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DFT allows to get information about the
energy, the structure and the molecular
properties of molecules at lower costs that
traditions approaches based on the
wavefunction use.

Density functional theory (DFT) has
revolutionized the quantun chemistry
development of the last 20 years
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Quantum Methods

Wavefunctions Electron Density

Hartree-Fock DFT

TD-DFTMP2-CI

The HF equations have to be solved iteratively because VHF depends upon
solutions (the orbitals). In practice, one adopts the LCAO scheme, where the
orbitals are expressed in terms of N basis functions, thus obtaining matricial
equations depending upon N4 bielectron integrals.
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Correlation energy

Exchange correlation: Electrons with the same spin (ms) do not move
independently as a consequence of the Pauli
exclusion principle.  = 0 if two electrons with
the same spin occupy the same point in space,
independently of their charge. HF theory treats
exactly the exchange correlation generating a
non local exchange correlation potential.

Coulomb correlation: Electrons cannot move independently as a
consequence of their Coulomb repulsion even
though they are characterized by different spin
(ms). HF theory completely neglects the
Coulomb correlation thus generating, in
principle, significant mistakes. Post HF
treatments are often necessary.
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If the electrons have 

not the same spin
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Information provided by  is redundant
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are needed to see this picture.benzene

Number of terms in the determinantal form  : N! = 1.4 1051

Number of Cartesian dimensions: 3N = 126

 is a very complex object including more information than we need!

N = 42e-
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The use of electron density allows to limit
the redundant information

The electron density is a function of three
coordinates no matter of the electron
number.



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chimica Computazionale

Academic Year 2009 - 2010 maurizio casarinSecond Semester

• 1920s: Introduction of the Thomas-Fermi model.
• 1964: Hohenberg-Kohn paper proving existence of exact DF.
• 1965: Kohn-Sham scheme introduced.
• 1970s and early 80s: LDA. DFT becomes useful.
• 1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).
• 1988: Becke and LYP functionals. DFT useful for some chemistry.
• 1998: Nobel prize awarded to Walter Kohn in chemistry for development

of DFT.

Timetable
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Quotation: “If I have seen further [than certain other men] it is 
by standing upon the shoulders of giants.”*

Isaac Newton (1642–1727), British physicist, mathematician. 
Letter to Robert Hooke, February 5, 1675.

*With reference to his dependency on Galileo’s and Kepler’s work in physics and astronomy.
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(a) Thomas, L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542;
(b) Fermi, E. Z. Phys. 1928, 48, 73;
(c) Dirac, P. A. M. Cambridge Philos. Soc. 1930, 26, 376;
(d) Wigner, E. P. Phys. Rev. 1934, 46, 1002.
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Fock, D.R.
1898-1974

(a) Hartree, D. R. Proc. Cambridge Phil. Soc. 1928, 24, 89; 
(b) ibidem 1928, 24, 111; 
(c) ibidem 1928, 24, 426; 
(d) Fock, V. Z. Physic 1930, 61, 126; 
(e) Slater, J. C. Phys. Rev. 1930, 35, 210.
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Definitions

Function: a prescription which maps one or more numbers to
another number:

 y  f x  x
2
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Definitions

Operator: a prescription which maps a function onto another
function:

   

F̂ 
2

x2

F̂f x 
2 f x 
x2
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Definitions
Functional: A functional takes a function as input and gives

a number as output. An example is:

F[ f ] = f (x)dx
–



F f x    y

Here f(x) is a function and y is a number. An example is the

functional to integrate x from - to .

QuickTime™ and a
 decompressor

are needed to see this picture.

Vito Volterra
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Francesco ed Edoardo Ruffini e Fabio Luzzatto (giuristi);
Giorgio Levi Della Vida (orientalista);
Gaetano De Sanctis (storico dell'antichità);
Ernesto Buonaiuti (teologo);
Vito Volterra (matematico);
Bartolo Nigrisoli (chirurgo);
Marco Carrara (antropologo);
Lionello Venturi (storico dell'arte);
Giorgio Errera (chimico);
Piero Martinetti (studioso di filosofia).

In base a un regio decreto emanato il 28 agosto 1931 i docenti
delle università italiane avrebbero dovuto giurare di essere
fedeli non solo allo statuto albertino e alla monarchia, ma
anche al regime fascista.
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Nel 1938, con la promulgazione delle Leggi razziali, perdettero il posto i
professori considerati di origine ebraica in base alla normativa razziale
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ab-initio methods can be interpreted as a
functional of the wavefunction, with the
functional form completely known!

 

E  
*

 x1,L , xN Ĥ x1,L , xN dx1L dxN

*

 x1,L , xN  x1,L , xN dx1L dxN
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Electrons are uniformly distributed
over the phase space in cells of  2h 

3

Each cell may contain up to two
electrons with opposite spins

Thomas–Fermi-Dirac Model

Electrons experience a potential field
generated by the nuclear charge and by
the electron distribution itself.
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Let us consider a free electron gas
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Let us consider a free electron gas

  

N A

V
 6.023 1023 atoms

mol 
8.92 g

cm3

63.5 g

mol

 8.47 1022 electrons

cm3

 

P 
82.06 cm3atm

molK 293K

7.11 cm3

mol 
 3381atm

 

7.11 cm3

mol  6.023 1023 atoms
mol

8.47 1022 electrons

cm3

  

N A

V
 6.0231023 atoms

mol 
Z

at.weight
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Main Assumption: 
independent electron approximation

V(r) = constant

 
Ĥ  

2

2m
2 V r 
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
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
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

2

2m
2  E

  Aeik r

 

2

2m
k2  E

 
E 

2

2m
k2

Let see what happens when QM is applied
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  Aeik r

p̂  i


r
  i



r
Aeik r  k

De Broglie relation states that

p 
h



 
k  k 

2





QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chimica Computazionale

Academic Year 2009 - 2010 maurizio casarinSecond Semester

  0  L  0
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Two kinds of boundary conditions
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 x  x  L 

 x  Aeikxx  x  L  AeikxxeikxL  e
ikxL 1

 kxL  2m

  m x  L
 1

2e
i 2mx
L

 

Em 
2

2m
k2 

2

2m

2m

L





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2

m  0,1,2,



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chimica Computazionale

Academic Year 2009 - 2010 maurizio casarinSecond Semester

Moving to three dimensions

  m x, y,z  L
3
2e
i 2
L mxxmyymzz 

 
Em 

2

2m
k2 

2

2m

2

L








2

mx
2  my

2  mz
2 

 mx ,my ,mz  0,1,2,

 
k 

2

L
m
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  m x, y,z  L
3
2e
i 2
L mxxmyymzz 
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Degeneracies of free electron levels

Typical possibilities  Orbital 

degeneracy 

Total 

degeneray 

mx  my  mz   m
2

 

  

0 0 0 0 1 2 

±1 0 0 1 6 12 

±1 ±1 0 2 12 24 

±1 ±1 ±1 3 8 16 

±2 0 0 4 6 12 
 

For large m values the degeneracies go up as
 
m2 

1
2
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mF  mmax

Energy, temperature and velocity of electrons with mF
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If we assume that the number of electrons per unit

volume is 0, then the Fermi momentum pF of a

uniform free electron gas is:

 
0 

N

V


pF
3

3 2h3

 
EF 

pF
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Thomas and Fermi applied such a relation to an
inhomogeneous situation as that of atoms, molecules and
solids. If the inhomogeneous electron density is denoted
by , when the equation defining 0 is applied locally
at , it yields

 r 
r

 
 r 

pF
3 r 

3 2 3
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Let us define the density of states g(), i.e.
the number of states between  and  + d
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The number of states with energy up to  is
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One can next write the classical energy equation for the
fastest electrons as
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A results of the free electron gas theory is that the mean kinetic
energy per particle is 3/5 of the Fermi energy. The total kinetic
energy T0 of a free electron gas constituted by N particles is then:
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3
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 t  Ck  r  
5/3

 
E  Ck  r  

5/3
dr   r  VM r dr 

e2

2

 r  r ' 
r  r ' drdr '

The physical meaning of the last equation is that the electronic
properties of a system are determined as functionals of the electronic
density by applying, locally, relations appropriate to a homogeneous
free electron gas. This approximation, known as local density
approximation (LDA), is probably one of the most important concept
of the modern DFT!
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A non local operator is characterized by the general equation

r ' Â   dr Â r ',r  r  ' r '  Â r ',r  r ' Â r

r ' Â r  Â r  r '  r 
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In ogni punto si associa alla densita alla densita (r) l’energia XC che
avrebbe un gas elettronico uniforme con la stessa densità. Ciò è ripetuto
per ogni punto e i valori usati nelle formule

QuickTime™ and a
 decompressor

are needed to see this picture.
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Minimization and orthonomalization conditions
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• 1920s: Introduction of the Thomas-Fermi model.

• 1964: Hohenberg-Kohn paper proving existence of exact DF.

• 1965: Kohn-Sham scheme introduced.

• 1970s and early 80s: LDA. DFT becomes useful.

• 1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).

• 1988: Becke and LYP functionals. DFT useful for some chemistry.

• 1998: Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.

Background
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The first HK theorem legitimates  as basic variable.

The external potential is determined, within a

trivial additive constant, by the electron density.

Ev   T  Vem  Vee    r v r dr  FHK  

FHK   T  Vee  

Vee   J   non classical terms
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The second HK theorem supplies the variational

principle for the ground state energy.

 r  dr  N  E0  Ev  

 
 Ev     r  dr  N



  0

The ground state energy and density correspond to the

minimum of some functional E subject to the constraint that

the density contains the correct number of electrons. The

Lagrange multiplier of this constraint is the electronic

chemical potential .
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In matematica e in fisica teorica, la derivata funzionale è una

generalizzazione della derivata direzionale. La differenza è

che la seconda differenzia nella direzione di un vettore,

mentre la prima differenzia nella direzione di una funzione.

Entrambe possono essere viste come estensioni dell'usuale

derivata.
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Ev   T  Vem  Vee    r v r dr  FHK  
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Despite the importance of the HK theorems, it is

noteworthy that the result they give is somehow

incomplete. Actually, the first HK theorem refers

only to the ground state energy and ground state

density. Furthermore, as far as the second HK

theorem is concerned, it is simply an existence

theorem and no information about how to get the

ground state energy functional is provided.

Nevertheless, the existence of an exact theory

justifies the research of new funtionals that, though

approximate version of the correct one, are more and

more accurate.
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• 1920s: Introduction of the Thomas-Fermi model.

• 1964: Hohenberg-Kohn paper proving existence of exact DF.

• 1965: Kohn-Sham scheme introduced.

• 1970s and early 80s: LDA. DFT becomes useful.

• 1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).

• 1988: Becke and LYP functionals. DFT useful for some chemistry.

• 1998: Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.

Background
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The Kohn-Sham  method.

The massive usage of DFT is tightly bound to its use

in orbitalic theories. This is not very surprising

because of the role played by these theories, in

particular the HF one, in quantum chemistry. Thus,

the major DFT developments have implied either the

improvement of existing orbitalic theories, for

instance the X method [Slater, 1951a-b], or the

proposal of new approaches [Kohn & Sham, 1965].
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Interacting electrons 
+ real potential

Non-interacting fictitious 
particles + effective potential
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F   Ts   J   Exc  
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With reference to the single Euler - Lagrange equation, the

introduction of N orbitals allows us to treat exactly Ts, the

dominant part of the true kinetic energy T[]. The cost we have

to pay is the needed of N equations rather than one expressed

in terms of the total electron density. The KS equations have

the same form of the Hartree equations unless the presence of

a more general local potential, . The computational effort

for their solution is comparable to that required for the Hartree

equations and definitely smaller than that pertinent to the HF

ones. HF equations are characterized by a one-electron

Hamiltonian including a non local potential and for this reason

they cannot be considered a special case of the KS equations.

veff r 
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Relative magnitudes of contributions to

total valence energy (in eV) of the Mn atom
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The exchange-correlation potential

While DFT in principle gives a good description of ground

state properties, practical applications of DFT are based on

approximations for the so-called exchange-correlation

potential. The exchange-correlation potential describes the

effects of the Pauli principle and the Coulomb potential beyond

a pure electrostatic interaction of the electrons.

Possessing the exact exchange-correlation potential means

that we solved the many-body problem exactly.

A common approximation is the so-called local density

approximation (LDA) which locally substitutes the exchange-

correlation energy density of an inhomogeneous system by

that of an electron gas evaluated at the local density.
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The Local Density Approximation (LDA)
The LDA approximation assumes that the density is slowly
varying and the inhomogeneous density of a solid or
molecule can be calculated using the homogeneous
electron gas functional.
While many ground state properties (lattice constants, bulk

moduli, etc.) are well described in the LDA, the dielectric

constant is overestimated by 10-40% in LDA compared to

experiment. This overestimation stems from the neglect of a

polarization-dependent exchange correlation field in LDA

compared to DFT.

The method can be improved by including the gradient of

the density into the functional. The generalized gradient

approximation GGA is an example of this type of approach.
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The Slater exchange functional

The predecessor to modern DFT is Slater’s X method.

This method was formulated in 1951 as an approximate

solution to the Hartree-Fock equations. In this method the

HF exchange was approximated by:

The exchange energy EX is a fairly simple function of the

electron density .

The adjustable parameter  was empirically determined

for each atom in the periodic table. Typically  is between

0.7 and 0.8. For a free electron gas  = 2/3.

EX[] = – 9
4
 3

4

1/3

4/3(r)dr
0


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The VWN Correlation Functional

In ab initio calculations of the Hartree-Fock type electron

correlation is also not included. However, it can be included

by inclusion of configuration interaction (CI). In DFT

calculations the correlation functional plays this role. The

Vosko-Wilk-Nusair correlation function is often added to the

Slater exchange function to make a combination exchange-

correlation functional.

Exc = Ex + Ec

The nomenclature here is not standardized and the

correlation functionals themselves are very complicated

functions. The correlation functionals can be seen on the

MOLPRO website

http://www.molpro.net/molpro2002.3/doc/manual/node146.html.



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chimica Computazionale

Academic Year 2009 - 2010 maurizio casarinSecond Semester

Application of the LDA
Application of LDA methods to semi-conductor materials and 
insulators gives good agreement for the lattice constant and 
bulk modulus.
The lattice constants are typically accurate to within 1-2%
up the second row in the periodic table.  Since the crystal
volume V is accurately calculated the density is, of course,
also obtained.  

The bulk modulus is:

Bulk moduli are calculated by systematically varying the 

lattice parameters and plotting the energy as a function of V.

The curvature at the minimum of the E(V) plot is proportional

to the lattice constant.

B = – V P
V

= –V


2
E

V
2
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Generalized gradient approximation (GGA).  Take density 
gradient into account.  Useful for molecules.

Spin density functional theory.  Two independent variables:
density and magnetization.

Exact exchange density functional theory.  Calculate 
exchange exactly and correlation approximately using DFT.

Generalized density functional theory.  Modify K-S energy 
partitioning to obtain a non-local hamiltonian.

Extensions of the LDA approach     

m(r) = – 0  – 
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The GGA approach takes into account variations in the
density by including the gradient of the density in the
functional. One commonly used GGA functional is that of
Becke.

This functional has only one adjustable parameter, . The
value of  = 0.0042 was determined based on the best fit
to the energies of six noble gas atoms using the sum of the
LDA and GGA exchange terms.

The GGA option in DMol3 is that of Perdew and Wang.

Generalized Gradient Approach (GGA)     

Vxc

B
= – 1/3 x2

1 + 6x sinh
– 1

x
, x =



4/3



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chimica Computazionale

Academic Year 2009 - 2010 maurizio casarinSecond Semester

As was discussed above for the Slater exchange functional
(no gradient), the VWN correlation functional provides a
significant improvement in the calculation of the energies
and properties such as bulk modulus, vibrational
frequencies etc. In a similar manner the Becke exchange
functional (including a gradient correlation) and the Lee-
Yang-Parr functional are used together. The Lee-Yang-Parr
or LYP correlation functional is quite complicated. It can be
viewed on the MOLPRO website.

Thus, two of the most commonly used functionals are:
S-VWN Slater exchange - VWN correlation (no gradients)
B-LYP Becke exchange - LYP correlation (gradients)

Lee-Yang-Parr Correlation Functional     
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The Role of Electronic Structure Methods in ICME

• A wide variety of relevant properties can be calculated from 

knowledge of atomic numbers alone

– Elastic constants

– Finite-temperature thermodynamic and transport properties 

– Energies of point, line and planar defects

• For many classes of systems accuracy is quite high

– Can be used to obtain “missing” properties in materials design when 

experimental data is lacking, hard to obtain, or “controversial”

– Can be used to discover new stable compounds with target properties

• The starting point for “hierarchical multiscale” modeling

– Enables development of interatomic potentials for larger-scale classical 

modeling
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Accuracy for Some Selected Materials

DFT Provides Accurate 

Framework for Predicting Alloy 

Phase Stability and Defect 

Energetics for Wide Range of 

Alloy Systems

C. Wolverton and V. Ozolins
(Phys Rev B, 2005)

C. Wolverton, V. Ozolins, MA
(Phys Rev B, 2004)

~95 % Success in High Throughput 

Study Comparing Predicted and 

Observed Stable Compounds for 80 

Binary Systems

S. Curtarolo et al., CALPHAD (2004)
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1st-Principles Modeling of Alloy Phase Stability

Mixing Energies of BCC Fe-Cu
J. Z. Liu, A. van de Walle, G. Ghosh and 

MA (2005)

Solvus Boundaries in Al-Ti
J. Z. Liu, G. Ghosh, A. van de Walle and 

MA (2006)

Predictions for Both Stable and Metastable Phases
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Discovery of New Materials

G. Hautier, C.C. Fischer, A. Jain, T. Mueller, and G. Ceder, “Finding Nature’s Missing 

Ternary Oxide Compounds Using Machine Learning and Density Functional Theory,”
Chem. Mater. 22, 3762-3767 (2010) 
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Materials Data for Discovery & Design

A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. 

Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. 

Persson, Applied Physics Letters Materials, 2013, 1(1), 011002.

https://www.materialsproject.org/
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Outline

• Formalism

– Hydrogen Atom

– Density Functional Theory

• Exchange-Correlation Potentials

• Pseudopotentials and Related Approaches

• Some Commercial and Open Source Codes

• Practical Issues

– Implementation

• Periodic boundary conditions

• k-Points

• Plane-wave basis sets

– Parameters controlling numerical precision

• Example Exercise
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Introduction
The Hydrogen Atom

Proton with mass M1, coordinate R1

Electron with mass m1, coordinate r1

   

r = r1 - r2,       R =
M1R1 + m2r2

M1 + m2

,        m =
M1m2

M1 + m2

,         M = M1 + m2

  

Y(R,r) =ycm (R)yr(r)
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Hydrogen Atom
Switch to Spherical Coordinates
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Hydrogen Atom
Wavefunctions

n = 1, 2, 3, …

l = 0 (s), 1(p), 2(d), …, n-1

Probability densities through the xz-plane for the 

electron at different quantum numbers (l, across 

top; n, down side; m = 0)

http://en.wikipedia.org/wiki/Hydrogen_atom

http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/HydrogenAtom.htm
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The Many-Electron Problem

• collection of

– N ions

– n electrons

• total energy 

computed as a 

function of ion 

positions

– must employ 

quantum mechanics

electrons

ions
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Born-Oppenheimer Approximation

• Mass of nuclei exceeds that of the electrons by a factor of 

1000 or more

– we can neglect the kinetic energy of the nuclei

– treat the ion-ion interaction classically

– significantly simplifies the Hamiltonian for the electrons

• Consider Hamiltonian for n electrons in potential of N

nuclei with atomic numbers Zi

external potential

   

ºVext rj( )
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Density Functional Theory
Hohenberg and Kohn (1964), Kohn and Sham (1965)

• For each external potential there is a unique ground-

state electron density

• Energy can be obtained by minimizing of a density 

functional with respect to density of electrons n(r)

Egroundstate=min{Etot[n(r)]}

  

Etot n r( )[ ] =T n r( )[ ] +Eint n r( )[ ] + drVext r( )ò n r( ) +Eion-ion

Kinetic Energy Electron-Electron 

Interactions

Electron-Ion 

Interactions
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Kohn-Sham Approach

n(r) = -e fi(r)
2

i=1

n

å

Many-Body Electron-Electron Interactions Lumped into Exc[n(r)]

“Exchange-Correlation Energy”
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Kohn-Sham Equations

   

Vxc (r) º
dExc[n(r)]

dn(r)
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Local Density Approximation
(e.g., J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981))

  

Exc[n(r)] = exc
homò (n(r))n(r)d3r
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Generalized Gradient Approximation
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996)

Exc
GGA[n(r)] = ex

homò (n(r))n(r)Fxc(rs,z, s)d3r

n = 3/ 4p  rs
3 = kF

3 / 3p 2

z = (n­ -n¯) / n

s =|Ñn | /2kFn
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A Note on Accuracy and Ongoing Research

• LDA leads to “overbinding”
− Lattice constants commonly 1-3 % too small, elastic constants 10-

15 % too stiff, cohesive energies 5-20 % too large

• BUT, errors are largely systematic

− Energy differences tend to be more accurate

• GGA corrects for overbinding

− Sometimes “overcorrects”

• “Beyond DFT” Approaches

− For “highly correlated” systems LDA & GGA perform much worse 

and corrections required (DFT+U, Hybrid Hartree-Fock/DFT, …)

− Non-bonded interactions, e.g., van der Waals interactions in 

graphite, require additional terms or functionals (e.g., vdW-DF)
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Pseudopotentials

• Potential due to ions is 

singular at ion core

• Eigenfunctions oscillate 

rapidly near singularity

• Eigenfunction in bonding 

region is smooth
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Pseudopotentials

• For plane-wave basis sets, rapid oscillations 

require large number of basis functions

– expensive

– unnecessary

• these oscillations don't alter bonding 

properties

• Replace potential with nonsingular potential

– preserve bonding tails of eigenfunction

– preserve distribution of charge between core 

and tail regions

– reduces number of plane waves required for 

accurate expansion of wavefunction

• Transferable

– developed from properties of isolated atoms

– applied in other situations

f

fpseudo
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Summary of Approaches

• Pseudopotentials

– Core electrons removed from problem and enter only in their 

effect of the pseudopotential felt by the valence electrons

– Kohn-Sham equations solved for valence electrons only

• “Augment” Plane Waves with atomic-like orbitals

– An efficient basis set that allows all electrons to be treated in the 

calculations

– Basis for “all-electron” codes

• Projector-Augmented-Wave method

– Combines features of both methods

– Generally accepted as the basis for the most accurate approach 

for calculations requiring consideration of valence electrons only
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Some of the Widely Used Codes

• VASP (http://cms.mpi.univie.ac.at/vasp/)

– Commercial, Plane-Wave Basis, Pseudopotentials and PAW

• PWSCF (http://www.quantum-espresso.org/)

– Free (and available to run on nanohub), Plane-Wave Basis, 

Pseudopotentials and PAW

• CASTEP (http://ccpforge.cse.rl.ac.uk/gf/project/castep/)

– Free in UK, licensed by Accelrys elsewhere, Plane-Wave Basis, 

Pseudopotentials

• ABINIT (http://www.abinit.org/)

– Free (and available to run on nanohub), plane-wave basis, 

pseudopotentials and PAW

• WIEN2K (http://www.wien2k.at/)

– Commercial (modest license fee), all-electron augmented wave method
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Outline

• Formalism

– Hydrogen Atom

– Density Functional Theory

• Exchange-Correlation Potentials

• Pseudopotentials and Related Approaches

• Some Commercial and Open Source Codes

• Practical Issues

– Implementation

• Periodic boundary conditions

• k-Points

• Plane-wave basis sets

– Parameters controlling numerical precision

• Example Exercise
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Total Energy in Density Functional Theory

n(r) = -e fi(r)
2

i=1

n

åElectron Density

Electron Wavefunctions fi(r)

Exchange-Correlation Energy Exc[n(r)]

Form depends on whether you use LDA or GGA

Potential Electrons Feel from Nuclei Vext (r)
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Kohn-Sham Equations
Schrödinger Equation for Electron Wavefunctions

-
2

2me
Ñi

2 +Vext (r)+
n(r ')

r - r '
ò d3r '+Vxc (r)

é

ë
ê
ê

ù

û
ú
ú
fi(r) = eifi (r)

   

Vxc (r) º
dExc[n(r)]

dn(r)

Note: fi depends on n(r) which depends on fi 

Solution of Kohn-Sham equations must be done iteratively

n(r) = -e fi(r)
2

i=1

n

å

Exchange-Correlation Potential

Electron Density
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Self-Consistent Solution to DFT Equations

Input Positions of Atoms for a Given 

Unit Cell and Lattice Constant

guess charge density

compute effective 

potential

compute Kohn-Sham 

orbitals and density

compare output and 

input charge densities

Energy for Given 

Lattice Constant

different

same

1. Set up atom positions

2. Make initial guess of “input” charge density 

(often overlapping atomic charge densities)

3. Solve Kohn-Sham equations with this input 

charge density

4. Compute “output” charge density from 

resulting wavefunctions

5. If energy from input and output densities 

differ by amount greater than a chosen 

threshold, mix output and input density and 

go to step 2

6. Quit when energy from input and output 

densities agree to within prescribed 

tolerance (e.g., 10-5 eV)

Note:  In your exercise, positions of atoms are dictated by symmetry.  If this is not the 

case another loop must be added to minimize energy with respect to atomic positions.
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Implementation of DFT for a Single Crystal

a
a

a

Unit Cell Vectors

a1 = a (-1/2, 1/2 , 0)

a2 = a (-1/2, 0, 1/2)

a3 = a (0, 1/2, 1/2)

Example: Diamond Cubic Structure of Si

Crystal Structure Defined by Unit Cell Vectors and Positions of 

Basis Atoms

Basis Atom Positions

0 0 0

¼ ¼ ¼ 

All atoms in the crystal can be obtained by adding integer 

multiples of unit cell vectors to basis atom positions
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Electron Density in Crystal Lattice

n r( ) = n r+Ruvw( )

a
a

a

Unit-Cell Vectors
a1 = a (-1/2, 1/2 , 0)

a2 = a (-1/2, 0, 1/2)

a3 = a (0, 1/2, 1/2)

Electron density is periodic with periodicity given by Ruvw

Ruvw = ua1 +va2 +wa3Translation Vectors:
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Electronic Bandstructure
Example for Si

http://de.wikipedia.org/wiki/Datei:Band_structure_Si_schematic.svg

http://en.wikipedia.org/wiki/Brillouin_zone

Electronic wavefunctions in a crystal can be indexed by 

point in reciprocal space (k) and a band index (b)

Brillouin Zone Bandstructure
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Why?
Wavefunctions in a Crystal Obey Bloch’s Theorem

fk
b
r( ) = exp ik ×r( ) uk

b
r( )

For a given band b

Where          is periodic in real space: uk
b
r( ) = uk

b
r+Ruvw( )uk

b
r( )

Ruvw = ua1 +va2 +wa3
Translation Vectors:
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Representation of Electron Density

fk
b
r( ) = exp ik ×r( ) uk

b
r( )

n(r) = -e fk
b r( )

WBZ
ò

2

f (ek
b -eF )

d3k

WBZb

å

In practice the integral over the Brillouin zone is replaced 

with a sum over a finite number of k-points (Nkpt)

One parameter that needs to be checked for numerical 

convergence is number of k-points

n(r) » -e w j fk j
b r( )

2

j=1

Nkpt

å f (ek j
b -eF )

b

å

Integral over k-points in first Brillouin zone

f(e-eF) is Fermi-Dirac distribution function with Fermi energy eF

n(r) = -e fi(r)
2

i=1

Ne

å
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Representation of Wavefunctions
Fourier-Expansion as Series of Plane Waves

uk
b
r( ) = uk

b
Glmn( )exp iGlmn ×r( )

lmn

å

fk
b
r( ) = exp ik ×r( ) uk

b
r( )For a given band: 

Recall that           is periodic in real space: uk
b
r( ) = uk

b
r+Ruvw( )uk

b
r( )

can be written as a Fourier Series:uk
b
r( )

Glmn = la1

* +ma2

* +na3

*

where the     are primitive reciprocal lattice vectorsa i
*

a1

* ×a1 = 2p a1

* ×a2 = 0 a1

* ×a3 = 0

a2

* ×a1 = 0 a2

* ×a2 = 2p a2

* ×a3 = 0

a3

* ×a1 = 0 a3

* ×a2 = 0 a3

* ×a3 = 2p
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Recall Properties of Fourier Series

http://mathworld.wolfram.com/FourierSeriesTriangleWave.html

Black line = (exact) triangular wave

Colored lines = Fourier series 

truncated at different orders

General Form of Fourier Series:

For Triangular Wave:

Typically we expect the accuracy of a truncated Fourier series to 

improve as we increase the number of terms
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Representation of Wavefunctions
Plane-Wave Basis Set

fk
b
r( ) = exp ik ×r( ) uk

b
r( )

Another parameter that needs to be checked for convergence is 

the “plane-wave cutoff energy” Ecut

In practice the Fourier series is truncated to include all G for which:

  

   

2

2m
G+ k( )

2
< Ecut

For a given band 

fk
b
r( ) = uk

b
G( )exp i G+k( ) ×réë ùû

G

å

Use Fourier Expansion



DFT Lecture, The 4th Summer School for Integrated Computational Materials Education  

Examples of Convergence Checks

Effect of Ecut Effect of Number of k Points

http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlke1.pdf
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Outline

• Formalism

– Hydrogen Atom

– Density Functional Theory

• Exchange-Correlation Potentials

• Pseudopotentials and Related Approaches

• Some Commercial and Open Source Codes

• Practical Issues

– Implementation

• Periodic boundary conditions

• k-Points

• Plane-wave basis sets

– Parameters controlling numerical precision

• Example Exercise
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Your Exercise:  Part 1

• Calculate equation of state of diamond cubic Si using Quantum 

Espresso on Nanohub (http://nanohub.org/)

• You will compare accuracy of LDA and GGA

• You will check numerical convergence with respect to number 

of k-points and plane-wave cutoff

• You will make use of the following unit cell for diamond-cubic 

structure

a
a

a

Lattice Vectors

a1 = a (-1/2, 1/2 , 0)

a2 = a (-1/2, 0, 1/2)

a3 = a (0, 1/2, 1/2)

Basis Atom Positions

0 0 0

¼ ¼ ¼ 

http://nanohub.org/
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Equation of State
A Probe of Interatomic Interactions

a
a

a

Energy 

per atom

Volume per atom (=a3/8 for Si)

Schematic Energy vs. 

Volume Relation

Diamond Cubic 

Structure of Si

http://www.e6cvd.com/cvd/page.jsp?pagei

d=361
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Equation of State
What Properties Can we Learn from It?

Pressure versus Volume Relation

Equilibrium Volume (or Lattice Constant)

Bulk Modulus

P = -
¶E

¶V

Given E(V) one can compute P(V) by taking derivative 

B = -V
¶P

¶V
=V

¶2E

¶V 2

Volume corresponding to zero pressure = Volume where slope of E(V) is zero

≈ Volume measured experimentally at P = 1 atm

B related to curvature of E(V) Function

Recall 1st Law of Thermo:  dE = T dS - P dV and consider T = 0 K
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Your Exercise:  Part 2
Non-hydrostatic Stress and Strain

Stress-Strain Relations in Linear Elasticity

s ij = Cijklekl
k,l

å

Consider Single Strain e33=e

s = C11e
s22 = C12e

Stress-Strain Relations in Linear Elasticity

Stress Strain

Cijkl Single-Crystal Elastic Constants

Voigt Notation (for Cubic Crystal)
C3333=C2222=C1111=C11

C2233=C1133=C1122=C2211=C3311=C3322=C12
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Background

• 1920s:  Introduction of the Thomas-Fermi model.

• 1964:    Hohenberg-Kohn paper proving existence of exact DF.

• 1965:    Kohn-Sham scheme introduced. 

• 1970s and early 80s:  LDA.  DFT becomes useful.

• 1985:  Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).

• 1988:  Becke and LYP functionals.  DFT useful for some chemistry.

• 1998:  Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.
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Born-Oppenheimer Approximation:
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Hohenberg-Kohn Theorem

• Two systems with the same number Ne of electrons have the same

Te + Vee.  Hence, they are distinguished only by Ven.

• Knowledge of |Ψ0> determines Ven.

• Let V be the set of external potentials such solution of 

yields a non=degenerate ground state |Ψ0>.

Collect all such ground state wavefunctions into a set Ψ.  Each 

element of this set is associated with a Hamiltonian determined by the external

potential.

There exists a 1:1 mapping C such that

C :  V Ψ
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Hohenberg-Kohn Theorem (part II)

Given an antisymmetric ground state wavefunction from the set Ψ, the 

ground-state density is given by
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Knowledge of n(r) is sufficient to determine |Ψ>

Let N be the set of ground state densities obtained from Ne-electron ground

state wavefunctions in Ψ.  Then, there exists a 1:1 mapping

D : Ψ N

The formula for n(r) shows that D exists, however, showing that D-1 exists

Is less trivial.

D-1 :  N Ψ



Proof that D-1 exists
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The theorems are generalizable to degenerate 

ground states!



The energy functional

The energy expectation value is of particular importance

0 0 0 0 0[ ] [ ] [ ]en H n E n  

From the variational principle, for |Ψ> in Ψ:
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Therefore, E[n0] can be determined by a minimization procedure:
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The Kohn-Sham Formulation

Central assertion of KS formulation: Consider a system of Ne

Non-interacting electrons subject to an “external” potential VKS.  It

Is possible to choose this potential such that the ground state density 

Of the non-interacting system is the same as that of an interacting 

System subject to a particular external potential Vext.

A non-interacting system is separable and, therefore, described by a set

of single-particle orbitals ψi(r,s), i=1,…,Ne, such that the wave function is

given by a Slater determinant:
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Some simple results from DFT

Ebarrier(DFT) = 3.6 kcal/mol

Ebarrier(MP4) = 4.1 kcal/mol



Geometry of the protonated methanol dimer

2.39Å

MP2 6-311G (2d,2p)  2.38 Å



Results methanol

Expt.:  -3.2 kcal/mol

Dimer dissociation curve of a neutral dimer



Lecture Summary

• Density functional theory is an exact reformulation of many-body

quantum mechanics in terms of the probability density rather than

the wave function

• The ground-state energy can be obtained by minimization of the

energy functional E[n].  All we know about the functional is that

it exists, however, its form is unknown.  

• Kohn-Sham reformulation in terms of single-particle orbitals helps

in the development of approximations and is the form used in 

current density functional calculations today.



Get a diamond 
anvil cell

Get beamtime 
on a 
synchrotron

Load your cell.
Put medium.

Go to 
synchrotron

Run your 
experiment

Get an ab initio 
software package

Get time on a 
supercomputer

Input your structure.
Choose pseudos, XCs. 

Go to 
supercomputer

Run your 
experiment

experimental methods computational methods



What is it hard to calculate ?

Transport properties: thermal conductivity, electrical conductivity of insulators, rheology, diffusion

Excited electronic states: optical spectra  (=constants?)

Width of IR/Raman peaks, Melting curves, Fluid properties

Electronic properties: orbital energies, chemical bonding, electrical conductivity

Structural properties: prediction of structures (under extreme conditions), 

phase diagrams, surfaces, interfaces, amorphous solids

Mechanical properties: elasticity, compressibility, thermal expansion

Dielectric properties: hybridizations, atomic dynamic charges, dielectric susceptibilities,

polarization, non-linear optical coefficients, piezoelectric tensor

Spectroscopic properties: Raman spectra with peak position and intensity, IR peaks

Dynamical properties: phonons, lattice instabilities, prediction of structures,  thermodynamic 

properties, phase diagrams, thermal expansion

What we can calculate ?



t: Xt Xt (=V) Xt(=A) m

Compute new F
then F = ma

t+1: Xt+1 Xt+1 Xt+1 m

A set of N particles with masses mn and initial positions Xn



Attractive zoneRepulsive zone



Lennard-Jones

Morse

Buckingham

Two-body potentials or pair potentials
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Multibody potentials

Vij(rij) = Vrepulsive(rij) + bijkVattractive(rij) 

2 body 3+ body



Force fields – very good for molecules

Many other examples:
CHARMM, polarizable, valence-bond models, 



Tersoff interatomic potential

http://phycomp.technion.ac.il/~david/thesis/these2.html



Non-empirical = first-principles or ab initio
- the energy is exactly calculated

- no experimental input

+ transferability, accuracy, many properties

- small systems



Schrödinger equation

time-dependent

time-independent
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Schrödinger equation involves many-body interactions

Kinetic energy of the electrons

External potential



Wavefunction

>ny| -contains all the measurable information
-gives a measure of probability: yyyy *| >=< nn

>ny|
~ many-particle wavefunction: 

depends on the position of electrons and nuclei
scales factorial

For a system like   C atom: 6 electrons : 6! evaluations = 720

For a system like   O atom: 8 electrons : 8! evaluations = 40320

For a system like Ne atom: 10 electrons: 10! Evaluations = 3628800

For one SiO2 molecule: 30electrons+3nuclei= 8.68E36 evaluations

UNPRACTICAL!



DENSITY FUNCTIONAL THEORY

- What is DFT ? 

- Codes

- Planewaves and pseudopotentials

- Types of calculation

- Input key parameters

- Standard output

- Examples of properties:

- Electronic band structure 

- Equation of state

- Elastic constants

- Atomic charges 

- Raman and Infrared spectra

- Lattice dynamics and thermodynamics

THEORETICAL 
ASPECTS

PRACTICAL 
ASPECTS

EXAMPLES



What is DFT

Idea: 

one determines the electron density (Kohn, Sham in the sixties: the one responsible 

for the chemical bonds) from which by proper integrations and derivations all the 

other properties are obtained.

INPUT

Structure: atomic types + atomic positions = 
initial guess of the geometry

There is no experimental input !



What is DFT

Kinetic energy of non-
interacting electrons

Energy term due to 
exterior

Coulombian energy =
Eee + EeN+ ENN

Exchange correlation energy

Decrease Increases
energy
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What is DFT



Exc: LDA vs. GGA

LDA = Local Density Approximation
GGA = Generalized Gradient Approximation

Non-

ò= drrrnE xcxc )()( e ò D= drrrrnE xcxc ),()( e



Flowchart of a standard DFT calculation

Initialize wavefunctions and electron density

Compute energy and potential 

Update energy and density 

Check convergence

Print required output
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In energy/potential
In forces
In stresses



Crystal structure – non-periodic systems

Point-defect Surface Molecule

“big enough”



Core electrons   pseudopotential

Valence electrons computed 
self-consistently

Input key parameters - pseudopotentials

Semi-core states



All electron wavefunction

Pseudo-wavefunction

Input key parameters - pseudopotentials



Input key parameters - pseudopotentials



Input key parameters - pseudopotentials



localized basis



Planewaves are characterized by their

wavevector G

angular speed w

wavelength
= 2p/G

frequency
f = w/2p

period

T = 1/f = 2p/w

velocity
v = /T = w/k

planewaves



The electron density is obtained by superposition of planewaves

planewaves



Input key parameters - K-points

Limited set of k points ~ 
boundary conditions



after: http://www.psi-k.org/Psik-training/Gonze-1.pdf



Electronic properties: electronic band structure, orbital energies, chemical bonding, 

hybridization, insulator/metallic character, Fermi surface, X-ray diffraction diagrams

Structural properties: crystal structures, prediction of structures under extreme 

conditions, prediction of phase transitions, analysis of hypothetical structures

Mechanical properties: elasticity, compressibility

Dielectric properties: hybridizations, atomic dynamic charges, dielectric 

susceptibilities, polarization, non-linear optical coefficients, piezoelectric tensor

Spectroscopic properties: Raman and Infrared active modes, silent modes, 

symmetry analysis of these modes

Dynamical properties: phonons, lattice instabilities, prediction of structures, study 

of phase transitions, thermodynamic properties, electron-phonon coupling

PRACTICAL ASPECTS: Properties



Values of the parameters

How to choose between LDA and GGA ?

- relatively homogeneous systems LDA

- highly inhomogeneous systems GGA

- elements from “p” bloc LDA

- transitional metals GGA

- LDA underestimates volume and distances

- GGA overestimates volume and distances

- best: try both: you bracket the experimental value



Values of the parameters

How to choose pseudopotentials ?

- the pseudopotential must be for the same XC as the calculation

- preferably start with a Troullier-Martins-type

- if it does not work try more advanced schemes

- check semi-core states

- check structural parameters for the compound not element!



Values of the parameters

How to choose no. of planewaves and k-points ?

- check CONVERGENCE of the physical properties
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Values of the parameters

- check CONVERGENCE of the physical properties



Usual output of calculations (in ABINIT)

Log (=STDOUT) file
detailed information about the run; energies, forces, errors, warnings,etc.

Output file:
simplified “clear” output:

full list of run parameters
total energy; electronic band eigenvalues; pressure; magnetization, etc.

Charge density = DEN

Electronic density of states = DOS

Analysis of the geometry = GEO

Wavefunctions = WFK, WFQ

Dynamical matrix = DDB

etc.



DFT codes 
http://dft.sandia.gov/Quest/DFT_codes.html

http://www.psi-k.org/



DFT codes:

ABINIT is a package whose main program allows one to find the total energy, 
charge density and electronic structure of systems made of electrons and nuclei 
(molecules and periodic solids) within Density Functional Theory (DFT), using 
pseudopotentials and a planewave basis. ABINIT also includes options to optimize 
the geometry according to the DFT forces and stresses, or to perform molecular 
dynamics simulations using these forces, or to generate dynamical matrices, Born 
effective charges, and dielectric tensors. Excited states can be computed within the 
Time-Dependent Density Functional Theory (for molecules), or within Many-Body 
Perturbation Theory (the GW approximation). In addition to the main ABINIT code, 
different utility programs are provided. 

First-principles computation of material properties : the ABINIT 
software project.
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. 
Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan

Computational Materials Science, 25, 478-492 (2002)

A brief introduction to the ABINIT software package.
X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. 
Zerah, M. Mikami, P. Ghosez, M. Veithen, V. Olevano, L. Reining, R. Godby, G. Onida, D. Hamann and D. 
C. Allan

Z. Kristall., 220, 558-562 (2005)

A  B  I  N  I  T  



Sequential calculations one processor at a time
Parallel calculations several processors in the same time



1 flop = 1 floating point operation / cycle

Itanium 2 @ 1.5 GHz ~ 6Gflops/sec = 6*109 operations/second

These are Gflops / second (~0.5 petaflop)
= millions of operations / second









RUN MD CODE



Jmol exercise: http://jmol.sourceforge.net/



EXTRACT RELEVANT INFORMATION:

Atomic positions
Atomic velocities
Energy
Stress tensor

VISUALIZE SIMULATION (ex: jmol, vmd)

PERFORM STATISTICS



Ex: coordination in forsteritic melt at mid-mantle conditions

C-O Si-O



Design of Catalysts and Electrocatalysts: 

From DFT Prediction to Experimental Verification 

Jingguang Chen 
 

Columbia University & BNL 

Email: jgchen@columbia.edu 

 

CFN Workshop, Nov. 5, 2014 



Development of Novel Catalysts 

• Supported catalysts: 

 - More relevant to commercial catalysts and processes  

 - Fast (high throughput) evaluation 

 - “Heterogeneous” in electronic and catalytic properties 

 

• Single crystal surfaces: 

 - Atomic level understanding from experiments and theory 

 - Materials gap: single crystal vs. polycrystalline materials 

 - Pressure gap: ultrahigh vacuum (UHV: ~10-12 psi) 
 

 

• Need to bridge “materials gap” and “pressure gap” 
   



Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem cells 

From DFT Prediction to Experimental Verification 

Use DFT to assist catalysts design: (activity, selectivity, stability, cost):  

 

- Binding energy calculations (activity, stability) 
 

- Activation barriers and reaction network (selectivity) 



Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem cells 

Examples of DFT prediction and experimental verification:  

 

- Correlating hydrogen binding energy (HBE) with water electrolysis activity 
 

- Correlating hydrogen binding energy (HBE) with hydrogenation activity 
 

- Correlating activation barrier with hydrogenation selectivity 

Outline of Presentation 



Correlating HBE with Water Electrolysis Activity 

Esposito, Hunt & Chen, 

Angew. Chem. Int. Ed. 

49 (2010) 9859 



HER Activity and Hydrogen Binding Energy (HBE) 

[1] Data from: Norskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming, J.Electrochem. Soc., 152 (2005)  J23-26. 

• Classic volcano curve observed for the HER is explained by 

Sabatier’sPrinciple (Volmer Step) 

(Tafel Step) 

(Weak) (Strong) 



Reduce Pt Loading with Monolayer (ML) Pt 

Goal:  Supporting ML Pt on Pt-like substrates, such as WC 



Surface HBE (eV)

WC(001) -0.99

Pt(111) -0.46

1 ML Pt-WC(001) -0.43

DFT-calculated per-atom hydrogen 

binding energy (HBE) for WC, Pt, and 1 

ML Pt-WC surfaces with a hydrogen 

coverage of 1/9 ML. 

d-band density of states 

DFT Prediction:  Similar HBE Values between 

Monolayer Pt-WC and Bulk Pt 

Pt WC 

1 atomic 

layer of Pt 



Experimental Verification of Activity and Stability 

HER Activity of 1 ML Pt/WC approaches to that of Pt foil 
 

Esposito, Hunt, Birmire & Chen, Angew. Chem. Int. Ed. 49 (2010) 9859  



DFT Prediction of Stability of Pt/WC and Pt/C 

• Use DFT to compare adhesion of Pt atoms to WC and Pt surfaces: 

Pt-(Substrate) > Pt-Pt 

Pt-(Substrate) < Pt-Pt 

ML configuration 

favored 

Particles 

favored 

Binding Energy Outcome 

Pt 

migration 

ML surface atoms Substrate 
Binding energy                        

/ eV 

(M-X^) - (M-M) BE                        

/ eV 

Pt 

Pt(111) -5.43 0.00 

C(0001) -4.12 1.31 

WC(0001) -6.59 -1.16 

W2C(0001) -6.51 -1.08 



Experimental Verification of HER Stability 

• No change in overpotential observed with time 

• No change in LSV before and after CP 

• XPS and SEM measurements confirmed stability 

Chronopotentiometry Linear Sweep Voltammetry 

Esposito, Hunt & Chen, J. Am. Chem. Soc. 134 (2012) 3025 



Other ML/TMC Electrocatalysts for HER in Acid 

Volcano relationship provides design principles of electrocatalysts 

 
Kimmel , Yang & Chen, J. Catalysis, 312 (2014) 216 
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HER Catalysts in Alkaline Environment 

Volcano relationship also appears to hold in alkaline electrolyte 

 
Sheng et al. Energy & Env. Sci. 6 (2013) 1509 



Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem cells 

Examples of DFT prediction and experimental verification:  

 

- Correlating hydrogen binding energy (HBE) with water electrolysis activity 
 

- Correlating hydrogen binding energy (HBE) with hydrogenation activity 
 

- Correlating activation barrier with hydrogenation selectivity 

Outline of Presentation 



Monolayer Bimetallic Surfaces 

Surface Monolayer Subsurface Monolayer 

Surface Alloy 

Modified surface chemical properties due to: 

–Ligand effect – electronic configuration 

–Compressive and tensile strain - lattice mismatch 



DFT Prediction of HBE Values 

Hydrogen binding energy (HBE) can be controlled by surface structures 
 

Kitchin, Norskov, Barteau & Chen,  Phys. Rev. Lett. 93 (2004) 156801 

Murillo, Goda & Chen, J. Am. Chem. Soc. 129 (2007) 7101 
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Controlling Hydrogenation Activity: 
Correlating with Binding Energy 

Low-Temperature Cyclohexene Hydrogenation: 

 

 

 

 

 

Assumption for Higher Hydrogenation Activity: 

• Weakly bonded H atoms 

• Weakly bonded cyclohexene 

Ni/Pt

HH
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DFT Calculations of Binding Energies of 

Hydrogen and Cyclohexene 

BE values follow the same trend: Ni-Pt(111) > Ni ~ Pt > Pt-Ni-Pt(111) 
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Low-Temperature Hydrogenation of  

Cyclohexene Due to Weakly Bonded H 

- Weakly bonded M-H leads to low-T hydrogenation 
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Binding Energies Correlate with 

Cyclohexene Hydrogenation Activity 

Sabatier’s principle: not too strong, not too weak! 

Volcano relationship allows prediction of hydrogenation activity 
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DFT Prediction of Stable Bimetallic Structures 
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General Stability includes: 

Admetals – 3d, 4d, 5d 

Host metals – Ni, Pd, Pt 

Vacuum 

0.5 ML H 

0.5 ML O 

Menning & Chen,  

J. Chem. Phys, 130 (2009) 174709 



Experimental Verification of Bimetallic Structures 

Coordination 

Number 
10% H2 at 50 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 1.9 ± 0.8 2.696 ± 0.003 

Pt-Ni 3.5 ± 0.4 3.904 ± 0.007 

 

   

   

Coordination 

Number 
10% H2 at 225 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 2.0 ± 0.7 2.675 ± 0.005 

Pt-Ni 3.8 ± 0.3 4.148 ± 0.008 

 
Coordination 

Number 
APR at 225 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 6.0 ± 1.4 4.429 ± 0.006 

Pt-Ni 1.9 ± 0.8 2.24 ± 0.03 

 

Tupy, Karim, Vlachos, Chen, ACS Catalysis, 2 (2012) 2290 



Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem cells 

Examples of DFT prediction and experimental verification:  

 

- Correlating hydrogen binding energy (HBE) with water electrolysis activity 
 

- Correlating hydrogen binding energy (HBE) with hydrogenation activity 
 

- Correlating activation barrier with hydrogenation selectivity 

Outline of Presentation 



Selective Hydrogenation Requires More 

Complicated DFT Calculations  



Predicting Selectivity Requires DFT 

Calculations of Reaction Network 



Experimental Verification on Model Surfaces 



Batch Reactor:  Hydrogenation Activity 



Flow Reactor:  Hydrogenation Selectivity 

Hou, Porosoff, Chen & Wang, J. Catalysis, 316 (2014) 1 



Conclusions 

 

 

• Bimetallic and carbide catalysts offer the advantages of 

reduced cost and enhanced activity, selectivity and stability 
 

• Combined theory, surface science, and catalytic studies are 

critical in design of novel catalytic materials 
 

 

 
   

Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem Cell 

Review: Yu, Porosoff & Chen, “Review of Pt-based Bimetallic Catalysis:  From 

Model Surfaces to Supported Catalysts”, Chemical Reviews, 112 (2012) 5780 


