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Design Of Experiments

• Design of Experiments is a method of 

experimenting with complex processes 

with the objective of optimizing the 

process.  
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Design of Experiments

• Dr. Genichi Taguchi (1924- )

– Loss Function  
• Quality, or the lack of it, is a loss to society

– Experiment Design

– Four Basic Steps to Experiments
• Select the process/product to be studied

• Identify the important variables

• Reduce variation on the important process 
improvement

• Open up tolerances on unimportant variables
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Design Of Experiments

• Design of experiments seeks to:

– Determine which variables affect the system.

– Determine how the magnitude of the variables 

affects the system.

– Determine the optimum levels for the 

variables.

– Determine how to manipulate the variables to 

control the response.
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Design Of Experiments

• Methods of Experimentation

– Trial and Error

– Single Factor Experiment

• one change at a time

– Fractional Factorial Experiment

• change two or more things at a time

– Full Factorial Experiment

• change many things at a time

– Others (Box-Jenkins, Taguchi, etc.)
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Design Of Experiments

• Trial and Error Experiments

– Lack direction and focus

– Guesswork
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Design Of Experiments

• Trial and Error Experiment Example

Problem: Selecting copying settings to prepare a document

Contrast Size

7 93

6 85

5 78

• How many different permutations exist?

• What would happen if we added three settings for location (center, 

left flush, right flush)?
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Design Of Experiments

• Single Factor Experiment

– A single factor experiment allows for the 

manipulation of only one factor during an 

experiment.

• Select one factor and vary it, while holding all other 

factors constant.  

– The objective in a single factor experiment is 

to isolate the changes in the response 

variable as they relate to the single factor.
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Design Of Experiments

• Single Factor Experiment

– These types of experiments are:

• Simple to Analyze

– Only one thing changes at a time and you can see what 

affect that change has on the system.

• Time Consuming 

– Changing only one thing at a time can result in dozens of 

repeated experiments.
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Design Of Experiments

• Single Factor Experiment

– In these types of experiments:
• Interactions between factors are not detectable.

– These experiments rarely arrive at an optimum setup 
because a change in one factor frequently requires 
adjustments to one or more of the other factors to 
achieve the best results.

– Life isn’t this simple 
• Single factor changes rarely occur that are not 

inter-related to other factors in real life..
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Design Of Experiments

• Single Factor Experiment Example
• Problem: What combination of factors avoids tire failure?

• Speed   Temperature  Tire Pressure Chassis Design
• 65 75 32 A

• 70 75 32 A

• 65 75 32 B

• 70 75 32 B

• 65 85 32 A

• 70 85 32 A

• 65 85 32 B

• 70 85 32 B

• 65 75 27 A

• 70 75 27 A

• 65 75 27 B

• 70 75 27 B

• 65 85 27 A

• 70 85 27 A

• 65 85 27 B

• 70                85 27 B
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Design Of Experiments

• Fractional Factorial Experiment

– Studies only a fraction or subset of all the 

possible combinations.

• A selected and controlled multiple number of 

factors are adjusted simultaneously.

– This reduces the total number of experiments.

– This reveals complex interactions between the factors.

– This will reveal which factors are more important than 

others.
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Design Of Experiments

• Fractional Factorial Experiment Example
• Problem: What combination of factors avoids tire failure?

• Speed   Temperature  Tire Pressure Chassis Design
• 70 75 32 A

• 65 75 32 B

• 65 85 32 A

• 70 85 32 B

• 70 75 27 A

• 65 75 27 B

• 65 85 27 A

• 70                85 27 B
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Design Of Experiments

• Full Factorial Experiment

– A full-factorial design consists of all 

possible combinations of all selected levels 

of the factors to be investigated.

• Examines every possible combination of factors 

at all levels.  
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Design Of Experiments

• Full Factorial Experiment

– A full-factorial design allows the most 

complete analysis

• Can determine main effects of the factors 

manipulated on response variables

• Can determine effects of factor interactions on 

response variables

• Can estimate levels at which to set factors for best 

result 

– Time consuming
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Design Of Experiments

• Full Factorial Experiment Example
• Problem: What combination of factors avoids tire failure?

• Speed   Temperature  Tire Pressure Chassis Design
• 65 75 32 A

• 70 85 32 A

• 70 85                                         27                                                 A

• 65 75 32 B

• 70 85 32 B

• 70 85 27 B

•

• 65 85 32 A

• 65 85 27 A

•

• 65 85 32 B

• 65 85 27 B

•

• 70 75 27 A

• 70 85 27 A

• 70 85 32 A

• 70 85 27 A

• 70                85 27 B
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Design Of Experiments

• Conducting an Experiment: The Process

– Plan your experiment!

• Successful experiments depend on how well they 

are planned.

– What are you investigating?

– What is the objective of your experiment?

– What are you hoping to learn more about?

– What are the critical factors?

– Which of the factors can be controlled?

– What resources will be used?
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Design Of Experiments

• Conducting an Experiment: The Process

– Setting up your experiment.

• Determine the factors

– How many factors will the design consider?

– How many levels (options) are there for each factor?

– What are the settings for each level?

– What is the response factor?
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Design Of Experiments

• Conducting an Experiment: The Process

– Select a study for your experiment

• Full Factorial

• Fractional Factorial

• Other
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Design Of Experiments

• Conducting an Experiment: The Process

– Run your experiment!

• Complete the runs as specified by the experiment 

at the levels and settings selected.

• Enter the results into analysis program.
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Design Of Experiments

• Conducting an Experiment: The Process

– Analyze your experiment!

• Use statistical tools to analyze your data and 

determine the optimal levels for each factor.

– Analysis of Variance

– Analysis of Means 

– Regression Analysis

– Pairwise comparison

– Response Plot

– Effects Plot

– Etc.
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Design Of Experiments

• Conducting an Experiment: The Process

– Apply the knowledge you gained from your 

experiment to real life.
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Design Of Experiments

• An ANOM is an analysis of means.

– A one-way analysis of means is a control 

chart that identifies subgroup averages that 

are detectably different from the grand 

average.

• The purpose of a one-way ANOM is to compare 

subgroup averages and separate those that 

represent signals from those that do not.

– Format: a control chart for subgroup averages, each 

treatment (experiment) is compared with the grand 

average.
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Design Of Experiments

• An ANOVA is an Analysis of Variance
– Used to determine whether or not changes in 

factor levels have produced significant effects 
upon a response variable.

• An ANOVA estimates the variance of the X using two-
three different methods.  

– If the estimates are similar, then detectable differences 
between the subgroup averages are unlikely.  

– If the differences are large, then there is a difference 
between the subgroup averages that are not attributable to 
background noise alone.

– ANOVA compares the between-subgroup estimate of 
variance of x with the within subgroup estimate.   
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Design Of Experiments

• Definitions:

– Factor:

• The variable that is changes and results observed.

– A variable which the experimenter will vary in order to 

determine its effect on a response variable.

» (Time, temperature, operator…)

– Level:

• A value assigned to change the factor.

» Temperature; Level 1: 110, Level 2: 150
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Design Of Experiments

• Definitions:

– Effect: 

• The change in a response variable produced by a 

change in the factor level.

– Degree of Freedom: 

• The number of levels of a factor minus 1.

– Interaction:

• Two or more factors that, together, produce a 

result different that what the result of their separate 

effects would be.
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Design Of Experiments

• Definitions:

– Noise factor: 

• An uncontrollable (but measurable) source of 

variation in the functional characteristics of a 

product or process.

– Response variable: 

• The variable(s) used to describe the reaction of a 

process to variations in control variables (factors). 

• The Quality characteristic under study.
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Design Of Experiments

• Definitions:

– Treatment:

• A set of conditions for an experiment

– factor x level used for a particular run. 

– Run: 

• An experimental trial.  The application of one 

treatment to one experimental unit.
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Design Of Experiments 

• Definitions: 

– Replicate:

• Repeat the treatment condition.

– Repetition:

• Multiple results of a treatment condition.

– Significance:

• The importance of a factor effect in either a 

statistical sense or in a practical sense.
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Design Of Experiments

• Types of Errors

– Type I Error:

• A conclusion that a factor produces a significant 

effect on a response variable when, in fact, its 

effect is negligible (a false alarm).

– Type II Error:

• A conclusion that a factor does not produce a 

significant effect on a response variable when, in 

fact, its effect is meaningful.
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Design Of Experiments

• Experiment Errors

– lack of uniformity of the material

– inherent variability in the experimental 

technique
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Design Of Experiments

• Characteristics of a Good Experiment Design

– The experiment should provide unbiased estimates of 

process variable and treatment effects (factors at 

different levels).

– The experiment should provide the precision 

necessary to enable the experimenter to detect 

important differences.

– The experiment should plan for the analysis of the 

results.
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Design Of Experiments

• Characteristics of a Good Experiment Design

– The experiment should generate results that are free 

from ambiguity of interpretation.

– The experiment should point the experimenter in the 

direction of improvement.

– The experiment should be as simple as possible.
– Easy to set up and carry out

– Simple to analyze and interpret

– Simple to communicate or explain to others
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DOE - I

Introduction
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Design of Engineering Experiments

Introduction

• Goals of the course and assumptions

• An abbreviated history of DOE

• The strategy of experimentation

• Some basic principles and terminology

• Guidelines for planning, conducting and 

analyzing experiments
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Assumptions

• You have

– a first course in statistics

– heard of the normal distribution

– know about the mean and variance

– have done some regression analysis or heard of it

– know something about ANOVA or heard of it

• Have used Windows or Mac based computers

• Have done or will be conducting experiments

• Have not heard of factorial designs, fractional 

factorial designs, RSM, and DACE.
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Some major players in DOE

• Sir Ronald A. Fisher - pioneer 

– invented ANOVA and used of statistics in experimental 

design while working at Rothamsted Agricultural 

Experiment Station, London, England.

• George E. P. Box - married Fisher’s daughter

– still active (86 years old)

– developed response surface methodology (1951)

– plus many other contributions to statistics

• Others

– Raymond Myers, J. S. Hunter, W. G. Hunter, Yates, 

Montgomery, Finney, etc..
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Four eras of DOE
• The agricultural origins, 1918 – 1940s

– R. A. Fisher & his co-workers

– Profound impact on agricultural science

– Factorial designs, ANOVA

• The first industrial era, 1951 – late 1970s

– Box & Wilson, response surfaces

– Applications in the chemical & process industries

• The second industrial era, late 1970s – 1990

– Quality improvement initiatives in many companies

– Taguchi and robust parameter design, process robustness

• The modern era, beginning circa 1990

– Wide use of computer technology in DOE

– Expanded use of DOE in Six-Sigma and in business

– Use of DOE in computer experiments
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References

• D. G. Montgomery (2008): Design and Analysis 

of Experiments, 7th Edition, John Wiley and Sons

– one of the best book in the market. Uses Design-Expert 

software for illustrations. Uses letters for Factors.

• G. E. P. Box, W. G. Hunter, and J. S. Hunter 

(2005): Statistics for Experimenters: An 

Introduction to Design, Data Analysis, and Model 

Building, John Wiley and Sons. 2nd Edition

– Classic text with lots of examples. No computer aided 

solutions.  Uses  numbers for Factors.

• Journal of Quality Technology, Technometrics, 

American Statistician, discipline specific journals
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Introduction: What is meant by DOE?

• Experiment -

– a test or a series of tests in which purposeful changes 

are made to the input variables or factors of a system 

so that we may observe and identify the reasons for 

changes in the output response(s).

• Question:  5 factors, and 2 response variables

– Want to know the effect of each factor on the response 

and how the factors may interact with each other

– Want to predict the responses for given levels of the 

factors

– Want to find the levels of the factors that optimizes the 

responses - e.g. maximize Y1 but minimize Y2

– Time and budget allocated for 30 test runs only.
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Strategy of Experimentation

• Strategy of experimentation

– Best guess approach (trial and error)

• can continue indefinitely

• cannot guarantee best solution has been found

– One-factor-at-a-time (OFAT) approach

• inefficient (requires many test runs)

• fails to consider any possible interaction between factors

– Factorial approach (invented in the 1920’s)

• Factors varied together

• Correct, modern, and most efficient approach

• Can determine how factors interact

• Used extensively in industrial R and D, and for process 

improvement.
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• This course will focus on three very useful and 

important classes of factorial designs: 

– 2-level full factorial (2k)

– fractional factorial (2k-p), and 

– response surface methodology (RSM)

• I will also cover split plot designs, and design and analysis of computer 

experiments if time permits. 

• Dimensional analysis and how it can be combined with DOE will also be 

briefly covered.

• All DOE are based on the same statistical principles 

and method of analysis - ANOVA and regression 

analysis.

• Answer to question: use a 25-1 fractional factorial in a central 

composite design = 27 runs (min)
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Statistical Design of Experiments

• All experiments should be designed experiments

• Unfortunately, some experiments are poorly 

designed - valuable resources are used 

ineffectively and results inconclusive

• Statistically designed experiments permit 

efficiency and economy, and the use of statistical 

methods in examining the data result in scientific 

objectivity when drawing conclusions.
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• DOE is a methodology for systematically applying 

statistics to experimentation.

• DOE lets experimenters develop a mathematical 

model that predicts how input variables interact to 

create output variables or responses in a process or 

system. 

• DOE can be used for a wide range of experiments 

for various purposes including nearly all fields of 

engineering and even in business marketing.

• Use of statistics is very important in DOE and the 

basics are covered in a first course in an 

engineering program.
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• In general, by using DOE, we can:

– Learn about the process we are investigating

– Screen important variables 

– Build a mathematical model

– Obtain prediction equations

– Optimize the response (if required)

• Statistical significance is tested using ANOVA, 

and the prediction model is obtained using 

regression analysis.
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Applications of DOE in Engineering Design

• Experiments are conducted in the field of 

engineering to:

– evaluate and compare basic design configurations

– evaluate different materials

– select design parameters so that the design will work 

well under a wide variety of field conditions (robust 

design)

– determine key design parameters that impact 

performance
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PROCESS:

A Blending of 

Inputs which 

Generates 

Corresponding 

Outputs

INPUTS

(Factors)

X variables

OUTPUTS

(Responses)

Y variables

People

Materials

Equipment

Policies

Procedures

Methods

Env ironment

responses related 
to performing a 

service

responses related 
to producing a 

produce

responses related 
to completing a task

Illustration of a Process
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PROCESS:

Discovering 

Optimal 

Concrete 

Mixture

INPUTS

(Factors)

X variables

OUTPUTS

(Responses)

Y variables

Type of  

cement

Percent water

Type of  

Additiv es

Percent 

Additiv es

Mixing Time

Curing 

Conditions

% Plasticizer

compressive 
strength

modulus of elasticity

modulus of rupture

Optimum Concrete Mixture

Poisson's ratio
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PROCESS:

Manufacturing 

Injection 

Molded Parts

INPUTS

(Factors)

X variables

OUTPUTS

(Responses)

Y variables

Type of  Raw 

Material

Mold 

Temperature

Holding 

Pressure

Holding Time

Gate Size

Screw Speed

Moisture 

Content

thickness of molded 
part

% shrinkage from 
mold size

number of defective 
parts

Manufacturing Injection Molded 

Parts
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PROCESS:

Rainfall-Runoff 

Model 

Calibration

INPUTS

(Factors)

X variables

OUTPUTS

(Responses)

Y variables

Initial storage 

(mm)

Coef f icient of  

Inf iltration

Coef f icient of  

Recession

Soil Moisture 

Capacity  

(mm)

R-square:
Predicted vs 

Observed Fits

Model Calibration

Impermeable layer 

(mm)

Initial Soil Moisture

(mm)
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PROCESS:

Making the 

Best 

Microwave 

popcorn

INPUTS

(Factors)

X v ariables

OUTPUTS

(Responses)

Y v ariables

Brand:

Cheap vs Costly

Time:

4 m in vs 6 min

Power:

75% or 100%

Height:

On bottom or raised

Taste:
Scale of 1 to 10

Bullets:
Grams of unpopped 

corns

Making microwave popcorn
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Examples of experiments from daily life

• Photography

– Factors:  speed of film, lighting, shutter speed

– Response: quality of slides made close up with flash attachment

• Boiling water

– Factors: Pan type, burner size, cover

– Response: Time to boil water

• D-day

– Factors: Type of drink, number of drinks, rate of drinking, time 

after last meal

– Response: Time to get a steel ball through a maze

• Mailing 

– Factors: stamp, area code, time of day when letter mailed

– Response: Number of days required for letter to be delivered
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More examples

• Cooking

– Factors: amount of cooking wine, oyster sauce, sesame oil

– Response: Taste of stewed chicken

• Basketball

– Factors: Distance from basket, type of shot, location on floor

– Response: Number of shots made (out of 10) with basketball

• Skiing

– Factors: Ski type, temperature, type of wax

– Response: Time to go down ski slope
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Basic Principles

• Statistical design of experiments (DOE)

– the process of planning experiments so that 

appropriate data can be analyzed by statistical 

methods that results in valid, objective, and 

meaningful conclusions from the data 

– involves two aspects: design and statistical 

analysis
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• Every experiment involves a sequence of 

activities:

– Conjecture - hypothesis that motivates the 

experiment

– Experiment - the test performed to investigate 

the conjecture

– Analysis - the statistical analysis of the data 

from the experiment

– Conclusion - what has been learned about the 

original conjecture from the experiment.
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Three basic principles of Statistical DOE

• Replication

– allows an estimate of experimental error

– allows for a more precise estimate of the sample mean 

value

• Randomization

– cornerstone of all statistical methods

– “average out” effects of extraneous factors

– reduce bias and systematic errors

• Blocking

– increases precision of experiment

– “factor out” variable not studied
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Guidelines for Designing Experiments

• Recognition of and statement of the problem

– need to develop all ideas about the objectives of the 

experiment - get input from everybody - use team 

approach.

• Choice of factors, levels, ranges, and response 

variables.  

– Need to use engineering judgment or prior test results.

• Choice of experimental design

– sample size, replicates, run order, randomization, 

software to use, design of data collection forms.
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• Performing the experiment

– vital to monitor the process carefully. Easy to 

underestimate logistical and planning aspects in a 

complex R and D environment.

• Statistical analysis of data

– provides objective conclusions - use simple graphics 

whenever possible.

• Conclusion and recommendations

– follow-up test runs and confirmation testing to validate 

the conclusions from the experiment.

• Do we need to add or drop factors, change ranges, 

levels, new responses, etc.. ???
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Using Statistical Techniques in 

Experimentation - things to keep in mind

• Use non-statistical knowledge of the problem

– physical laws, background knowledge

• Keep the design and analysis as simple as possible

– Don’t use complex, sophisticated statistical techniques

– If design is good, analysis is relatively straightforward

– If design is bad - even the most complex and elegant 

statistics cannot save the situation

• Recognize the difference between practical and 

statistical significance

– statistical significance  practically significance
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• Experiments are usually iterative

– unwise to design a comprehensive experiment at the 

start of the study

– may need modification of factor levels, factors, 

responses, etc.. - too early to know whether experiment 

would work

– use a sequential or iterative approach

– should not invest more than 25% of resources in the 

initial design.

– Use initial design as learning experiences to accomplish 

the final objectives of the experiment.
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DOE (II)

Factorial vs OFAT
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Factorial v.s. OFAT

• Factorial design - experimental trials or runs are 

performed at all possible combinations of factor 

levels in contrast to OFAT experiments.

• Factorial and fractional factorial experiments are 

among the most useful multi-factor experiments 

for engineering and scientific investigations. 
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• The ability to gain competitive advantage requires 

extreme care in the design and conduct of 

experiments. Special attention must be paid to joint 

effects and estimates of variability that are provided 

by factorial experiments.

• Full and fractional experiments can be conducted 

using a variety of statistical designs. The design 

selected can be chosen according to specific 

requirements and restrictions of the investigation.
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Factorial Designs

• In a factorial experiment, all
possible combinations of 
factor levels are tested

• The golf experiment:
– Type of driver (over or regular)

– Type of ball (balata or 3-piece)

– Walking vs. riding a cart

– Type of beverage (Beer vs water)

– Time of round (am or pm)

– Weather 

– Type of golf spike

– Etc, etc, etc…
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Factorial Design



L. M. Lye DOE  Course 34

Factorial Designs with Several Factors
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Erroneous Impressions About Factorial 

Experiments

• Wasteful and do not compensate the extra effort with 

additional useful information - this folklore presumes that 

one knows  (not assumes) that factors independently 

influence the responses (i.e. there are no factor 

interactions) and that each factor has a linear effect on the 

response  - almost any reasonable type of experimentation 

will identify optimum levels of the factors

• Information on the factor effects becomes available only 

after the entire experiment is completed.  Takes too long. 

Actually, factorial experiments can be blocked and 

conducted sequentially so that data from each block can be 

analyzed as they are obtained.
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One-factor-at-a-time experiments (OFAT)

• OFAT is a prevalent, but potentially disastrous type of 

experimentation commonly used by many engineers and 

scientists in both industry and academia.

• Tests are conducted by systematically changing the levels 

of one factor while holding the levels of all other factors 

fixed. The “optimal” level of the first factor is then 

selected.

• Subsequently, each factor in turn is varied and its 

“optimal” level selected while the other factors are held 

fixed.
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One-factor-at-a-time experiments (OFAT)

• OFAT experiments are regarded as easier to implement, 

more easily understood, and more economical than 

factorial experiments.  Better than trial and error.

• OFAT experiments are believed to provide the optimum 

combinations of the factor levels.  

• Unfortunately, each of these presumptions can generally be 

shown to be false except under very special circumstances.

• The key reasons why OFAT should not be conducted 

except under very special circumstances are:

– Do not provide adequate information on interactions

– Do not provide efficient estimates of the effects
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Factorial vs OFAT ( 2-levels only)

• 2 factors:  4 runs

– 3 effects

• 3 factors: 8 runs

– 7 effects

• 5 factors: 32 or 16 runs

– 31 or 15 effects

• 7 factors: 128 or 64 runs

– 127 or 63 effects

• 2 factors: 6 runs

– 2 effects

• 3 factors: 16 runs

– 3 effects

• 5 factors: 96 runs

– 5 effects

• 7 factors: 512 runs

– 7 effects

Factorial OFAT
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Example: Factorial vs OFAT

Factor A

low high

low

Factor B 

high

E.g.  Factor A: Reynold’s number,    Factor B: k/D

B

high

low

low high

A

OFATFactorial



L. M. Lye DOE  Course 40

Example: Effect of Re and k/D on friction factor f

• Consider a 2-level factorial design (22)

• Reynold’s number = Factor A; k/D = Factor B

• Levels for A:  104 (low) 106 (high)

• Levels for B:  0.0001 (low) 0.001 (high)

• Responses:  (1) = 0.0311, a = 0.0135,  b = 0.0327,                    

ab = 0.0200

• Effect (A) = -0.66,  Effect (B) = 0.22,  Effect (AB) = 0.17

• % contribution: A = 84.85%,  B = 9.48%,  AB = 5.67%

• The presence of interactions implies that one cannot 

satisfactorily describe the effects of each factor using main 

effects.



L. M. Lye DOE  Course 41

DESIGN-EASE Plot

Ln(f)

X = A: Reynold's #

Y = B: k/D

Design Points

B- 0.000

B+ 0.001

k/D

Interaction Graph

Ln
(f)

Reynold's  #

4.000 4.500 5.000 5.500 6.000

-4.30507

-4.08389

-3.86272

-3.64155

-3.42038

2

2

2

2

2

2

2

2
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DESIGN-EASE Plot

Ln(f)

X = A: Reynold's #

Y = B: k/D

Design Points

Ln(f)

Reynold's  #

k/
D

4.000 4.500 5.000 5.500 6.000

0.0001

0.0003

0.0006

0.0008

0.0010

-4.15762

-4.01017

-3.86272

-3.71528

-3.56783
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DESIGN-EASE Plot

Ln(f)

X = A: Reynold's #

Y = B: k/D
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-4.08389  

-3.86272  

-3.64155  

-3.42038  

  L
n(

f) 
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  6.000

0.0001  

0.0003  

0.0006  

0.0008  

0.0010  

  Reynold's #  

  k/D  
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With the addition of a few more points

• Augmenting the basic 22 design with a center 

point and 5 axial points we get a central composite 

design (CCD) and a 2nd order model can be fit.

• The nonlinear nature of the relationship between 

Re, k/D and the friction factor f can be seen.

• If Nikuradse (1933) had used a factorial design in 

his pipe friction experiments, he would need far 

less experimental runs!! 

• If the number of factors can be reduced by 

dimensional analysis, the problem can be made 

simpler for experimentation.
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DESIGN-EXPERT Plot

Log10(f)

X = A: RE

Y = B: k/D

Design Points

B- 0.000

B+ 0.001

B: k/D

Interaction Graph

A: RE

Lo
g1

0(
f)

4.293 4.646 5.000 5.354 5.707

-1.784

-1.712

-1.639

-1.567

-1.495
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DESIGN-EXPERT Plot

Log10(f)

X = A: RE

Y = B: k/D

-1.783  

-1.725  

-1.668  

-1.611  

-1.554  

  L
og

10
(f)

  

  4.293
  4.646

  5.000
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  5.707
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0.0004586  

0.0006000  

0.0007414  

0.0008828  

  A: RE  

  B: k/D  
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DESIGN-EXPERT Plot

Log10(f)

Design Points

X = A: RE

Y = B: k/D

Log10(f)

A: RE

B
: k

/D

4.293 4.646 5.000 5.354 5.707

0.0003172

0.0004586

0.0006000

0.0007414

0.0008828

-1.744

-1.706-1.668

-1.630-1.592
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DESIGN-EXPERT Plot

Log10(f)

Actual

P
re

di
ct

ed

Predicted vs. Actual

-1.783

-1.711

-1.639

-1.566

-1.494

-1.783 -1.711 -1.639 -1.566 -1.494
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DOE (III)

Basic Concepts



L. M. Lye DOE  Course 50

Design of Engineering Experiments

Basic Statistical Concepts
• Simple comparative experiments

– The hypothesis testing framework

– The two-sample t-test

– Checking assumptions, validity

• Comparing more than two factor levels…the
analysis of variance

– ANOVA decomposition of total variability

– Statistical testing & analysis

– Checking assumptions, model validity

– Post-ANOVA testing of means
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Portland Cement Formulation

18.1516.5710

17.9616.599

17.9017.158

18.2216.967

17.7517.046

17.8616.525

18.0016.354

18.2517.213

17.6316.402

17.5016.851

Unmodified Mortar 

(Formulation 2)

Modified Mortar

(Formulation 1)

Observation 

(sample), j
1 jy 2 jy
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Graphical View of the Data
Dot Diagram

Form 1 Form 2

16.3

17.3

18.3

Dotplots of Form 1 and Form 2

(means are indicated by lines)
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Box Plots

Form 1 Form 2

16.5

17.5

18.5

Boxplots of Form 1 and Form 2

(means are indicated by solid circles)
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The Hypothesis Testing Framework

• Statistical hypothesis testing is a useful 

framework for many experimental 

situations

• Origins of the methodology date from the 

early 1900s

• We will use a procedure known as the two-

sample t-test
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The Hypothesis Testing Framework

• Sampling from a normal distribution

• Statistical hypotheses:
0 1 2

1 1 2

:

:

H

H

 

 




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Estimation of Parameters

1

2 2 2

1

1
 estimates the population mean 

1
( )  estimates the variance 

1

n

i

i

n

i

i

y y
n

S y y
n











 








L. M. Lye DOE  Course 57

Summary Statistics

1

2

1

1

1

16.76

0.100

0.316

10

y

S

S

n









2

2

2

2

2

17.92

0.061

0.247

10

y

S

S

n









Formulation 1

“New recipe”

Formulation 2

“Original recipe”



L. M. Lye DOE  Course 58

How the Two-Sample t-Test Works:

1 2

2
2

y

Use the sample means to draw inferences about the population means

16.76 17.92 1.16

Difference in sample means

Standard deviation of the difference in sample means

This suggests a statistic:

y y

n




    



1 2
0

2 2

1 2

1 2

                                  Z
y y

n n

 





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How the Two-Sample t-Test Works:
2 2 2 2

1 2 1 2

1 2

2 2

1 2

1 2

2 2 2

1 2

2 2
2 1 1 2 2

1 2

Use  and  to estimate  and 

The previous ratio becomes 

However, we have the case where 

Pool the individual sample variances:

( 1) ( 1)

2
p

S S

y y

S S

n n

n S n S
S

n n

 

  





 

  


 
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How the Two-Sample t-Test Works:

• Values of t0 that are near zero are consistent with the null 
hypothesis

• Values of  t0 that are very different from zero are consistent 
with the alternative hypothesis

• t0 is a “distance” measure-how far apart the averages are 
expressed in standard deviation units

• Notice the interpretation of t0 as a signal-to-noise ratio

1 2
0

1 2

The test statistic is

                      
1 1

p

y y
t

S
n n





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The Two-Sample (Pooled) t-Test

2 2
2 1 1 2 2

1 2

1 2
0

1 2

( 1) ( 1) 9(0.100) 9(0.061)
0.081

2 10 10 2

0.284

16.76 17.92
            9.13

1 1 1 1
0.284

10 10

The two sample means are about 9 standard deviations apart

Is this a "lar

p

p

p

n S n S
S

n n

S

y y
t

S
n n

   
  

   



 
   

 

ge" difference?
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The Two-Sample (Pooled) t-Test

• So far, we haven’t really done any “statistics”

• We need an objective basis for deciding how large the test 
statistic t0  really is

• In 1908, W. S. Gosset derived the reference distribution
for t0 … called the t distribution

• Tables of the t distribution - any stats text.

• The t-distribution looks almost exactly like the normal 
distribution except that it is shorter and fatter when the 
degrees of freedom is less than about 100. 

• Beyond 100,  the t is practically the same as the normal.
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The Two-Sample (Pooled) t-Test

• A value of t0 between     
–2.101 and 2.101 is 
consistent with 
equality of means

• It is possible for the 
means to be equal and 
t0 to exceed either 
2.101 or –2.101, but it 
would be a “rare
event” … leads to the 
conclusion that the 
means are different 

• Could also use the   
P-value approach
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The Two-Sample (Pooled) t-Test

• The P-value is the risk of wrongly rejecting the null 
hypothesis of equal means (it measures rareness of the event)

• The P-value in our problem is P = 0.000000038
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Minitab Two-Sample t-Test Results

Two-Sample T-Test and CI: Form 1, Form 2

Two-sample T for Form 1 vs Form 2

N      Mean     StDev   SE Mean

Form 1  10    16.764     0.316      0.10

Form 2  10    17.922     0.248     0.078

Difference = mu Form 1 - mu Form 2

Estimate for difference:  -1.158

95% CI for difference: (-1.425, -0.891)

T-Test of difference = 0 (vs not =): T-Value = -9.11  

P-Value = 0.000  DF = 18

Both use Pooled StDev = 0.284
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Checking Assumptions –

The Normal Probability Plot

Form 1 

Form 2 

16.5 17.5 18.5

 1

 5
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95

99

Data
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1.209

1.387

Goodness of Fit

Tension Bond Strength Data
ML Estimates
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Importance of the t-Test

• Provides an objective framework for simple 

comparative experiments

• Could be used to test all relevant hypotheses 

in a two-level factorial design, because all 

of these hypotheses involve the mean 

response at one “side” of the cube versus 

the mean response at the opposite “side” of 

the cube
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What If There Are More Than 

Two Factor Levels?

• The t-test does not directly apply

• There are lots of practical situations where there are either 

more than two levels of interest, or there are several factors of 

simultaneous interest

• The analysis of variance (ANOVA) is the appropriate 

analysis “engine” for these types of experiments 

• The ANOVA was developed by Fisher in the early 1920s, and 

initially applied to agricultural experiments

• Used extensively today for industrial experiments
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An Example

• Consider an investigation into the formulation of a 
new “synthetic” fiber that will be used to make ropes

• The response variable is tensile strength

• The experimenter wants to determine the “best” level 
of cotton (in wt %) to combine with the synthetics

• Cotton content can vary between 10 – 40 wt %; some 
non-linearity in the response is anticipated

• The experimenter chooses 5 levels of cotton 
“content”;   15, 20, 25, 30, and 35 wt %

• The experiment is replicated 5 times – runs made in 
random order
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An Example

• Does changing the 

cotton weight percent 

change the mean 

tensile strength?

• Is there an optimum

level for cotton 

content?
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The Analysis of Variance

• In general, there will be a levels of the factor, or a treatments, and n
replicates of the experiment, run in random order…a completely 
randomized design (CRD)

• N = an total runs

• We consider the fixed effects case only

• Objective is to test hypotheses about the equality of the a treatment 
means
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The Analysis of Variance

• The name “analysis of variance” stems from a 

partitioning of the total variability in the response 

variable into components that are consistent with a 

model for the experiment

• The basic single-factor ANOVA model is 

2

1,2,...,
,

1, 2,...,

 an overall mean,  treatment effect,

 experimental error, (0, )

ij i ij

i

ij

i a
y

j n

ith

NID

  

 

 


   



 


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Models for the Data

There are several ways to write a model for 

the data:

 is called the effects model

Let ,  then 

 is called the means model

Regression models can also be employed

ij i ij

i i

ij i ij

y

y

  
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 

  

 

 
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The Analysis of Variance

• Total variability is measured by the total sum of 

squares:

• The basic ANOVA partitioning is:

2

..

1 1

( )
a n

T ij

i j

SS y y
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The Analysis of Variance

• A large value of SSTreatments reflects large differences in 
treatment means

• A small value of SSTreatments likely indicates no differences in 
treatment means

• Formal statistical hypotheses are:

T Treatments ESS SS SS 

0 1 2

1

:

:  At least one mean is different 

aH

H

    
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The Analysis of Variance
• While sums of squares cannot be directly compared to test 

the hypothesis of equal means, mean squares can be 
compared.

• A mean square is a sum of squares divided by its degrees 
of freedom:

• If the treatment means are equal, the treatment and error 
mean squares will be (theoretically) equal. 

• If treatment means differ, the treatment mean square will 
be larger than the error mean square.

1 1 ( 1)

,
1 ( 1)

Total Treatments Error

Treatments E
Treatments E

df df df

an a a n

SS SS
MS MS

a a n

 

    

 
 
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The Analysis of Variance is 

Summarized in a Table

• The reference distribution for F0 is the Fa-1, a(n-1) distribution

• Reject the null hypothesis (equal treatment means) if 

0 , 1, ( 1)a a nF F  
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ANOVA Computer Output 

(Design-Expert)

Response:Strength

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 475.76 4 118.94 14.76 < 0.0001

A 475.76 4 118.94 14.76 < 0.0001

Pure Error161.20 20 8.06

Cor Total636.96 24

Std. Dev. 2.84 R-Squared 0.7469

Mean 15.04 Adj R-Squared 0.6963

C.V. 18.88 Pred R-Squared 0.6046

PRESS 251.88 Adeq Precision 9.294
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The Reference Distribution:
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Graphical View of the Results
DESIGN-EXPERT Plot

Strength
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Model Adequacy Checking in the ANOVA

• Checking assumptions is important

• Normality

• Constant variance

• Independence

• Have we fit the right model?

• Later we will talk about what to do if some 

of these assumptions are violated
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Model Adequacy Checking in the ANOVA

• Examination of residuals

• Design-Expert generates 

the residuals

• Residual plots are very 

useful

• Normal probability plot

of residuals

.
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Other Important Residual Plots
DESIGN-EXPERT Plot

Strength
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Post-ANOVA Comparison of Means

• The analysis of variance tests the hypothesis of equal 
treatment means

• Assume that residual analysis is satisfactory

• If that hypothesis is rejected, we don’t know which specific
means are different 

• Determining which specific means differ following an 
ANOVA is called the multiple comparisons problem

• There are lots of ways to do this

• We will use pairwise t-tests on means…sometimes called 
Fisher’s Least Significant Difference (or Fisher’s LSD) 
Method
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Design-Expert Output

Treatment Means (Adjusted, If Necessary)

Estimated Standard

Mean Error

1-15 9.80 1.27

2-20 15.40 1.27

3-25 17.60 1.27

4-30 21.60 1.27

5-35 10.80 1.27

Mean Standard t for H0

Treatment Difference DF Error Coeff=0 Prob > |t|

1 vs  2 -5.60 1 1.80 -3.12 0.0054

1 vs  3 -7.80 1 1.80 -4.34 0.0003

1 vs  4 -11.80 1 1.80 -6.57 < 0.0001

1 vs  5 -1.00 1 1.80 -0.56 0.5838

2 vs  3 -2.20 1 1.80 -1.23 0.2347

2 vs  4 -6.20 1 1.80 -3.45 0.0025

2 vs  5 4.60 1 1.80 2.56 0.0186

3 vs  4 -4.00 1 1.80 -2.23 0.0375

3 vs  5 6.80 1 1.80 3.79 0.0012

4 vs  5 10.80 1 1.80 6.01 < 0.0001
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For the Case of Quantitative Factors, a 

Regression Model is often Useful
Response:Strength

ANOVA for Response Surface Cubic Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 441.81 3 147.27 15.85 < 0.0001

A 90.84 1 90.84 9.78 0.0051

A2 343.21 1 343.21 36.93 < 0.0001

A3 64.98 1 64.98 6.99 0.0152

Residual 195.15 21 9.29

Lack of Fit 33.95 1 33.95 4.21 0.0535

Pure Error 161.20 20 8.06

Cor Total 636.96 24

Coefficient Standard 95% CI 95% CI

Factor Estimate DF Error Low High VIF

Intercept 19.47 1 0.95 17.49 21.44

A-Cotton % 8.10 1 2.59 2.71 13.49 9.03

A2 -8.86 1 1.46 -11.89 -5.83 1.00

A3 -7.60 1 2.87 -13.58 -1.62 9.03
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The Regression Model

Final Equation in Terms of 

Actual Factors:

Strength  =  62.611 -

9.011* Wt %  + 

0.481* Wt %^2  -

7.600E-003 * Wt %^3

This is an empirical model of 

the experimental results
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DESIGN-EXPERT Plot

Desirability

X = A: A
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Sample Size Determination

• FAQ in designed experiments

• Answer depends on lots of things; including what 
type of experiment is being contemplated, how it 
will be conducted, resources, and desired 
sensitivity

• Sensitivity refers to the difference in means that 
the experimenter wishes to detect

• Generally, increasing the number of replications
increases the sensitivity or it makes it easier to 
detect small differences in means
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DOE (IV)

General Factorials
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Design of Engineering Experiments

Introduction to General Factorials

• General principles of factorial experiments

• The two-factor factorial with fixed effects

• The ANOVA for factorials

• Extensions to more than two factors

• Quantitative and qualitative factors –
response curves and surfaces
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Some Basic Definitions

Definition of a factor effect: The change in the mean response when 

the factor is changed from low to high

40 52 20 30
21

2 2

30 52 20 40
11

2 2

52 20 30 40
1

2 2

A A

B B

A y y

B y y

AB

 

 

 
    

 
    

 
   
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The Case of Interaction:

50 12 20 40
1

2 2

40 12 20 50
9

2 2

12 20 40 50
29

2 2

A A

B B

A y y

B y y

AB

 

 

 
    

 
     

 
   



L. M. Lye DOE  Course 95

Regression Model & The 

Associated Response 

Surface

0 1 1 2 2

12 1 2

1 2

1 2

1 2

The least squares fit is

ˆ 35.5 10.5 5.5

0.5

35.5 10.5 5.5

y x x

x x

y x x

x x

x x

  

 

  

 

  



  
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The Effect of Interaction 

on the Response Surface

Suppose that we add an 

interaction term to the 

model:

1 2

1 2

ˆ 35.5 10.5 5.5

8

y x x

x x

  



Interaction is actually 

a form of curvature



L. M. Lye DOE  Course 97

Example: Battery Life Experiment

A = Material type; B = Temperature (A quantitative variable)

1. What effects do material type & temperature have on life?

2. Is there a choice of material that would give long life regardless of  

temperature (a robust product)?
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The General Two-Factor 

Factorial Experiment

a levels of factor A; b levels of factor B; n replicates

This is a completely randomized design
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Statistical (effects) model:

1,2,...,

( ) 1,2,...,

1,2,...,

ijk i j ij ijk

i a

y j b

k n

    




     
 

Other models (means model, regression models) can be useful

Regression model allows for prediction of responses when we 

have quantitative factors. ANOVA model does not allow for 

prediction of responses - treats all factors as qualitative.
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Extension of the ANOVA to Factorials 

(Fixed Effects Case) 

2 2 2

... .. ... . . ...

1 1 1 1 1

2 2

. .. . . ... .

1 1 1 1 1

( ) ( ) ( )

                                  ( ) ( )

a b n a b

ijk i j

i j k i j

a b a b n

ij i j ijk ij

i j i j k

y y bn y y an y y

n y y y y y y

    

    

    

     

  
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abn a b a b ab n
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         
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ANOVA Table – Fixed Effects Case

Design-Expert will perform the computations

Most text gives details of manual computing

(ugh!) 
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Design-Expert Output 

Response: Life

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 59416.22 8 7427.03 11.00       < 0.0001

A 10683.72 2 5341.86 7.91 0.0020

B 39118.72 2 19559.36 28.97 < 0.0001

AB 9613.78 4 2403.44 3.56 0.0186

Pure E       18230.75             27 675.21

C Total 77646.97            35

Std. Dev. 25.98 R-Squared 0.7652

Mean 105.53 Adj R-Squared 0.6956

C.V. 24.62 Pred R-Squared 0.5826

PRESS 32410.22 Adeq Precision 8.178
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Residual Analysis 

DESIGN-EXPERT Plot

Life
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Residual Analysis 

DESIGN-EXPERT Plot

Life
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Residual Analysis 

DESIGN-EXPERT Plot
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Interaction Plot 
DESIGN-EXPERT Plot
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Quantitative and Qualitative Factors

• The basic ANOVA procedure treats every factor as if it 

were qualitative

• Sometimes an experiment will involve both quantitative

and qualitative factors, such as in the example

• This can be accounted for in the analysis to produce 

regression models for the quantitative factors at each level 

(or combination of levels) of the qualitative factors

• These response curves and/or response surfaces are often 

a considerable aid in practical interpretation of the results 
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Quantitative and Qualitative Factors

Response:Life

*** WARNING:  The Cubic Model is Aliased! *** 

Sequential Model Sum of Squares

Sum of Mean F

Source Squares DF Square Value Prob > F

Mean        4.009E+005    1 4009E+005

Linear 49726.39 3 16575.46 19.00 < 0.0001 Suggested

2FI 2315.08 2 1157.54 1.36 0.2730

Quadratic 76.06 1 76.06 0.086 0.7709

Cubic 7298.69 2 3649.35 5.40 0.0106 Aliased

Residual 18230.75 27 675.21

Total         4.785E+005  36 13292.97

"Sequential Model Sum of Squares":  Select the highest order polynomial where the

additional terms are significant.
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Quantitative and Qualitative Factors

Candidate model 

terms from Design-

Expert:

Intercept

A

B

B2

AB

B3

AB2

A = Material type

B = Linear effect of Temperature

B2 = Quadratic effect of  

Temperature

AB = Material type – TempLinear

AB2 = Material type - TempQuad

B3 = Cubic effect of 

Temperature (Aliased)
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Quantitative and Qualitative Factors

Lack of Fit Tests

Sum of Mean F

Source Squares DF Square Value Prob > F

Linear 9689.83 5 1937.97 2.87 0.0333 Suggested

2FI 7374.75 3 2458.25 3.64 0.0252

Quadratic 7298.69 2 3649.35 5.40 0.0106

Cubic 0.00 0 Aliased

Pure Error 18230.75   27 675.21

"Lack of Fit Tests":  Want the selected model to have insignificant lack-of-fit.
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Quantitative and Qualitative Factors

Model Summary Statistics

Std. Adjusted Predicted

Source Dev. R-Squared R-Squared R-Squared PRESS

Linear 29.54 0.6404 0.6067 0.5432 35470.60 Suggested

2FI 29.22 0.6702 0.6153 0.5187 37371.08

Quadratic 29.67 0.6712 0.6032 0.4900 39600.97

Cubic 25.98 0.7652 0.6956 0.5826 32410.22 Aliased

"Model Summary Statistics":  Focus on the model maximizing the "Adjusted R-Squared"

and the "Predicted R-Squared".



L. M. Lye DOE  Course 112

Quantitative and Qualitative Factors

Response: Life

ANOVA for Response Surface Reduced Cubic Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 59416.22 8 7427.03 11.00 < 0.0001

A 10683.72 2 5341.86 7.91 0.0020

B 39042.67 1 39042.67 57.82 < 0.0001

B2 76.06 1 76.06 0.11 0.7398

AB 2315.08 2 1157.54 1.71 0.1991

AB2 7298.69 2 3649.35 5.40 0.0106

Pure E    18230.75 27 675.21

C Total    77646.97   35

Std. Dev. 25.98 R-Squared 0.7652

Mean 105.53 Adj R-Squared 0.6956

C.V. 24.62 Pred R-Squared 0.5826

PRESS 32410.22 Adeq Precision 8.178
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Regression Model Summary of Results

Final Equation in Terms of Actual Factors:

Material A1

Life =

+169.38017

-2.50145 * Temperature

+0.012851 * Temperature2

Material A2

Life =

+159.62397

-0.17335 * Temperature

-5.66116E-003  * Temperature2

Material A3

Life =

+132.76240

+0.90289 * Temperature

-0.010248 * Temperature2
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Regression Model Summary of Results
DESIGN-EXPERT Plot
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Factorials with More Than 

Two Factors

• Basic procedure is similar to the two-factor case; 

all abc…kn treatment combinations are run in 

random order

• ANOVA identity is also similar: 

T A B AB AC

ABC AB K E

SS SS SS SS SS

SS SS SS

     

   
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More than 2 factors

• With more than 2 factors, the most useful 

type of experiment is the 2-level factorial 

experiment.

• Most efficient design (least runs)

• Can add additional levels only if required

• Can be done sequentially

• That will be the next topic of discussion
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List of Topics

 Objective of experiment 

 Strategy of Experimentation

 Replication, Repetition and Randomization

 Various approaches of experimentation

 Guidelines for designing experiments

3
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Objective of Experiment

 Data collection is not the sole 
objective. Objective are usually :
 Determining which variables are most 

influential on the response ‘y’

 Determining where to set the influential ‘x’s 
so that ‘y’ is as close to desired value as 
possible

 Determining where to set the influential ‘x’s 
so that variability in ‘y’ is small (eg. thermal 
instability)

 Determining where to set the influential ‘x’s 
so that the effects of uncontrollable variables 
‘z’s are minimized (eg. avoiding formation of 
deleterious phases)

Objective of the 
experimenter is to 
determine the 
influence of factors on 
output response

4
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Strategy of Experimentation

 Experiment may be defined as a test or a series of 
tests in which purposeful changes are made to the 
input variables of a process or system so that we may 
observe and identify the reasons for changes that 
may be observed in the output response

5
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An Example

 A food processor may be interested in studying the effect 
of cooking medium (viz. with butter and with ghee) on 
quality of these cooked popcorns. His objective can be to 
determine which medium produces the best quality 
popcorn. 

 He may conduct tests on a number of collected samples 
in two different mediums and cook them and measure 
the quality to compare the effect of source. The quality 
may be determined, by say, the fraction of pop-corns that 
fracture under certain pressure. The average fraction of 
the properly cooked popcorns in the two mediums will be 
used to determine if there is a difference and which one 
produces better quality.

6
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Objective of Experiment

ShS (TEQIP Feb 19th-21st 2016)

7



Example: Questions to ponder

 Are there any other factors that might affect quality 
that should be investigated (eg. Electrical Power of 
cooking system, time of cooking, moisture, room 
temperature, room humidity)

 How many samples are required for each condition

 In what order should the data be collected (eg. what 
if there is a drift in measurement values)

 What method of data analysis should be used

 What difference in average fraction between the two 
cooking media will be considered important (eg. 
ANOVA)

8
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Example: Data Collection

Method of data collection is also important

 Suppose that the food scientist in the above 
experiment used specimens from one batch in the 
butter and specimens from a second batch in ghee

 Engineer measures fractured fraction of all the 
samples cooked in one medium and then the 
fractured fractions cooked in the other medium

 So what is the right method?

Completely randomized design is required

9
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Components of an Experiment

ShS (TEQIP Feb 19th-21st 2016)

10

 A good experimental design must:

 Avoid systematic error: it can lead to bias in comparison

 Be precise: Random errors need to be reduced

 Allow estimation of error: Permits statistical inference of 
confidence interval etc.

 Have broad validity: sample should be good 
representation to be valid for the whole population



Basic Principles

ShS (TEQIP Feb 19th-21st 2016)
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 Randomization – Random allocation and order

 Averaging out

 Blocking – to improve precision in comparisons

 Replication

 Replication vs repeated measurements

 Proper selection of sample (where should the corn 
samples be picked from)



Haphazard is not randomized

ShS (TEQIP Feb 19th-21st 2016)
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 Lets say you are given 16 paper clips and you are to 
treat them in 4 different ways (A,B,C and D)

 (1) You mark 16 identical slips of paper, marked A,B,C and D 
for 4 different treatments and mix them. Every time you take 
one paper clip, you draw a slip of paper and use the treatment 
marked on the slip

 (2) Treatment A is given to first 4 units, then treatment B is 
given to next 4 units and so on

 (3) Each unit is given treatment A, B, C or D based on whether 
the “seconds” reading on the clock is first, second, third or 
fourth quadrant.



Approaches

 Lets say that there are four factors that need to be 
considered to understand the response. Lets says quality, 
(in terms of percentage cracked) is the response that you 
are interested in maximizing, and the factors are:
 time of cooking and (t=5mins or t = 30mins)

 cooking medium (butter or ghee)

 Power of equipment (P= 0.5Pm  or P = 0.75 Pm)

 Moisture fraction (strain = 0.25 or strain = 0.5)

 How will you sort through each and every factor and its 
effect on quality?  For simplicity only two states of each 
factor are taken and it is given that you have only 8 
samples.

13

ShS (TEQIP Feb 19th-21st 2016)



Approaches

 Best-guess approach: Test for arbitrary 
combination and see the outcome. During the test 
however you noticed that all high power conditions 
conditions resulted in lower quality and so you may 
decide to use lower power and keep other factors 
same as earlier. This process can go on until all the 
factors are optimized

 Disadvantages
 One has to keep trying combinations, without any guarantee of 

success

 If the initial combination produces acceptable result, one may 
be tempted to stop testing

14
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Approaches

 One-factor-at-a-time: Select a baseline set of 
levels, for each factor, then successively vary each 
factor over its range with other factors held constant 
at the baseline level. A series of graphs can represent 
the output as a response to the change in these 
factors
 Interpretation is simple and straight forward, however 

interaction between the factors is not highlighted (An 
interaction is the failure of the one factor to produce the same 
effect on the response at different levels of another factor)

 One-factor-at-a-time experiments are always less efficient that 
the other methods based on a statistical approach to design

15
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One-factor-at-a-time

ShS (TEQIP Feb 19th-21st 2016)
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Factorial Approach

 This is an extremely important and useful approach
 Factors are varied together, instead of one at a time.

 To begin with, lets assume only two factors are important 
(time and medium) 

 We have 2 factors at 2 levels  22 factorial design 

time-1 time-2

m
ed

iu
m

-1
  

 m
ed

iu
m

-2

Effects, basically  
describe the 
response in terms of 
a simple model using 
linear combinations
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Factorial Approach

ShS (TEQIP Feb 19th-21st 2016)
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time-1 time-2
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-1
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A= Effect of time = 
(92+94+93+91)/4 – (88+91+88+90)/4 = 3.25

B = Effect of medium =
(88+91+92+94)/4 – (88+90+93+91)/4 =0.75

AB = Measure of interaction =
(92+94+88+90)/4 – (88+91+93+91)/4 =0.25

Average = 90.875

A fitted regression model to express the response in terms of the two parameters:

y= 90.875 + A/2*x1 + B/2*x2 +AB/2* x1x2
y = 90.875 + 1.625x1 + 0.375x2 + 0.125x1x2

Statistical testing is required to determine whether any of these effects differ from zero

Design Analysis Of Experiments, Douglas C. Montgomery



Interaction Effect

ShS (TEQIP Feb 19th-21st 2016)
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Interaction Effect

ShS (TEQIP Feb 19th-21st 2016)
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Weak interaction
21
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y= 35.5 + 10.5*x1 + 5.5*x2 +0.5* x1x2
≈ 35.5 + 10.5*x1 + 5.5*x2 

Design Analysis Of Experiments, Douglas C. Montgomery

(a) Response Surface  (b) Contour Plot



Strong interaction

ShS (TEQIP Feb 19th-21st 2016)
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y= 30.5 + 0.5*x1 – 4.5*x2 – 14.5*x1x2

Interaction is a form of curvature in the underlying 
response surface  model of the experiment

Design Analysis Of Experiments, Douglas C. Montgomery

(a) Response Surface  (b) Contour Plot



Interaction Effect

ShS (TEQIP Feb 19th-21st 2016)
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Generally when interaction effect is large, corresponding main effects have 
little practical meaning. 
A = (50+12)/2 – (40+20)/2 = 1   No effect of A?
A has strong effect, but it depends on level of B

Design Analysis Of Experiments, Douglas C. Montgomery



Advantages of Factorial

ShS (TEQIP Feb 19th-21st 2016)
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 Lets again look at two factors 
with two levels

 No. of experiments for one-
factor-approach = 

 No. of experiments for 
factorial approach = 

 Efficiency of factorial 
approach  = 

 If A-B+ and A+B- gave a better 
response, then what about 
A+B+?

Design Analysis Of Experiments, Douglas C. Montgomery

6

4

6/4 = 1.5



Factorial Approach

Similarly 23

factorial design 
requires 8 tests

and 24 factorial 
design requires 
16 tests

power

time

m
ed

iu
m
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Factorial Approach

 If there are k factors, each at two levels, the factorial 
design would require 2k tests

 4 factors with 2 levels require 16 tests

 10 factors with 2 levels require 1024 tests!!

 This is clearly infeasible from time and resource 
point of view

 Fractional factorial design can be used

26
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Fractional Factorial Design

 Only a subset of the tests of basic factorial design is 
required

 Modified design requires only 8 tests instead of 16 and 
would be called a ‘one-half factorial’

 Will provide good information about the main effects of 
the four factors as well as some information about how 
these factors interact

power

27
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Fractional Factorial Designs

 If reasonable assumptions can be made that certain high-
order interactions are negligible, then fractional factorial 
designs prove to be very effective

 A major use of fractional factorial is in “screening 
experiments” (eg to identify those factors that have large 
effects)

 It is based on the principle that when there are several 
variables, the system or process is likely to be driven 
primarily by some of the main effects and low-order 
interactions

 It is possible to combine the runs of two or more 
fractional factorial to assemble sequentially a larger 
design to estimate the factor effects and interactions of 
interests

28
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Fractional Factorial Approach

ShS (TEQIP Feb 19th-21st 2016)
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Design Analysis Of Experiments, Douglas C. Montgomery

What are the effect of A, B, C?

What are the combined effects of 
AB, BC, CA?



Fractional Factorial Designs: Selecting 
experiments

30
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Fractional Factorial Designs: Selecting 
experiments

31
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Guidelines for Designing Experiments

 Recognition of and statement of the problem (eg. is the 
objective to characterize response or is it understood well 
enough to be optimized. Or, is the objective to confirm a 
discovery, stability)

 Choice of factors, levels, and range (eg. are there fixed no. 
of levels or if there is a range, how many levels to select 
and how to select so as to represent the whole range)

 Selection of the response variable (eg. Measurement of 
hardness is a better variable but not easy to measure on 
each popcorn; On the other hand fraction of fractured 
popcorn is easy to measure, but not a good representation)

32
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Guidelines for Designing Experiments

 Choice of experimental design (eg. consideration of 
sample size, selection of suitable order for 
experiments, selecting the methodology based on the 
objectives)

 Performing the experiment (be aware of 
uncontrollable parameters, sources of errors and 
other factors that might have been missed earlier. Eg
drift in the values of the equipment being used)

 Statistical analysis of the data (what does the data 
mean. How statistically significant or insignificant is 
a particular factor)

33
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Data Presentation



Data Analysis
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Ask a 
Question

What to 
measure and 

how

Chose 
method and 
collect data

Summarize 
data

Analyze data

Draw 
Conclusions

https://www.bcps.org/offices/lis/researchcourse/statistics_role.html



List of Topics

 Graphical and other means of presenting data

 Graphical Summary

 Plots

 Histograms

 Numerical Summary (Mean, Median, Mode etc)

 Measures of spread of data

 Variance and Standard deviation

 Quantifying spread

 Chebyshev’s Inequality

 Standard Deviation versus Standard Error
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Accuracy vs Precision

Source: https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision
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Accuracy vs Precision
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Statistics
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 Why use Statistics?

https://www.bcps.org/offices/lis/researchcourse/statistics_role.html

Some interesting videos on Statistics at: https://vimeo.com/113449763

Get informed
Evaluate credibility of information
Make appropriate decisions



Statistics

 Why use Statistics?

 Data Set: A collection of observations

 Population vs Sample

 Variable: A characteristic of the object

 Univariate (height) versus Multivariate (height, weight, race…)

 Numerical

 Discreet (No. of employees; No. of grains)

 Continuous (weight of boxer; Length or area of twin boundary)

 Categorical

 Ordinal  (1st class, 2nd class, 3rd class railway coaches; Course No. 
MSE201, MSE301 etc)

 Not-ordinal (Process condition-1, Process condition-2)
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Summarizing data

 Comprehension in exchange of losing data

 Graphical Summary

 Categorical variable  bar charts, pie charts

 How not to construct charts

 Numerical variables  Guidelines to making plots 

 Numerical Summary

 Mean (population versus sample)

 Median

 Mode

 Point estimate of 

41
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Graphical Summary: Categorical Variable
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MSE

B.Tech M.Tech Dual

No. of Students
B. Tech. - 70
Dual Degree - 20
M. Tech. - 20



Graphical Summary: Categorical Variable
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Graphical Summary: Numerical Variable
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Guide for effective data presentation
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 Create the simplest graph that conveys the 
information (principle of less-ink)

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



What attribute to use
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 For quantitative 
information length and 
position should be 
used

 Qualitative 
information can be 
given by transparency, 
intensity, size etc.

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



What is important pattern or detail?
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 At times, it may be important to display the pattern 
of variation and at other times, the exact value or 
detail may be important

 Patterns are best represented by heat-map or bubble 
maps while details are always best represented by 
lines or bar graphs

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



What axis range to select?
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 For proper representation and comparison, always 
select the lowest value to be ‘0’, else it exaggerates 
the differences

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



How to represent scatter plot properly
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 Scatter plot may also represent density of data 
points, hence utilizing transparency attribute may be 
useful

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



Log scale
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 Rate of change with time depends on the use of Y-scale
 Log scale can remove skewness if the dataset contains 

very large and very small values
 Different transformations are useful under different 

contexts
Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



Proper selection of Y-axis
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 One may need to select Y-axis properly if you are 
representing two data sets. One may even use two Y-
axis option

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



Proper selection of color scheme
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 Heat map may be represented in various color scheme

 Selection depends on whether you want to emphasize 
intensity or diversion

Kelleher, C., Wagener, T., Ten guidelines for effective data visualization 
in scientific publications, Environmental Modelling & Software (2011)



Summarizing data

 Rules in constructing a histogram

 Use limits for intervals that do not coincide with your raw data

 Recommended that the intervals be of equal width

 No of intervals: Rice Rule  2(n0.33)

 Play with the class limits and the number of intervals to see if 
the overall shape of your histogram is reasonably stable

 Example in Excel

 Smoothed histogram

 Different types of histograms
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Solved Example in Excel
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 Height of students in a class (20) are: 59, 60, 60,62, 
62, 67, 67, 67, 67, 69, 69, 70, 70, 70, 70, 71, 72, 73, 
73, 75 (in inches)

 Using the Rice Rule, for n=20, we get no. of intervals 
= 5.37. So lets take no. of interval =6. Total range is 
from 59 – 75. Hence size of each bin =3.

 Now first take limits as 58.5 – 61.5, 61.5 – 64.5 etc.

 Then take limits as 57.5 – 60.5, 60.5 – 63.5 etc.



Solved Example in Excel
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Are these two histogram plots reasonably stable?



Smoothed Histogram
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Smoothed histogram or density estimate can be obtained by taking center 
point of each limit and connecting a curve through the top of these histograms



Numerical Summary
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 Mean: average of x1, x2…. xn

 Mean is greatly influenced by outliers  tendency to 
ignore outliers. It may be an indication of some 
interesting underlying phenomena

 Median: Right in the middle of observations

 Mode: Where frequency is highest

n

xxx
x n


......21



Example

 Height of students in a class (20) are: 59, 60, 60,62, 
62, 67, 67, 67, 67, 69, 69, 70, 70, 70, 70, 71, 72, 73, 
73, 75 (in inches)

 Find the mean () of the class (population)

 Height of 5 students in front row (sample) are: 59, 
62, 69, 69, 70

 Find the mean of the sample (x ̅ )

 Mean is greatly influenced by outliers (add a student 
of height 42 inch)

 Median = (69+69)/2 = 69

 Mode = 67, 70 (70.5)
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Measures of spread

 Different data set with same mean and median

 Dataset A: -2, -1, 0, 1, 2

 Dataset B: -10, -5, 0, 5, 10

 Inter-quartile range (Q3-Q1)

 Range (max-min)

 Standard deviation and variance (s.d. = √variance)

 Population vs Sample standard deviation
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x ̅ (A)=0;    s(A)=1.55
x ̅ (B)=0;    s(B)=7.9



Basic properties of mean and s.d.

If x1, x2… xn have mean = x ̅ and s.d. = s, then for 

 x1+k, x2+k… xn+k, mean = x ̅ +k and s.d. = s

 cx1, cx2… cxn, mean = c x ̅ and s.d. = |c|s

 cx1+k, cx2+k…. cxn+k, mean = cx ̅ + k and s.d. = |c|s
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Quantitative meaning of variance

 For normal distribution, data proportion within ‘±z’ 
standard deviation is )

2
(

z
erf

z % 
data

0.5 38.3

0.674 50

1 68.27

2 95.45

3 99.73
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What if the data is not normally distributed? We only know x ̅ and s

www.mathsisfun.com



Quantitative meaning of variance
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Quantitative meaning of variance

 Chebyshev’s inequality: x̅ ± e.s range must capture at 

least 100 (1 – 1/e2)% of data

 Lesser than for normal, but remember it is true for any 
kind of distribution, including random distribution

e At least

1 0

2 75

3 88.89

4 93.75
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Example-2
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 Example: Average of a midterm in a class of 55 
students is 65 and s.d. =10. Cut-off for A is 85. What 
can you say about how many students got “A”

 x ̅  = 65; s = 10; cut-off for A = 85

 How many std. deviations away?

 x ̅ ± e.10 = 85  e=2  at least 75% data within 65

± 20 (45-85)

 % students getting more than 85% is less than 25% 

of class (0.25*55 = 13.75)

 Max no. of students getting ‘A’ = 13



Standard Error
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 Standard error is the standard deviation of the 
sampling distribution of mean

 Different samples drawn from the same population 
would in general have different values of the sample 
mean, although there will be a true mean (for a 
Gaussian distribution)



Std dev versus Std error

 If a measurement which is subject only to random 
fluctuations, is repeated many times, approximately 
68% of the measured values will fall in the range 

 If you do an experiment multiple no. of times, mean 
approaches real value. One can repeat the 
measurements to get more certain about 

 Hence, a useful quantity is  std dev of means  (or std 
error), 

xsx .1

x

Nss xx
/

66

ShS (TEQIP Feb 19th-21st 2016)



Example-4

 Find, mean,  s.d. and s.e. for the given data sets

 Plot using error bars
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Class Experiment Analysis
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Lets first use data for uncoated sample

 Calculate average for each group

 Calculate average and std. dev. of raw data

 Calculate average and std. dev of mean of each group

 What should be the relation between std. dev of raw 
data and std dev of means?

 What can you comment on this



Class Experiment Analysis
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 Plot histograms for raw data and for means

 What do you see?

 Lets look closer at the raw data

 One of the data point seems outlier

 Plot after removing this. Looks good?

 But, can we remove this data point?

 Average = 7.4; Std. dev.= 4.8

 Outlier = 24; How many std. dev away 

 Can we reject it? 

3.45

3.875



Class Experiment Analysis
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 Now lets look at data for Red clip

 Avg. 34

 Std. Dev. 24.32

 Outlier: 78

 No. of std. dev away: 1.82



Example-4: Plotting Error bars

Time (hrs) hardness-1 error-1 hardness-2 error-2

0 158.0 3.5 155.0 5.3

0.5 146.9 3.2 100.6 10.3

1 137.7 7.3 85.4 3.8

2 105.9 19.6 76.4 2.6

3 122.3 17.0 75.5 -

4 93.7 15.1 74.5 4.1

6 78.2 2.0 73.5 3.1
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Example-5: Double y-axis

% reduction UTS (Mpa) Elongation

5 988 13.5
10 1239 7.7
15 1285 6.8
20 1102 4.3
40 1402 3.3
60 1511 3.6
80 1620 4.9

How to plot two different characteristics on one same plot?
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Example-5
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Example-4 (Contd)
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Summary
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 Data presentation may look like a mundane task, but 
it involves a lot of intricacies

 The sole objective of data presentation should be to 
convey the full picture to the viewer without hiding 
any information

 Effective data presentation ensures that maximum 
information is conveyed in minimum ‘ink’
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Questions
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Outline

• Taguchi Design of Experiments

• Robust Parameter Design

• Signal-to-Noise (SN) ratios

• The testing problem of the equality for two SN ratios

Robust Parameter Design



2

• Robust Parameter Design, also called the Taguchi Method  
pioneered by Dr. Genichi TAGUCHI, greatly improves 
engineering productivity.

– Comparable in importance to Statistical Process Control, the Deming 
approach and the Japanese concept of TQC

• Robust Parameter Design is a method for designing products and 
manufacturing process that are robust to uncontrollable variations.

– Based on a Design of Experiments (Fisher’s DOE) methodology for 
determining parameter levels

• DOE is an important tool for designing processes and products

– A method for quantitatively identifying the right inputs and parameter 
levels for making a high quality product or service

• Taguchi approaches design from a robust design perspective

Taguchi Design of Experiments
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• Traditional Design of Experiments (Fisher’s DOE) focused on 

how different design factors affect the average result level

• Taguchi’s DOE (robust design)

– Variation is more interesting to study than the average

– Run experiments where controllable design factors and

disturbing signal factors take on 2 or 3 levels.

The Taguchi Approach to DOE
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• By consciously considering the noise factors and the cost of failure in 

the Taguchi method helps ensure customer satisfaction.

– Environmental variation during the product’s usage

– Manufacturing variation, component deterioration

• Noise factors (Disturbances) are events that cause the design 

performance to deviate from its target values

• A three step method for achieving robust design 

1. Concept design

2. Parameter design

3. Tolerance design

• The focus of Taguchi is on Parameter design

Robust Design (I)
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Robust Parameter Design (e.g. Wu and Hamada 2000)

– A statistical / engineering methodology that aim at 

reducing the performance “variation” of a system.

 The selection of control factors and their optimal levels.

– The input variables are divided into two board categories. 

 Control factor: the design parameters in product or process design. 

 Noise factor: factors whoes values are hard-to-control during 

normal process or use conditions

– The “optimal” parameter levels can be determined through 

experimentation

Robust Design (II)
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Signal to Noise (SN) Ratios (I)

Taguchi’s SN ratio

Performance measure
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Signal to Noise (SN) Ratios (II)
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• The traditional model for quality losses

– No losses within the specification limits!

The Taguchi Quality Loss Function 

• The Taguchi loss function 

– the quality loss is zero only if we are on target

Scrap Cost

LSL USLTarget

Cost

loss function

risk function

SN ratios
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However, if the adopted principles of the signal-response systems 

are  diffent and the physical quantities of the response values 

are different between the systems, the comparison of the 

Taguchi’s SN ratios has no sense.

A new performance measure for the systems :

 We propose a dimensionless SN ratios (Kawamura et al. 2006).

– Proportional model, K loss function, Dynamic SN ratios

– The response and the signal factor values are positive real values. 

A new performance measure (I)



10

The response and the signal factor values are positive real values. 

A new performance measure (II)

Consider two-parameter statistical models for positive 

continuous observation.

• Log normal distribution

• Gamma distribution

• Inverse Gaussian distribution etc.

Error distribution
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A new performance measure (III)

K loss function

K risk function
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A new performance measure (III)

Calculation !
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• We consider the testing problem of the equality for two SN ratios

– SN ratios for the systems with Dynamic Characteristics

– Performance comparison of the systems

A test of the Equality for two SN ratios (I)
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A test of the Equality for two SN ratios (II)
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Data 1 Data 2 

1K
 2K



Testing homogeneity of SN ratios

Which performance is good ?

SN ratio A1
SN ratio A2



15

A test of the Equality for two SN ratios (III)

A Variance Stabilizing Transformation

Approximation Test

Null hypothesis
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A numerical example (I)
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A numerical example (II)

In this example, the significant difference of the SN ratios 

between A1and A2 is not shown.

Significant level 1%

Not significant !



Lecture – 4 - What is robust design? 

Dr. Genichi Taguchi, a mechanical engineer, who has won four times Deming Awards, 

introduced the loss function concept, which combines cost, target, and variation into one metric. 

He developed the concept of robustness in design, which means that noise variables (or nuisance 

variables or variables which are uneconomical to control) are taken into account to ensure proper 

functioning of the system functions. He emphasized on developing design in presence of noise 

rather than eliminating noise.  

Loss Function  

Taguchi defined quality as a loss imparted to society from the time a product is shipped to 

customer. Societal losses include failure to meet customer requirements, failure to meet ideal 

performance, and its harmful side effects.  

Assuming the target [tau (τ )] is correct, losses are those caused by a product's critical 

performance characteristics, if it deviats from the target. The importance of concentrating on 

"hitting the target" is shown by Sony TV sells example. In spite of the fact that the design and 

specifications were identical, U.S. customers preferred the color density of shipped TV sets 

produced by Sony-Japan over those produced by Sony-USA. Investigation of this situation 

revealed that the frequency distributions were markedly different, as shown in Figure 3-13. Even 

though Sony-Japan had 0.3% outside the specifications, the distribution was normal and centered 

on the target with minimum variability as compared to Sony-USA. The distribution of the Sony-

USA was uniform between the specifications with no values outside specifications. It was clear 

that customers perceived quality as meeting the target (Sony-Japan) rather than just meeting the 

specifications (USA). Ford Motor also had a similar experience with their transmissions.  

      



 

 Figure 3-13 Distribution of color density for Sony-USA and Sony-Japan 
 

Out of specification is the common measure of quality loss in Goal post mentality [Figure 3-14 

(a) ]. Although this concept may be appropriate for accounting, it is a poor concept for various 

other areas. It implies that all products that meet specifications are good, whereas those that do 

not are bad. From the customer's point of view, the product that barely meets the specification is 

as good (or bad) as the product that is barely just out-of-specification. Thus, it appears that wrong 

measuring system for quality loss is being used. The Taguchi’s loss function [Figure 3-14 (b)] 

corrects for the deficiency described above by combining cost, target, and variation into one 

single metric.  



 
Figure 3-14(a): Discontinuos Loss Function (Goal Post Mentality) 

 

 
Figure 3-14(b): Continuous Quadratic Loss function (Taguchi 
Method)   

Figure 3-14(a) shows the loss function that describes the Sony-USA situation as per ‘Goal Post 

Mentality’ considering NTB (Nominal-the-Best)-type of quality charecteristic. Few performance 

characteristics considered as NTB are color density, voltage, bore dimensions, surface finish. In 

NTB, a target (nominal dimension) is specified with a upper and lower specification, say 

diameter of a engine cylinder liner bore. Thus, when the value for the performance characteristic, 



y, is within specifications the quality loss is $0, and when it is outside the specifications the loss 

is $A. The quadratic loss function as shown in Figure 3-14(b) describes the Taguchi method of 

definining loss function. In this situation, loss occurs as soon as the performance characteristic, y, 

departs from the target, τ .  

The quadratic loss function is described by the equation  

( )2L k y τ= − , 
Where L = cost incurred as quality deviates from the target (τ )  

      y is the performance characteristic,  k = quality loss coefficient.  

 

The loss coefficient is determined by setting  

( )2 2/ /k A y Aτ= − = ∆  

Assuming, the specifications (NTB) is10 ± 3 for a particular quality characteristic and the 

average repair cost is $230, the loss coefficient is calculated as,  

2 2/ 230 /3 25.6k A= ∆ = =  

Thus, L = 25.6 (for y= 10) and at L=102.4 (for y = 12),  

( )
( )

2

2

25.6 10

   =25.6 12 10
   =$102.40

L y= −

−  

Average or Expected Loss  

The loss described above assumes that the quality characteristic is static. In reality, one  

cannot always hit the target. It will vary due to presence of noise, and the loss function must 

reflect the variation of many pieces rather than just single piece. An equation can be derived by 

summing the individual loss values and dividing by their number to give 

           ( )22L k yσ τ = + −   

Where L  = the average or expected loss, σ  is the process variability of y charecteristic, y  is the 

average dimension coming out of the process.  



 

Because the population standard deviation, σ  , is unknown, the sample standard deviation, s, is 

used as a substituted. This action will make the variability value somewhat larger. However, the 

average loss (Figure 3-15) is quite conservative in nature.  

 
Figure 3-15 Average or Expected Loss 

 
The loss can be lowered by reducing the variation, and adjusting the average, y, to bring it on 

target.  

 

Let is compute the average loss for a process that produces shafts. The target value , say 6.40 mm 

and the loss coefficient is 9500. Eight samples give reading of 6.36, 6.40, 6.38, 6.39, 6.43, 6.39, 

6.46, and 6.42. Thus, 

s = 0.0315945  6.40375y =  

( )

( )

22

22   =9500 0.0315945 6.40375 6.40

   =$9.62

L k s y τ = + − 
 + − 

 



There are two other loss functions that are quite common, smaller-the-better and larger- the-

better. In smaller-the-better type, the lesser the value is preferred for the characteristic of interest, 

say defect rate, expected cost, and engine oil consumption. Figure 3-16 illustrates the concept.  

 
Figure 3-16 : (a) Smaller –the –Better and (b) Larger–the- Better-type of Loss Function 

     
To summarize the equations for the three common loss functions, 
Nominal the best 

( )2L k y τ= −  Where 2/k A= ∆  
L =k (MSD)   where MSD= ( )2 /y nτ Σ + −   

( )22L k yσ τ = + −   

Smaller the better 
2L ky=   where  2/k A y=  

L =k(MSD)   where MSD= 2 /y n Σ   

2 2L k y σ = +   

 
Larger the better 

( )21L k y= −   where  2k Ay=  

L =k(MSD)   where MSD= ( )21 / /y n Σ   

( )21 / /L k y n = Σ   

 
In case of larget-the-better, higher value is preferred for the characteristic of interest. Few 

examples of performance characteristics considered as larget-the-better are bond strength of 



adhesives, welding strength, tensile strength, expected profit.  

Orthogonal Arrays 

Taguchis method emphasized on highly fractionated factorial design matrix or Orthogonal arrays 

(OA) [http://en.wikipedia.org/wiki/Orthogonal_array] for experiment. This arrays are developed 

by Sir R. A. Fischer and with the help of Prof C R Rao (http://en.wikipedia.org/wiki/C._R._Rao) 

of Indian Statistical Institute, Kolkata. A L8 orthogonal array is shown below. An orthogonal 

array is a type of experiment where the columns for the independent variables are “orthogonal” 

or “independent” to one another.  

Table 3-4 L8 Orthogonal Array 

 

The 8 in the designation OA8 (Table 3-4) represents the number of experimental rows, which is 

also the number of treatment conditions (TC). Across the top of the orthogonal array is the 

maximum number of factors that can be assigned, which in this case is seven. The levels are 

designated by 1 and 2. If more levels occur in the array, then 3, 4, 5, and so forth, are used. Other 

schemes such as -1, 0, and +1 can be used. The orthogonal property of an OA is not 

compromised by changing the rows or the columns. Orthogonal arrays can also handle dummy 

factors and can be accordingly modified. With the help of OA the number of trial or experiments 

can be drastically reduced.  

To determine the appropriate orthogonal array, we can use the following procedure,  

Step-1 Define the number of factors and their levels.  

http://en.wikipedia.org/wiki/Orthogonal_array
http://en.wikipedia.org/wiki/C._R._Rao


Step-2 Determine the degrees of freedom.  

Step-3 Select an orthogonal array.  

Step-4 Consider any interactions (if required).  

To understand required df, we assuming four two-level (leveled as 1 and leveled as 2) factors, A, 

B, C, D, and two suspected interactions, BC and CD, determine the degrees of freedom, df.  

At least seven treatment conditions are needed for the two-level,  

df=4(2-1)+2(2-1)(2-1)+1=7 

 

Selecting the Orthogonal Array  

Once the degrees of freedom are known, factor levels are identified, and possible interaction to 

be studied, the next step is to select the orthogonal array (OA). The number of treatment 

conditions is equal to the number of rows in the OA and must be equal to or greater than the 

degrees of freedom. Table 3-5 shows the orthogonal arrays that are available, up to OA36. Thus, 

if the number of degrees of freedom is 13, then the next available OA is OA16. The second 

column of the table has the number of rows and is redundant with the designation in the first 

column. The third column gives the maximum number of factors that can be used, and the last 

four columns give the maximum number of columns available at each level.  

 

 

 

 

 

 

 

Table 3-5 Required Orthogonal Array  



 
 

Analysis of the table shows that there is a geometric progression for the two-level arrays of OA4, 

OA8, OAI6, OA32, ... , which is 22, 23, 24, 25, ... . For the three-level arrays of OA9, OA27, 

OA8I, ... , it is 32, 33, 34, ..... Orthogonal arrays can also be modified.  

Interaction Table  

Confounding is the inability to distinguish among the effects of one factor from another  

factor and/or interaction. In order to prevent confounding, one must know which columns to use 

for the factors in Taguchi method. This knowledge is provided by an interaction table, which is 

shown in Table 3-6.  

Table 3-6  Interaction Table for OA8 



 
Let's assume that factor A is assigned to column 1 and factor B to column 2. If there is an 

interaction between factors A and B, then column 3 is used for the interaction, AB. Another 

factor, say, C, would need to be assigned to column 4. If there is an interaction between factor A 

(column 1) and factor C (column 4), then interaction AC will occur in column 5. The columns 

that are reserved for interactions are used so that calculations can be made to determine whether 

there is a strong interaction. If there are no interactions, then all the columns can be used for 

factors. The actual experiment is conducted using the columns designated for the factors, and 

these columns are referred to as the design matrix. All the columns are referred to as the design 

space.  

Linear Graphs 
Taguchi developed a simpler method to work with interactions by using linear graphs. 

 
Figure 3-17 Two linear Graphs for OA8 

 
Two linear graph are shown in Figure 3-17 for OA8. They make it easier to assign factors and 

interactions to the various columns of an array. Factors are assigned to the points. If there is an 

interaction between two factors, then it is assigned to the line segment between the two points. 



For example, using the linear graph on the left in the figure, if factor B is assigned to column 2 

and factor C is assigned to column 4, and then interaction BC is assigned to column 6. If there is 

no interaction, then column 6 can be used for a factor.  

 

The linear graph on the right can be used when one factor has three two-level or higher order 

interactions. Three-level orthogonal arrays must use two columns for interactions, because one 

column is for the linear interaction and one column is for the quadratic interaction. The linear 

graphs-and, for that matter, the interaction tables-are not designed for three or more factor 

interactions, which are rare events. Linear graphs can also be modified. Use of the linear graphs 

requires some trial-and-error activity  

Interactions 
 

Interactions simply means relationship existing between different X-factors/X with noise 

variables considered for experiment.  Figure 3-18 shows graphical relationship between any two 

factors. At (a) there is no interaction as the lines are parallel; at (b) there is little interaction 

existing between the factors; and at (c) there is a strong evidence of interaction. The graph is 

constructed by plotting the points A1B1 A2B2, A2B1 and A2B2.  

 

 

Figure 3-18  Interaction between Two Factors 
 
Signal-to-Noise (SIN) Ratio  

 
The important contribution of Taguchi is proposing the signal-to-noise (S/N) ratio. It was 

developed as a proactive equivalent to the reactive loss function. When a person puts his/her foot 



on the brake pedal of a car, energy is transformed with the intent to slow the car, which is the 

signal. However, some of the energy is wasted by squeal, pad wear, and heat. Figure 3-19 

emphasizes that energy is neither created nor destroyed.  

 

 

 
 

Figure 3-19 Concept of  Signal-to-Noise (S/N) Ratio 
 

Signal factors (Y) are set by the designer or operator to obtain the intended value  

of the response variable. Noise factors (S2) are not controlled or are very expensive or difficult to 

control.  Both the average, y, and the variance, s2, need to be controlled with it single figure of 

merit. In elementary form, S/N is /y s , which is the inverse of the coefficient of variation and a 

unitless value. Squaring and taking the log transformation gives  

( )2 2
10/ logNS N y s= −  

Adjusting for small sample sizes and changing from Bels to decibels for NTB type gives 

( ) ( )2 2
10/ 10log 1 /NS N y s n = − −   

There are many different S/N ratios. The equation for nominal-the-best was given above. It is 

used wherever there is a nominal or target value and a variation about that value, such as 

dimensions, voltage, weight, and so forth. The target ( )τ  is finite but not zero. For robust 

(optimal) design, the S/N ratio should be maximized. The-nominal-the-best S/N value is a 

maximum when the average is near target and the variance is small. Taguchi's two-step 



optimization approach is to identify factors (X) which reduces variation of Y, and then bring the 

average (Y) on target by a different set of factor (X). The he S/N ratio for a process that has a 

temperature average of 21°C and a sample standard deviation of 2°C for four observations is 

given by  

( ) ( )

( ) ( )

2 2
10

2 2
10

/ 10log 1 /

         =10log 21 2 1 / 4

         =20.41 dB

NS N y s n = − − 
 − −   

The adjustment for the small sample size has little effect on  

the answer. If it had not been used, the answer would have been 20.42 dB.  

Smaller-the-Better  

The S/Ns ratio for smaller-the-better is used for situations where the target value ( )τ is  

zero, such as computer response time, automotive emissions, or corrosion. The S/N equation 

used is  

( )2
10 10/ 10log 10log /SS N MSD y n = − = − Σ      

The negative sign ensures that the largest S/N value gives the optimum value for the  

response variable and, thus a robust design. Mean square deviation (MSD) is given  

to show the relationship with the loss function.   

 Larger-the-Better  

The S/N ratio for  larger-the-better type of characteristic is given by 

( )2
10 10/ 10log 10log 1 / /LS N MSD y n = − = − Σ      

Let us consider a battery life experiment. For the existing design, the lives of three AA batteries 

are calculated as 20, 22, and 21 hours. A different design produces batteries life of 17, 21, and 25 

hours. To understand which is a better design (E or D) and by how much, we can use the S/N 

ratio calculation. As it is a larger-the-better (LTB) type of charectersitic (Response), the 

calculation are   

 



( ) = − Σ 
  + + +  
  

2
10

10 2 2 2

/ 10log 1 / /

1 1 1        =-10log /3
20 22 25

        =26.42 dB

ES N y n

 

( ) = − Σ 
  + + +  
  

2
10

10 2 2 2

/ 10log 1 / /

1 1 1        =-10log /3
17 21 25

        =26.12 dB

DS N y n

 

26.42 26.12 0.3 db∆ = − =  

The different design is 7% better than existing design.  More data will be required to confirm the 

result and so-called ‘Confirmatory trials’.  

Although the metric signal-to-noise ratio have achieved good practical results, they are yet to be 

accepted universaly as a valid statistical measure. The controversy is on meaures and shape of 

loss function. However, Taguchi’s concept has resulted in a paradigm shift in the concept of 

product quality and can optimize without any empirical regression modelling concept.   

It is also to be noted that inner (controllable factors) and outer array (for noise variable) design is 

recommended by Taguchi to understand the best setting for Robust Design, which many a times 

researchers omit for easy of experimentation. This practice may be avoided. Engineering 

knowledge and idea of interaction is essential to get the best benefit out of OA design. For further 

details on Taguchi method, reader may refer the books written by P J Ross (1996), A Mitra 

(2008),Besterfield et at. (2004) and M Phatke (1995).  
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 ABSTRACT: Taguchi Method is a statistical approach to optimize the process parameters and improve the 

quality of components that are manufactured. The objective of this study is to illustrate the procedure adopted in 

using Taguchi Method to a lathe facing operation. The orthogonal array, signal-to-noise ratio, and the analysis 

of variance are employed to study the performance characteristics on facing operation. In this analysis, three 

factors namely speed; feed and depth of cut were considered. Accordingly, a suitable orthogonal array was 

selected and experiments were conducted. After conducting the experiments the surface roughness was 

measured and Signal to Noise ratio was calculated. With the help of graphs, optimum parameter values were 

obtained and the confirmation experiments were carried out. These results were compared with the results of 

full factorial method. 

Keywords: Annova, Design of Experiments, Facing Operation, Orthogonal Array, S/N Ratio, Taguchi Method. 

 

I. Introduction 
Taguchi method is a statistical method developed by Taguchi and Konishi [1]. Initially it was 

developed for improving the quality of goods manufactured (manufacturing process development), later its 

application was expanded to many other fields in Engineering, such as Biotechnology [2] etc. Professional 

statisticians have acknowledged Taguchi’s efforts especially in the development of designs for studying 

variation. Success in achieving the desired results involves a careful selection of process parameters and 

bifurcating them into control and noise factors. Selection of control factors must be made such that it nullifies 

the effect of noise factors.  Taguchi Method involves identification of proper control factors to obtain the 

optimum results of the process. Orthogonal Arrays (OA) are used to conduct a set of experiments. Results of 

these experiments are used to analyze the data and predict the quality of components produced. 

Here, an attempt has been made to demonstrate the application of Taguchi’s Method to improve the 

surface finish characteristics of faced components that were processed on a lathe machine. Surface roughness is 

a measure of the smoothness of a products surface and it is a factor that has a high influence on the 

manufacturing cost. Surface finish also affects the life of any product and hence it is desirable to obtain higher 

grades of surface finish at minimum cost. 

 

II. Approach to Product/Process Development 
Many methods have been developed and implemented over the years to optimize the manufacturing 

processes. Some of the widely used approaches are as given below: 

  

1.1 Build-Test-Fix 
The “Build-test-fix” is the most primitive approach which is rather inaccurate as the process is carried 

out according to the resources available, instead of trying to optimize it. In this method the process/product is 

tested and reworked each time till the results are acceptable. 

  

1.2 One Factor at a Time 
The “one-factor-at-a-time” approach is aimed at optimizing the process by running an experiment at 

one particular condition and repeating the experiment by changing any other one factor till the effect of all 

factors are recorded and analyzed. Evidently, it is a very time consuming and expensive approach. In this 

process, interactions between factors are not taken in to account. 

1.3   Design of Experiments 
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The Design of Experiments is considered as one of the most comprehensive approach in 

product/process developments. It is a statistical approach that attempts to provide a predictive knowledge of a 

complex, multi-variable process with few trials. Following are the major approaches to DOE: 

1.3.1 Full Factorial Design 

A full factorial experiment is an experiment whose design consists of two or more factors, each with a 

discrete possible level and whose experimental units take all possible combinations of all those levels across all 

such factors. Such an experiment allows studying the effect of each factor on the response variable, as well as on 

the effects of interactions between factors on the response variable. A common experimental design is the one 

with all input factors set at two levels each. If there are k factors each at 2 levels; a full factorial design has 

2
k
 runs. Thus for 6 factors at two levels it would take 64 trial runs. 

  

1.3.2 Taguchi Method 

The Full Factorial Design requires a large number of experiments to be carried out as stated above. It 

becomes laborious and complex, if the number of factors increase. To overcome this problem Taguchi suggested 

a specially designed method called the use of orthogonal array to study the entire parameter space with lesser 

number of experiments to be conducted. Taguchi thus, recommends the use of the loss function to measure the 

performance characteristics that are deviating from the desired target value. The value of this loss function is 

further transformed into signal-to-noise (S/N) ratio. Usually, there are three categories of the performance 

characteristics to analyze the S/N ratio. They are: nominal-the-best, larger-the-better, and smaller-the-better. 

 

III. Steps Involved in Taguchi Method 
The use of Taguchi’s parameter design involves the following steps [3]. 

a. Identify the main function and its side effects. 

b. Identify the noise factors, testing condition and quality characteristics. 

c. Identify the objective function to be optimized. 

d. Identify the control factors and their levels. 

e. Select a suitable Orthogonal Array and construct the Matrix 

f. Conduct the Matrix experiment. 

g. Examine the data; predict the optimum control factor levels and its performance. 

h. Conduct the verification experiment. 

 

IV. Approach to the Experimental Design 
In accordance with the steps that are involved in Taguchi’s Method, a series of experiments are to be 

conducted. Here, facing operation on mild steel components using a lathe has been carried out as a case study. 

The procedure is given below. 

 

4.1 Identification of Main Function and its side effects 

                                   Main function: Facing Operation on MS work piece using lathe machine. 

                                   Side effects : Variation in surface finish. 

Before proceeding on to further steps, it is necessary to list down all the factors that are going to affect 

or influence the facing process and from those factors one has to identify the control and noise factors. The 

“Factors” that affect facing operation on a lathe machine are listed in the table 4.1. 

  

Table 4.1: Factors that affect facing operation 

Control factors Noise Factors 

Cutting speed Vibration 

Depth of cut Raw material variation 

Feed rate Machine Condition 

Nose radius Temperature 

Coolant Operator Skill 

After listing the control and the noise factors, decisions on the factors that significantly affect the 

performance will have to be ascertained and only those factors must be taken in to consideration in constructing 

the matrix for experimentation. All other factors are considered as Noise Factors. 

 

4.2    Identifying the Testing Conditions and Quality Characteristics To Be Observed 

Quality Characteristic: Surface finish 

Work piece material: Mild Steel 
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Cutting tool: Tungsten: Carbide Tipped tool 

       Operating Machine: Lathe machine 

       Testing Equipment: Portable surface tester 

4.3    Identify The Objective Function 

          Objective Function: Smaller-the-Better   

         S/N Ratio for this function:        [4] 

        Where, n= Sample Size, and y= Surface Roughness in that run. 

4.4     Identifying the Control Factors and their levels 

         The factors and their levels were decided for conducting the experiment, based on a “brain storming 

session” that was held with a group of people and also considering the guide lines given in the operator’s 

manual provided by the manufacturer of the lathe machine. The factors and their levels are shown in table 4.2. 

  

Table 4.2 Selected Factors and their Levels. 

FACTORS LEVELS 

1 2 3 

Cutting speed(v, rpm) 960 640 1280 

Depth of cut(t, mm) 0.3 0.2 0.4 

Feed rate(f, mm/min) 145 130 160 

  

4.5    Selection of Orthogonal Array 
To select an appropriate orthogonal array for conducting the experiments, the degrees of freedom are to 

be computed. The same is given below: 

Degrees of Freedom: 1 for Mean Value, and 

 8= (2x4), two each for the remaining factors 

Total Degrees of Freedom: 9 

The most suitable orthogonal array for experimentation is L9 array as shown in Table 4.3[5]. 

Therefore, a total nine experiments are to be carried out. 

  

Table 4.3 Orthogonal Array (OA) L9 

Experiment No. Control Factors 

1 2 3 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 3 

5 2 2 1 

6 2 3 2 

7 3 1 2 

8 3 2 3 

9 3 3 1 

 

4.6      Conducting The Matrix Experiment 

In accordance with the above OA, experiments were conducted with their factors and their levels as 

mentioned in table 4.2. The experimental layout with the selected values of the factors is shown in Table 4.4. 

Each of the above 9 experiments were conducted 5 times (45 experiments in all) to account for the variations 

that may occur due to the noise factors. The surface roughness (Ra) was measured using the surface roughness 

tester. The table 4.5 shows the measured values of surface roughness obtained from different experiments. 

 

Table 4.4 OA with Control Factors 

Experiment 

No. 

Control Factors 

V(rpm) t(mm) F(mm/min) 

1 960 0.3 145 

2 960 0.2 130 

3 960 0.4 160 

4 640 0.3 160 
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5 640 0.2 145 

6 640 0.4 130 

7 1280 0.3 130 

8 1280 0.2 160 

9 1280 0.4 145 

  

Table 4.5 Measured values of surface roughness 

Experiment 

No. 

Surface Roughness (Ra, μm) 

1 2 3 4 5 Mean 

1 2.35 2.43 1.94 2.91 2.77 2.48 

2 2.5 3.6 2.66 2.98 2.64 2.876 

3 2.43 2.82 4.01 2.96 4.1 3.264 

4 2.24 3.38 2.45 4.05 4.79 3.382 

5 2.54 3.67 2.70 4.25 4.37 3.506 

6 4.76 4.25 3.19 3.36 4.35 3.982 

7 2.04 2.49 3.84 1.71 3.79 2.834 

8 4.4 2.5 3.15 3.24 3.1 3.278 

9 3.94 2.19 2.31 2.44 3.30 3.306 

  

4.7    Examination of Data 

The following are the experimental results of the work carried out. 

4.7.1 Experimental Details 

 Since the objective function (Surface Finish) is smaller-the-better type of control function, was used in 

calculating the S/N ratio. The S/N ratios of all the experiments were calculated and tabulated as shown in Table 

4.6. 

  

Table 4.6 Tabulated S/N ratios 

Experiment No. S/N Ratio (dB) 

1 -7.9702 

2 -9.2568 

3 -10.4539 

4 -10.9196 

5 -11.0971 

6 -12.1010 

7 -9.2385 

8 -10.4642 

9 -9.2941 

  

The S/N ratio for the individual control factors are calculated as given below: 

Ss1=(η₁+η₂+η3), Ss2=(η4+η5+η6) & Ss3=(η7+η8+η9) 

Sf1=(η₁+η4+η7), Sf2=(η2+η5+η8) & Sf3=(η3+η6+η9) 

St1=(η₁+η5+η9), St2=(η2+η6+η7) & St3=(η3+η4+η8) 

For selecting the values of η₁, η2, η3 etc. and to calculate Ss1, Ss2 & Ss3 see table 4.3. 

ηk is the S/N ratio corresponding to Experiment k. 

Average S/N ratio corresponding to Cutting Speed at level 1 = Ss1/3   

Average S/N ratio corresponding to Cutting Speed at level 2 = Ss2/3   

Average S/N ratio corresponding to Cutting Speed at level 3 = Ss3/3   

j is the corresponding level each factor. Similarly Sfj and Stj are calculated for feed and depth of cut. 

The average of the signal to noise ratios is shown in table 4.7. 

Similarly S/N ratios can be calculated for other factors. 

  

Table 4.7: Average S/N Ratios for each factor 

Level Speed Feed Depth of Cut 

Sum (Ssj) Avg S/N ratio Sum (Sfj) Avg S/N ratio Sum (Stj) Avg S/N ratio 
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1 -27.6809 -9.2268 -28.3614 -9.3909 -28.1283 -9.45 

2 -34.1177 -11.3722 -30.5963 -10.273 -30.8181 -10.21 

3 -28.9968 -9.68 -31.8377 -10.616 -31.849 -10.65 

  

 

(a). Speed 

 

(b). Feed Rate 

 

 

(c). Depth of Cut 

  

 

 

For calculating the Surface Roughness the objective 

function, “smaller-the-better” type was used as shown. 

 
The factor levels corresponding to the highest S/N 

ratio were chosen to optimize the condition. From 

these linear graphs it is clear that the optimum values 

of the factors and their levels are as given in table 4.8. 

 

 

Fig-1 Charts Showing Parameter Level v/s S/N Ratio 

  

Table 4.8 Optimum values of factors and their levels 

Parameter Optimum Value 

Speed (rpm) 960 

Feed Rate (mm/min) 145 

Depth of cut (mm) 0.3 

  

4.7.2. Full Factorial Analysis 

A full factorial analysis consists of conducting experiments taking into account all the possible 

combinations of the factors and their levels. As far as the following experiments are concerned the 3 factors i.e.; 

speed, feed, and depth of cut were considered at 3 different levels as shown in Table 4.9. These were compared 

with the results of the fractional factorial that was conducted using Taguchi method. 

  

Table 4.9 Full Factorial Experiment Matrix 

Experiment No. Parameters Mean Surface 

Roughness, 

Ra(μm) 
Speed(rpm) Depth of cut(mm) Feed (mm/min) 

1 960 0.3 145 2.48 

2 960 0.2 145 3.26 

3 960 0.4 145 2.57 

4 960 0.3 130 2.62 

5 960 0.2 130 2.876 

6 960 0.4 130 2.87 

7 960 0.3 160 2.74 

8 960 0.2 160 4.35 

9 960 0.4 160 3.264 

10 640 0.3 145 3.82 

11 640 0.2 145 3.506 
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12 640 0.4 145 3.41 

13 640 0.3 130 2.96 

14 640 0.2 130 3.45 

15 640 0.4 130 3.982 

16 640 0.3 160 3.382 

17 640 0.2 160 5.04 

18 640 0.4 160 4.25 

19 1280 0.3 145 4.02 

20 1280 0.2 145 4.03 

21 1280 0.4 145 3.306 

22 1280 0.3 130 2.834 

23 1280 0.2 130 4.14 

24 1280 0.4 130 3.3 

25 1280 0.3 160 2.6 

26 1280 0.2 160 3.278 

27 1280 0.4 160 2.76 

  

4.7.3 Comparison of full factorial analysis with Taguchi parameter design: 

It is evident from the results of the full factorial analysis shown in Table 4.9, the best surface finish 

characteristics obtained were at 960 rpm, 0.3 mm depth of cut and 145 mm/min feed rate. From Taguchi 

parameter design the optimum parameter levels obtained were also the same (see Table 4.8). Thus, it can be 

noted that Taguchi parameter design will also give accurate results with lesser number of experiments to be 

performed. 

4.8 Confirmation Experiment 

The following table 4.10 shows confirmation experiments conducted using 960 rpm, 0.3 mm depth of 

cut and 145 mm/min feed rate. Total five sets of experiments were conducted and their surface roughness values 

were checked. It can be seen that the results are consistent. 

  

Table 4.10 Confirmation Experiment 

Experiment No. Surface Roughness, 

Ra (μm) 

1 2.43 

2 2.23 

3 2.86 

4 2.51 

5 2.21 

Mean 2.448 

  

V. ANNOVA AND ITS SIGNIFICANCE 
Analysis of variance (ANOVA) is used to evaluate the response magnitude in (%) of each parameter in 

the orthogonal experiment. It is used to identify and quantify the sources of different trial results from different 

trial runs (i.e. different cutting parameters). The basic property of ANOVA is that the total sums of the squares 

(total variation) is equal to the sum of the SS (sums of the squares of the deviations) of all the condition 

parameters and the error components, i.e., adding the variations of each factors, 

                              SST = SSS +SSf + SSt+ SSe      (Eqn. 5.1) 

                                             SST =     (Eqn. 5.2) 

Where, G = is the sum of the resulting data of all trial runs; and n is the total number of the trial runs . 

                                             SSk=         (Eqn. 5.3) 

Where k represents one of the tested parameters; j is level number of this parameter; Syj is sum of all 

trial results involving this parameter k at level j; n is the total number of trial runs. The following table 5.1 

shows the results of the ANOVA.       

  

Table 5.1 Sum of all squares of all deviations 
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Parameter DOF SS SS% 

Speed, S 2 7.7329 58.49 

Feed, f 2 2.0689 15.65 

Depth of cut, t 2 2.4541 18.56 

Noise, e 2 0.9655 7.3 

Total 8 13.2214 100 

  

It can be seen from this table that for the surface finish (Ra), the contribution of cutting speed (58.49%) 

is more significant than depth of cut which is (18.56%). These factors are more significant than the feed rate 

(15.65%). It is clear that the effect of noise factor (7.3%) on surface finish is very low as compared to the 

control factors. 

 

VI. CONCLUSION 
This paper illustrates the application of the parameter design (Taguchi method) in the optimization of 

facing operation. The following conclusions can be drawn based on the above experimental results of this study: 

 Taguchi’s Method of parameter design can be performed with lesser number of experimentations as 

compared to that of full factorial analysis and yields similar results. 

 Taguchi’s method can be applied for analyzing any other kind of problems as described in this paper. 

 It is found that the parameter design of the Taguchi method provides a simple, systematic, and efficient 

methodology for optimizing the process parameters. 
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