi
				R1		Class/Chalk-Board
10	L38	5	batch distillation with reflux	T1, R1	5	PPT Digi
						Class/Chalk-Board
10	L39	5	Introduction to multicomponent distillation.	T1, T2, T3,	5	PPT Digi
				T4, R1		Class/Chalk-Board
10	L40	5	Introduction to multicomponent distillation.	T1, T2, T3,	5	PPT Digi
				T4, R1		Class/Chalk-Board

COURSE INFORMATION SHEET: CL 210 Transport Phenomena

Course code:	CL210				
Course title:	Transport Phenomena				
Pre-requisite(s):	_				
Co- requisite(s):					
Credits:	L:3 T:0 P:0				
Class schedule per week:	3				
Class:	B. Tech.				
Semester / Level:	IV / Second				
Branch:	Chemical Engineering				
Name of Teacher:					

Course Objectives

This course enables the students:

1.	To understand the mathematical foundation required for analysis of fluid flow.						
2.	To understand the mathematical foundation required for analysis of heat and mass						
	transfer.						
3.	To learn systematic analysis of fluid flow and heat transfer with emphasis on						
	analogies and specific technique using treating such boundary value problems.						

Course Outcomes

After the completion of this course, students will be able to:

CO210.1	Identify and describe mechanisms of transport phenomena, present in given isothermal							
CO210.1								
	and non-isothermal, laminar and turbulent flow systems.							
CO210.2	Distinguish interrelations between the molecular, microscopic and macroscopic							
	descriptions of transport phenomena							
CO210.3	Explain similarities and differences between the descriptions of the combined fluxes and							
	the equations of change for mass, momentum and heat transport.							
CO210.4	Apply the method of dimensional analysis to reformulate and then find the form of							
	solutions of the equations of change, to determine the dependence of the interfacial							
	fluxes on system parameters.							
CO210.5	Elaborate conceptual and mathematical models, from conservation principles, to							
	complicated systems involving simultaneous mass, momentum, and/or heat transfer							
	processes as well as reactions or other sources/sinks of transport for multi-component							
	mixtures.							

Syllabus

Module 1:

Law of conservation, Vectors/Tensors, Newton's law of viscosity, Temperature, pressure and composition dependence of viscosity, Kinetic theory of viscosity, Fourier's law of heat conduction, Temperature, pressure and composition dependence of thermal conductivity, Kinetic theory of thermal conductivity, Fick's law of diffusion, Temperature, pressure and composition dependence of diffusivity, Kinetic theory of diffusivity. [8L]

Module 2:

Shell Momentum balances, velocity profiles, average velocity, momentum flux at the surfaces, Reynold's transport theorem, Equations of Change (Isothermal), equation of continuity, equation of motion, equation of energy (isothermal). [8L]

Module 3:

Shell energy balances, temperature profiles, average temperature, energy fluxes at surfaces, Equations of change (non-isothermal), equation of continuity, equation of motion for forced and free convection, equation of energy (non-isothermal). [8L]

Module 4:

Shell mass balances, concentration profiles, average concentration, mass flux at surfaces, Equations of change (multi-component), equations of continuity for each species, equation of energy (multi-component). [8L]

Module 5:

Introduction to the concept of heat and mass transfer coefficients. Interphase mass transfer, various coefficient of mass transfer and their determination, resistance concept, controlling phase concept, Mass transfer in turbulent flow, Analogies of mass transfer, Empirical equations. Theories of mass transfer, two film theory, Higbies penetration theory, Derivation of flux equation, surface renewal theory. [8L]

Text books:

Bird R.B., Stewart W.E. and Lightfoot E.N., "Transport Phenomena", 2nd Ed., John Wiley and Sons.
Geankoplis C.J., "Transport Processes and Separation Process Principles", 4th Ed., Prentice-Hall of India.

Reference books:

1. Brodkey, R.S., Hershey H.C., "Basic concepts in transport phenomena, a unified approach". Vol 1, Brodkey Publishing.

2. Fox and McDonald's, 'Introduction to fluid Mechanics'

3. Robert E. Treybal, Mass-Transfer Operation

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design

- 1. Turbulent flow behaviour
- 2. Conservation law applicable in thin film.

POs met through Topics beyond syllabus/Advanced topics/Design

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End Sem Examination Marks	50
Quiz	10+10
Teachers Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Y	Y	Y		
End Sem Examination Marks	Y	Y	Y	Y	Y
Quiz	Y	Y	Y	Y	Y

Indirect Assessment -

1. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course							PSOs									
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO210.1	3	3	3	3	1	1	1	1	1	2	2	2	3	3	3	3
CO210.2	3	3	3	3	1	1	1	1	1	2	2	2	3	3	3	3
CO210.3	3	3	3	3	1	1	1	1	1	2	2	2	3	3	3	3
CO210.4	3	3	3	3	1	1	1	1	1	2	2	2	3	3	3	3
CO210.5	3	3	3	3	1	1	1	1	1	2	2	2	3	3	3	3

	Mapping Between COs and Course Delivery (CD) methods							
		Course						
CD	Course Delivery methods	Outcome						
		CO1, CO2,						
		CO3, CO4,						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO5						
		CO1, CO2,						
		CO3, CO4,						
CD2	Tutorials/Assignments	CO5						
CD3	Seminars							
CD4	Mini projects/Projects							
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
		CO1, CO2,						
		CO3, CO4,						
CD8	Self- learning such as use of NPTEL materials and internets	CO5						
CD9	Simulation							

Lecture wise Lesson Planning Details.

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	Cos	Actual	Methodol	Remarks	
k		e	No		Book /	mapped	Content	ogy	by	
No.	No.	Date			Refere		covered	used	faculty	if
					nces				any	
1	L1		1	Law of conservation	T1,	1, 2		Chock		
								-Board		
	L2		1	Vectors/Tensors	T1, T2	1, 2		Chock		
								-Board		
	L3		1	Newton's law of viscosity, Temperature, pressure and composition	T1	1, 2		Chock		
				dependence of viscosity				-Board		
	L4		1	Kinetic theory of viscosity	T1	1, 2		Chock		
								-Board		
2	L5		1	Fourier's law of heat conduction, Temperature, pressure and	T1	1, 2		Chock		
				composition dependence of thermal conductivity				-Board		
	L6		1	Kinetic theory of thermal conductivity	T1	1, 2		Chock		
								-Board		
	L7		1	Fick's law of diffusion, Temperature, pressure and composition	T1	1, 2		Chock		
				dependence of diffusivity				-Board		
	L8		1	Kinetic theory of diffusivity.	T1	1, 2		Chock		
								-Board		
3	L9		2	Shell Momentum balances, velocity profiles, average velocity,	T1, T3	2, 3		Chock		
				momentum flux at the surfaces				-Board		
	L10		2	Shell Momentum balances, velocity profiles, average velocity,	T1, T3	2, 3		Chock		
				momentum flux at the surfaces				-Board		
	L11		2	Shell Momentum balances, velocity profiles, average velocity,	T1, T3	2, 3		Chock		
				momentum flux at the surfaces				-Board		
	L12		2	Shell Momentum balances, velocity profiles, average velocity,	T1, T3	2, 3		Chock		
				momentum flux at the surfaces				-Board		
4	L13		2	Reynold's transport theorem	T4	2, 3, 4		Chock		
								-Board		
	L14		2	equation of continuity, equation of motion, equation of energy	T1, T2	2, 3, 4		Chock		
								-Board		
	L15		2	equation of continuity, equation of motion, equation of energy	T1, T2	2, 3, 4		Chock		

						-Board
	L16	2	equation of continuity, equation of motion, equation of energy	T1, T2	2, 3, 4	Chock
						-Board
5	L17	2	Uses of equation of continuity, equation of motion, equation of energy	T1, T2	5	Chock
						-Board
	L18	2	Uses of equation of continuity, equation of motion, equation of energy	T1, T2	5	Chock
						-Board
	L19	2	Uses of equation of continuity, equation of motion, equation of energy	T1, T2	5	Chock
						-Board
	L20	3	Shell energy balances, temperature profiles, average temperature,	T1	2, 4	Chock
			energy fluxes at surfaces,			-Board
6	L21	3	Shell energy balances, temperature profiles, average temperature,	T1	2,4	Chock
			energy fluxes at surfaces,			-Board
	L22	3	Shell energy balances, temperature profiles, average temperature,	T1	2, 4	Chock
			energy fluxes at surfaces,			-Board
	L23	3	Shell energy balances, temperature profiles, average temperature,	T1	2, 4	Chock
			energy fluxes at surfaces,			-Board
7	L24	3	Shell energy balances, temperature profiles, average temperature,	T1	2,4	Chock
			energy fluxes at surfaces,			-Board
	L25	3	Shell energy balances, temperature profiles, average temperature,	T1	2,4	Chock
			energy fluxes at surfaces,			-Board
1	L26	3	equation of energy (non-isothermal)	T1	2, 3, 4	Chock
						-Board
	L27	3	equation of energy (non-isothermal)	T1	2, 3, 4	Chock
						-Board
8	L28	3	Uses of equation of energy	T1	5	Chock
						-Board
	L29	4	Shell mass balances, concentration profiles, average concentration,	T1	2, 3	Chock
			mass flux at surfaces,			-Board
	L30	4	Shell mass balances, concentration profiles, average concentration,	T1	2, 3	Chock
			mass flux at surfaces,			-Board
	L31	4	Shell mass balances, concentration profiles, average concentration,	T1	2, 3	Chock
			mass flux at surfaces,			-Board
9	L32	4	Shell mass balances, concentration profiles, average concentration,	T1	2, 3	Chock
			mass flux at surfaces,			-Board

	L33	4	equations of continuity for each species, equation of energy (multi- component).	T1	2, 3, 4	Chock -Board
	L34	4	Uses of equations of continuity for each species, equation of energy (multi-component).	T1	5	Chock -Board
	L35	5	Introduction to the concept of heat and mass transfer coefficients.	T5	1, 2, 3	Chock -Board
10	L36	5	Interphase mass transfer, various coefficient of mass transfer and their determination	T5	1, 2, 3	Chock -Board
	L37	5	resistance concept, controlling phase concept	T5	1, 2, 3	Chock -Board
	L38	5	Mass transfer in turbulent flow	T5	1, 2, 3	Chock -Board
11	L39	5	Analogies of mass transfer, Empirical equations	T5	1, 2, 3	Chock -Board
	L40	5	Theories of mass transfer, two film theory, Higbies penetration theory, Derivation of flux equation, surface renewal theory.	T5	1, 2, 3	Chock -Board